866

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

wherelM is the set of all nodeBM ; excluding those fulfilling property BDS: A BDD-Based Logic Optimization System
3. The larger the cost of a vectoris, the less test vectors can be pro- o _
duced by the grouping if is selected. Congguang Yang and Maciej Ciesielski

The cost of a faulff, with V; denoting the set of its test vectors, is
then estimated as

Abstract—This paper describes a novel logic decomposition theory
FaultCost(f) = Z WeightVector(v). and a practical logic synthesis systemBDS. It is based on a new binary
decision diagrams (BDD) decomposition technique which supports all

veVy LN . .
types of decomposition structures, includingAND, OR, XOR, and complex

A larger fault cost indicates that it is harder for the algorithm teux, both algebraic and Boolean. As a result, the method is very
cover it. efficient in synthesizing both AND/OR and xoOR-intensive functions. It

(1]

[2
(3]
(4]
(5]
(6]
(71

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]
[22]

(23]

[24]

also has a capability to handle very large circuits, as it employs the
BDD decomposition in the partitioned Boolean network environment.
REFERENCES The experimental results show that BDD-based logic decomposition is
M. Abramovici, M. A. Breuer, and A. D. Friedmamigital Systems Ia proTISIIng e}tlterfrf\at|ve to the_ emstlr;g IOQ'Z opttlmlzatlon a:pp(jrgt)_achels.
Testing and Testable DesignNew York: Computer Science Press, n particuar, It oners a superior runtime advantage over traditiona
1990. logic synthesis systems.
P. H. Bal’dell, W. H. MCAnney, and J. SaVB,U“t‘ln Test for VLSI: Index Terms—BDD, |0gic Optimization’ SynthesiS.
Pseudo-Random TechniquedNew York: Wiley, 1987.
V. Agrawal, C. Kime, and K. Saluja, “A tutorial on built-in self-test part
1: Principles,”IEEE Design Test Computensp. 73—-82, Mar. 1993.
H.-J. Wunderlich, “BIST for systems-on-a-chipritegration, VLSI J.
vol. 26, no. 1-2, pp. 55-78, Dec. 1998. Traditional logic optimization methodology, based on algebraic

';Aéo%usme” and V. AgrawalEssentials of Electronic Testingluwer, ¢, qrization [1], [2], has gained tremendous success and emerged as

K.-T. Chenand C.-J. Lin, “Timing driven test point insertion for full-scan dominant method i.n logic synthesis. prever, While near optimal
and partial-scan BIST,” ifProc. Int. Test Conf.1995, pp. 506-514. results can be obtained faomwbD/OR-intensive functions of control

A. Stroele and H.-J. Wunderlich, “TESTCHIP: A chip for weightedand random logic, results are far from satisfactory for arithmetic
gg?grgir%ititéc‘o?‘znsersgoi‘bg‘éa'fggg”jar;dlg:‘;iCO”“E’EE J. Solid- " and xor-intensive logic functions, which can be more compactly
S. Hellebrand, J. Raj’ski, S. Tarnick, S Venkataraman, and B. Courto{gpresented _as aj gom_bmatlon efiD/orR and xOR eXpreSS'o_ns'_

“Built-in test for circuits with scan based on reseeding ofmuItipIe-ponAI'[hOUgh logic optimization methods based on Boolean factorization
nomial linear feedback shift registerdEEE Trans. Computvol. 44, can potentially offer better results than algebraic methods, they failed
pp. 223-233, Feb. 1995. to compete with algebraic techniques due to their high computational

H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” ifProc. Int. Conf. ; : : ; P
Computer-Aided Desigri996, pp. 337-343. complexity. We believe that this failure of Boolean optimization

S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIstEChniques is caused by inappropriate data structure used to represent
scheme based on reseeding of folding counters?rat. Int. Test Conf. Boolean functions. The predominant cube representation used by
2000, pp. 778—784. o those techniques naturally favors algebraic-based methods and is not
N. A. Touba and E. J. McCluskey, "Bit-fixing in pseudorandom segjitaple for Boolean operations. Consequently, Boolean operations

g;egzgiéggsfgrleggiEEE Trans. Computer-Aided Desigrol- 20, ¢\, -n asmux and xoR received less attention from the onset of

K. Chakrabarty, B. T. Murray, and V. lyengar, “Built-in test pattern genlogic synthesis research.
eration for high-performance circuits using twisted-ring counters,” in We believe that logic synthesis methods will keep evolving with
Proc. IEEE VLSI Test Symp.999, pp. 22-27. the emergence of newer and more efficient logic representations, and

N. A. Touba and E. J. McCluskey, “Test point insertion based on pa ; ; ; em i .
tracing,” in Proc. VLS| Test Symgil996, pp. 2-8. i particular with the accumulation of expertise in binary decision

J. Hartmann and G. Kemnitz, “How to do weighted random testing f¢iiagrams (BDDs). This paper presents the first results of research
BIST,” in Proc. Int. Conf. Computer-Aided Desigtf93, pp. 568-571. that address this new opportunity. It presents a novel theory and a
C. Okmen, M. Keim, R. Krieger, and B. Becker, “On optimizing BIST-set of efficient techniques for logic decomposition based on BDD
architecture by using OBDD-based approaches and genetic algorithmgpresentation. We show that logic optimization can be efficiently

g ?Arogh\él;]S;anesSt iyngﬂl&i?h Ap?ﬁgﬁ%?ﬁggy to design efficient BIS.Inzarried out through an iterative BDD decomposition and manipulation.

test pattern generators,” Proc. Int. Test Conf.1995, pp. 814-823. Our approach proves to be very efficient for bothp/or- and
——, “Efficient BIST TPG design and test set compaction via inpukOR-intensive functions. To the best of our knowledge, this is the first

reduction,”IEEE Trans. Computer-Aided Desigrol. 17, pp. 692-705, ynified logic optimization methodology that allows one to optimize

|. INTRODUCTION

Aug. 1998. ; ; : ;
K. Chakrabarty, B. Murray, J. Liu, and M. Zhu, “Test width compressior?lmh diverse classes of logic .functl_on.s. We also present a practical
for built-in self test,” inProc. Int. Test. Conf1997, pp. 327—337. and complete BDD-based logic optimization systé8S that can

I. Hamzaoglu and J. Patel, “Reducing test application time for built-ifiandle arbitrarily large circuits. It employs the BDD decomposition
self-test test pattern generators,”Rmoc. VLS| Test Symp2000, pp. techniques in the partitioned Boolean network environment.
369-375.

N. A. Touba and E. J. McCluskey, “Synthesis of mapping logic for gen-

erating transformed pseudo-random patterns for BISTRtot. Int. Test

Conf, 1995, pp. 674-682.

M. F. Alshaibi and C. R. Kime, “MFBIST: A BIST method for random Manuscript received July 13, 2001. This work was supported in part by the
pattern resistant circuits,” iRroc. Int. Test Conf.1996, pp. 176-185. National Science Foundation under Contract CCR-9901254. This paper was rec-
C. Fagot, P. Girard, and C. Landrault, “On using machine learning fammended by Associate Editor E. Macii.

logic BIST,” in Proc. Int. Test Conf.1997, pp. 338—346. C. Yang is with Chameleon Systems, Inc., San Jose, CA 95134 USA (e-mail:
L. R. Huang, J. Y. Jou, and S. Y. Kuo, “Gauss-elimination-based genayang@chameleonsystems.com).

ation of multiple seed-polynomial pairs for LFSREEE Trans. Com- M. Ciesielski is with the Department of Electrical and Computer Engi-
puter-Aided Designvol. 16, pp. 1015-1024, Sept. 1997. neering, University of Massachusetts at Amherst, Amherst, MA 01003-4410
S. Chiusano, P. Prinetto, and H. J. Wunderlich, “Non-intrusive BIST fddSA (e-mail: ciesiel@ecs.umass.edu).

systems-on-a-chip,” ifroc. Int. Test Conf.2000, pp. 644—651. Publisher Item Identifier S 0278-0070(02)05630-0.

0278-0070/02$17.00 © 2002 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 867

Xy 8

o @~

00| 1 0O
o1 1

1000 0 0 O

(@) (©

Fig. 1. Ashenhurst decomposition using BDD: (a) decomposition chart, (b) disjoint decomposition of the BDD, and (c) block diagram.

Il. BACKGROUND AND PREVIOUS WORK decomposition, a Boolean functiofi(X) can be expressed as:
F(X) = F(GL(Y).Ga(Y).....Gr(Y).Z), whereY U Z = X.
HereY is referred to as dound seand Z is afree set The original

It is assumed that the reader is familiar with basic concepts Akhenhurst decomposition calls for the two sets to be disjoint,
Boolean functions, Boolean networks, and BDDs. This sectionreviewsn 7z = § (the disjoint decomposition)t and having a single
basic terms used throughout the paper. predecessor block, with & = 1 (called thesimpledecomposition);

A completely specifie@oolean function withrn-inputs and one see Fig. 1(c). Under such a decomposition Boolean function can be
outputis a mapping: B” — B, whereB = {0, 1}. Such afunction represented by decomposition chastwith the variables inY” and
can be uniquely defined by ittsef ON(f) = {=: f(x) = 1},andits 7 corresponding to the column and row indexes, respectively, as
offsef OFF(f) = {a: f(x) = 0}. For completely specified Boolean shown in Fig. 1(a). A disjoint decompositioh X) = F(G(Y), Z)
functionsf andg, f coversy, denoted ag 2 ¢, if ON(f) 2 ON(g). exists if the number of distinct columns of the decomposition chart, or
An incompletely specifie@oolean function withn inputs and one column multiplicity is « = 2. Roth and Karp [9] extended this result
outputis a mapping f: B* — Y, wherel” = {0,1,x}, andx stands to nondisjoint decomposition, with' N Z = X, and withk > 1
for don't care Thedon't care se(dc-set) of an incompletely specified predecessor blocks;. The functional decomposition methods based
Boolean functionf(x) is defined asDC(f) = {x: f(x) = x}. A on the decomposition charts are computationally inefficient because
cover F' of an incompletely specified Boolean functigrsatisfies the the number of columns in the chart grows exponentially with the
conditionON(f) € F' C ON(f) U DC(f). Thesupportof Boolean number of bound set variables, and testing decomposition with each

function F', denotedsupp(F’), is defined as the set of variables onbound set is possible only after constructing its decomposition chart.

which F' depends. In the context of this work, we are only concerned

with completely specified Boolean functions. In the sequel, the ter@ Previous Work in BDD Decomposition

Boolean functions used for a gompletely specified Boollean function. This section reviews a number of BDD-based logic decomposition
The concept of BDDs was first proposed by Lee [3] in 1959. It Wagethods developed over the last decade. These methods can be divided

then developed into a useful data structure by Akers [4] and subggy, two major classes: 1) methods that follow the traditional func-

quently by Bryant [5], who introduced a conceptretiuced, ordered jona| decomposition of Ashenhurst—Curtis, but rely on BDDs as an

BDDs (ROBDDg, along with a set of efficient operators for their Ma-gicient data structure for the implementation of their algorithms and

nipulation, and proved the canonicity property of ROBDDs. The SIZ8 methods that use thegructureof a BDD to identify good decompo-

of a BDD can be further reduced by introduciogmplement edges gitions and more efficiently utilize the expressive power of BDDs. The
[4], [6]. Basically, a complement edge-gdgg, points to the comple- \ethod described in this paper belongs to the latter category.

mentary form of the function (BDD node). To maintain canonicity, itis The gpD decomposition methods from the first class employ
assumed that a complement edge can only be assigned to the 0-edggps as a platform to carry out traditional functional decomposition
the rest of the paper, BDD refers to a reduced ordered BDD (ROBDLk Ashenhurst [7] and Roth—Karp [9]. Let al.[10] demonstrated that
In the drawings, the positive cofactor will be represented by a solifle strycture of a BDD is implicitly related to the decomposition chart
1-edge and the negative cofactor by a dasl@eedge and hence can be used to perform the functional decomposition. Given
Multilevel circuits are typically represented aBaolean network o ordered BDD, aut setis selected that partitions the variables into
a directed acyclic graph (DAG) whose nodes represent Boolean funcsound setand afree set see Fig. 1(b). Each node in the cut set
tions. Various Boolean network presentations differ mainly in the Warresponds to a unique column of the decomposition chart, Fig. 1(a).
they represeribcal functionspertaining to individual nodes. The func-pq decomposition exists if the size of the cut setsatisfies the
tionality of a Boolean node can be represented as a set of product teg@isition m < 2k wherek is the number of outputs of function
(@sin SIS [2]), or as a BDD, in a form known atoaal BDD represen- pjock 3. The implementation of the decomposed functiosand
tation. A Boolean network can be also represented giabal form, G, is accomplished by encoding the BDD nodes in the cut set, as
by collapsing the entire Boolean network into a single node for eagfwn in Fig. 1(b). The described cut-based approach has served as
primar_y output. In_th_is representation each global node is represenief,sis for several logic decomposition methods [10]-[13]. They are
as a single monolithic BDD. particularly applicable to FPGA designs; in this case the cut is selected
based on the number of inputs to the look-up-table (LUT) blocks. The

A. Boolean Functions and BDDs

B. Functional Decomposition
) . . . IThe disjoint and nondisjoint decompositions refer to the interaction of the
The first systematic approach to functional decomposition Wagriables in the support of the function. They should not be confused with dis-

proposed by Ashenhurst [7] and Curtis [8]. According to thigunctive OR) and conjunctiveAND) decompositions, described in Section 111-B.

868 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

method of Laiet al. [10] has been extended also to the decomposi- [F] (asb)(c+a)

tion of multiple-output functions in [14]. Here the multiple-output @

Boolean function is first converted into an integer-valued function and .

represented as ardge-valued BDOYEVBDD); the EVBDD is then 1-dominator | 1 asb] ovd

decomposed using method similar to [10] and the result converted ~ L//V -
(cy ! Py [j }
= a

back into a multiple-output function. A serious limitation of all those ,f\v‘(* @
methods is that they require finding a cut which separates the bound . i ‘ /
variables from the free variables. A

An important group of methods in the same category is thhtd#- / (o]
compositionsintroduced by Bochmaet al. [15]. Bidecompositions
are functional decompositions of the typg X, Y, Z) = G(X,Y) ® (@)
H(Y, Z),where® stands for any binary Boolean operation. For purely
algebraicdecompositiony” = @), and fornonalgebraicdecomposition
Y # 0 (the overlap set). If the support 6f (or H) is identical to that
of F, the bidecomposition is callegeak otherwise, it is calledtrong

A class of quasialgebraic decompositipn.e., bidecompositions
where the seY is fixed, has been introduced by Stanion and Sechen
in [16]. They give the necessary and sufficient conditions for a
function to have a quasi-algebraic decomposition for a given choice
of X,Y, Z. This is a special case of Roth—Karp decomposition with
k = 1 predecessor block. This method also requires that the variable
partitioning into subset, Y, Z be consistent with the ordering of)
variables in the BDD.

The BDD-based logic synthesis continues to be an active reseafih 2. Algebraic decompositions of Karplus: (a) conjunction decomposition,
area. Recently, Mishchenlat al.[17] suggested a method to per_formg - (a“bj_bz((]" g_a?e'dbgﬁe(?- ggn}i-r?;gwrl.nator and (b) disjunctive decomposition,
bidecomposition using formulas with quantifiers evaluated with the
help of BDDs. A work of Files and Perkowski [18] applies multivalued
decision diagrams, MDDs, to perform multivalued functional decom- lll. THEORY OFBDD DECOMPOSITION
position.

_ Thg second class of methods religs on geeicture of BDD to __A. Terminology and Fundamentals

identify good decompositions and guide directly the decomposition

process. The first known work in this class, and the one that inspiredpefinition 1 (BDD): A BDD is a DAG representing a Boolean func-
our research, is that of Karplus [19]. Karplus introduced the concegiy, it can be uniquely defined as a tupBDD = (3, V, E, {0,1}),

of a 1- and 0-dominatorand showed their relationship &igebraic \yhered is the function noder¢ot), 1 is the set of nodes is a set of
AND/OR decomposition, illustrated in Fig. 2. In a BDD without thegqges, and 0 and 1 are the terminal nodes. O
complement edges, a 1-dominator (0-dominator) is a node whichpefinition 2 (Leaf Edges):Theleaf edgds an edge € E which is
belongs to every path from the root to terminal node 1 (0). directly connected to a terminal node of the BDD. The set of leaf edges,

There have been several other attempts to perform multilevel logjenoteds, can be partitioned int&o, the set of leaf edges connected
optimization directly on a BDD. Bertacco and Damiani [20] proposeg 0, andx; , the set of leaf edges connected to 1. All the other edges
a method which performs recursive decomposition directly on a BDBf the BDD are callednternal. O
Their method basically annotates disjoint decomposition inherentin thepefinition 3 (Paths): A path from root to terminal node 0(1) is
BDD structure. It is fast and for some circuits generates much bette{jled a0-path(1-path). II, is the set of all 0-paths, arfd, is the set
results than SIS [2]. However, it can only detect simple disjoint dgyf gJ| 1-pathsIl = II, | JII, is the set of all paths of the BDD. [J
compositions. Stanion and Sechen [21] proposed a Boolean divisiomrheorem 1: Every internal edge € (E — ¥) belongs to at least
and factorization method using a specialized BDD operator, called one pathp; € TI; and to one path, € .
terval cofactor An important contribution of this work is its capability Proof: The theorem is proved by contradiction. Since BDD is a
to extractxors using a BDD decomposition technique similar to thatonnected graph, every edge must belongltoor II;. Assume that
described in Section III-D. However, due to a lack of efficient way te ¢ E — T belongs tdll, only. Then all the nodes belowcan be
generate good Boolean divisors, the improvement offered by sucldllapsed into 1, so that € ¥;. Hence, the contradiction. Same rea-
Boolean division over SIS is marginal. soning applies to the case If. O

It should be noted that the BDD-based decomposition techniqueDefinition 4 (Cut): Thecutin a BDD is a set of edges which parti-
mentioned here can only detect bidecompositions for a variable ordiens its node$” into two disjoint subsetd) and(V-D), such thatoot
consistent with their partitioning into the bound set and the free set.D and terminal$), 1 € (V-D)). A horizontal cutis a cut in which
Otherwise, none of these methods can detect algebraic or quasi-atge-support ofD and(V'-D) in terms of the associated variables, are
braic decomposition and require reordering of variables. The methdidjoint. |
described in this paper attempts to remedy this problem. We demonwe now provide a theoretical basis for two fundamental BDD de-
strate that the structure of a well-ordered BDD can be uliedtlyto compositions, namely the conjunctive and disjunctive Boolean decom-
identify functional decomposition of the underlying function, leadingositions.
to efficient multilevel logic implementations. The described method Definition 5 (Conjunctive Decomposition):Boolean functionF
can detect algebraic as well as Boolean decompositions even for fias theconjunctive AND) decompositiornif it can be represented as
variable order that is inconsistent with the variable partitioning. Th8 = D - Q. FunctionD is called the Booleadivisor and(is the
theory of such a decomposition is the subject of Section III. quotientof F' under this decomposition. O

(=

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 869

Definition 6 (Disjunctive Decomposition) Boolean functior¥' has
the disjunctive OR) decompositiorif it can be represented a8 =
e HJ. 6R) p p -
The decomposition ialgebraicif the supports of) and.D (G and
H) are disjoint; otherwise, the decompositioBizolean In contrast to
quasi-algebraic methods [16], we do not make any assumption whether @
the decomposition is algebraic or Boolean; nor do we require any ex-
plicit declaration of the number of the overlapping variables. Instead,
we develop a general decomposition method for the conjunctive (dis-
junctive) decomposition, common to both types. E
We now state two well-known theorems that form a basis of our BDD
decomposition technique. The proofs can be found in any textbook on
logic synthesis, such as [22].

.................................

Theorem 2: Boolean functior¥ has a conjunctive Boolean decom- (e) h
positionF = D - @ ifand only if F C D. For a given choice oD,
the quotient) must satisfyF C Q C F + D. Fig. 3. A simple example of conjunctive Boolean decomposition.

We use this theorem to generate the Boolean divisor and the quotient
directly from the BDD. Our procedure will first generate dividdrand example, see the 0-path) in the BDD of D in Fig. 3(d) and the iden-
then compute quotiedp from F' using the offset oD as don't care. tical one inF in Fig. 3(a). Replacing the node 0 with DC on such a path
Theorem 3: Boolean functionF” has a disjunctive Boolean decom-in Q = F will never decrease the onset of the resultidgcompared
positionF’ = G+ H ifand only if ' O G. Then, for a given choice of to F' [it may only increase it by making some nodes redundant, as in
G, the disjunctive ternif must satisfy the conditioR C H C F+G. Fig. 3(e) and (f)]. Hencé€) D F. Finally, we claim that redirecting the
This theorem forms the basis for our disjunctive decomposition; vi&, (D) edges to DC is equivalent to adding the offsefbfs a don't
will first generateG and then comput& from F' using an onset off care settd”. This is true, because replacing node 0 by DC at the end of
as don't care. the pathpo (F') amounts to adding an offset cubeBfassociated with
po(D) to the BDD of F'. This is done for alpo (D) € IIo(D). Hence
such constructe@ satisfies) C F + D. O
Example 2: Fig. 3 is used again to illustrate Lemma 1 for function
Definition 7 (Generalized Dominator) Consider a cut partitioning F' = ¢ + bd. The free edged) of GD(F) in Fig. 3(b) is redirected
the set of BDD nodes of functiof into D and (/' -Vp). The portion of to constant 1, as shown in Fig. 3(c). The Boolean divieds readily
the BDD defined by nodés); is copied to form a separate graph, wherevaluated ad = e + d, shown in Fig. 3(d). The quotier} for this
an edge: is connected to 0 € Xy (F), and itis connectedto 1éf € divisor is obtained fronF” by using the offset oD (cubeed) as don't
¥, (F). All the internal edges € (E — X)) are left dangling; they are care; see Fig. 3(e). The minimizationGfwith respect to this don’t care
referred to adree edges. The resulting graph is called generalized gives = e+b, as shown in Fig. 3(f). Notice thaD = e+d) D (F =
dominatorof F' with respect to the given cut, denoteéd(F’). O e+bd),and(Q = e + b) satisfies the conditiod C Q C F + &d.
Example 1: Fig. 3(a) and (b) shows the construction of a general- Example 3: A complete conjunctiveaND) decomposition is shown
ized dominator. First, a cut is applied to the BDD Bfin Fig. 3(a). in Fig. 4. First, a cut is performed on the BDD in Fig. 4(a), and the
Then the portion above the cut is copied to form a separate graph, wgneralized-dominatat D(F') is built. Then, the Boolean divisad
¥(F) edges connected to the corresponding terminals O or 1, shownsrconstructed fronZD(F') by redirecting the free edges to 1. The
Fig. 3(b). O reduction of this BDD gived = (af + b + ¢), shown in Fig. 4(b).
The following theorem shows how to obtain a Boolean divisor anthe quotient? is obtained from#’ by minimizing it with the offset of
perform the conjunctive Boolean decomposition of the BDOFoy D (i.e., D = {afbz, abz}) as don't care, giving) = (ag + d + ¢);
redirecting the free edges 6fD(F’) to terminal node 1. see Fig. 4(c). As aresulf] = (af + b+ ¢)(ag + d + €) with only
Lemma 1: Given a generalized dominat6tD(F’) of function F, eight literals. This is the best know decomposition for this function.
the Boolean divisoP is obtained fromG D (F') by redirecting its free Disjunctive OR) decomposition is dual to the conjunctive decom-
edgesto 1. The quotiettis obtained fron¥" by redirectingth&, (D) position. The following is the fundamental theorem for disjunctive de-
edges inF' to don’t care nodes. composition.

Proof: First we shall show thab satisfies the condition of The- Lemma 2: Consider a disjunctive Boolean decompositior= G+
orem 2, thatisD D F. By constructionXq(D) C X,(F), and H.Given ageneralized dominat6iD(F') of function F, the Boolean
(D) C Ilo(F), thatisD C F, or equivalently,D D F.InFig. 3, termG can be obtained by redirecting the free edge&/@i(F) to
D = {&d} C F = {&d, &db}. Alternatively, it can be argued that all 0. The Boolean ternH is obtained fromF by redirecting theZ (G)
1-paths ofD are either identical to or subsume thoseofThis is be- edges inF" to don’t care nodes.
cause, by Theorem 1, every internal edgd'as on some 1-path. By Proof: We must show that such construct€cand H satisfy the
construction, this is also true for the free edges-d?(F’). By redi- conditions of Theorem 3. First, notice that by redirecting the free edges
recting the free edges 6D (F') to 1, the BDD ofD covers all 1-paths of GD(F) to 0, the offset of the resulting Boolean functiGhcovers
of F, thatisD D F. the offset ofF", that is,G 2 T, henceG C F. The rest of the proof is

It remains to be shown that, for such construciethe BDD of(@ dual to that of Lemma 1 . In this case, each 1-patftz) has its coun-
satisfies the condition for the quotied®:C @) C F + D. This follows terpart inF'; see for example the patfub} in Fig. 5(d) of D and the
directly from the construction af); we start withQ) = F’, identify the one in Fig. 5(a) of". Redirecting th&; (&) edges to DC is equivalent
offset of D as 0-paths in the BDD adb, and redirect the correspondingto replacing the onset @ as don't care irf’ in the construction off .
O-paths inF’ to don’t care (DC) nodes. By construction, each 0-path in]

D, po(D), has an equivalent 0-path in, po (IF'); that is, the nodes of Example 4: Fig. 5 illustrates Lemma 2 for functioR = ab + bc.
po(D) are in one-to-one correspondence with the nodes @f). For The free edges oD (F) in Fig. 5(b) are redirected to constant 0,

B. And/Or Decomposition

870 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

D=af+b+c

(a) (b) (c)

(refer to proofs of Lemma 1 and 2). This problem has been shown to be
NP-complete [23], [24], and only a few heuristics are available today to

solve it. The exact method described in [24] can only be used for small
functions. We use the heuristics based on the RESTRICT operator of
Coudert and Madre [25].

C. Identifying Useful Cuts

The number of possible cuts that should be examined in the search
for an optimalaND/OR decomposition can be prohibitively large even
for a moderately sized BDD. Therefore, a mechanism to reduce the
number of candidate cuts has been developed, rendering some cuts in-
valid or redundant.

It can be shown that only cuts which contain at least one leaf edge
Fig.5. A simple example of disjunctive Boolean decomposition. e € ¥ can lead to nontrivial Boolean decomposition [26]. We refer

to them asvalid cuts All terminal edges of a generalized dominator
generated from other cuts are free; when redirected to 1 (0), they create
resulting inG' = ab, as shown in Fig. 5(c) and (d). The tedhof this trivial Boolean divisorg D = 1), or trivial disjunctive Boolean terms
decomposition is obtained froifi by setting the onset d¥, {ab}, as (H = 0). To further limit the number of cuts, they can be grouped into
don't care; see Fig. 5(e). The minimization Bfwith respect to this equivalence classes as follows.
don’t care givedT = be, or H = b + ¢, as shown in Fig. 5(f). Notice Definition 8 (Equivalent cuts): Two cuts areD-equivalentf they
thatG = b C F,andF C H C (F + ab). contain the same set &f, edges. Similarly, two cuts afeequivalent

The conjunctive and disjunctive decompositions described in thfghey contain the same set bf; edges. O
section are, in generaBooleandecompositions. This is because, by Theorem 4: All Boolean divisors of a conjunctive decomposition,
construction, the function® and((or G and H) share their support obtained from 0-equivalent cuts, are identical. Similarly, all Boolean
variables; whilesupp(D) contains only the variables above the cutterms of a disjunctive decomposition, obtained from 1-equivalent cuts,
supp(Q) C supp(F') because) is derived fromF'. That is, using the are identical.
terminology of [15], the resulting bidecomposition may be weak. Ifthe Proof: Consider two 0-equivalent cuts. In each of the Boolean
minimization of @ removes all variables isupp(D) from supp(@), divisors generated by those cuts, edges X, are connected to 0; all
leading to disjoint supports db and@, the resulting decomposition other edges are connected to 1. Hence, both Boolean divisors have the
is algebraic. In this case, our generalized dominator reduces to a 1same set of 1-patts$; (onset) and the same 0-patilis (offset). Hence,
0-dominator of Karplus [19], discussed in Section II-C. The same ahey are identical. Similar argument applies to 1-equivalent cutsl
gument applies to the disjunctive decompositibne= G + H. Fig. 6(a) shows a BDD with several possible cuts. Cuts 2 and 3 are

In contrast to quasi-algebraic methods of [16], our method can fidequivalent, hence they lead to identical Boolean divisors, as illus-
decomposition for the variable order not necessarily consistent witlated in Fig. 6(b) and (c). Additional properties, suchrassitive cut
the partitioning of variables into sef$, Y, Z. Consider, for example, property[26], can further reduce the number of valid cuts to be consid-
function ' = (ab + ¢)(ad + ¢). This decomposition can be readilyered. In our approach we limit our attentiontorizontal cuts While
obtained with our method. The algorithm of [16] can find this deconit is obvious that nonhorizontal cuts can help identify other useful de-
position only when variable separates the seis ¢) and(d, ¢) inthe compositions, possibly leading to better results, the inclusion of those
variable order. However, the best variable orderp, ¢, d, ¢), which cuts would significantly increase the computational complexity. In the
gives the BDD of minimum size (eight nodes), violates this conditiomyorst case, the total number of horizontal cut§li$, whereV is the
making it impossible to obtain this decomposition. number of variables (levels of a BDD). In practice, the total number of

Finally, we should comment on the minimization of the BDD withvalid horizontal cuts is much smaller because many cuts are either 1-
don’t cares which is an essential part of our decomposition proceducg-equivalent.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 871

Fig. 6. (a) Various cuts on a BDD. (b), (c) Equivalent cuts.

D. XOR Decomposition

The BDD decomposition based on generalized dominators, ¢
scribed in the previous section, relies on the leaf edgesWhile
BDDs of random logiaND/OR-intensive functions tend to have many
¥ edgesxor-intensive and arithmetic functions have very few or n
¥ edges. Itis apparent that the decomposition which reli€s edges
will fail on a BDD with few ¥ edges.

This section addresses this issue by developing the techniques
getingxor-type decomposition on a BDD. We observed thakar
decomposition is associated with the presenceomfplement edges
(c-edges) in the BDD. For this reason, we use a BDD representati (a) (b ©
With c-odges to. oetect such decompositions. Recall that in orderto - Algebraicxnor decomposition based andominatot
maintain canonicity, only the negative edges can be complemented.
They will be represented in this paper as dotted edges with a bubble 'n
the sequel, we will useNOR (@) instead 0fXOR, as it is more straight-
forward to develop.

We shall first consider analgebraic XNOR decomposition,

= GG H, with disjoint supports ofs and H. Let function ' be
represented by a BDD with complement edges. We define-domi-
natorin such a BDD to help identify an algebraior decomposition. x-dominator

Definition 9 (x-Dominator): Nodev € V which is contained in
every pattp € II is called arx-dominator O

The definition ofx-dominatorimplies that there must exist at least
one complement edge above it; otherwise, all the BDD nodes abov
will collapse intow.

Theorem 5: Let v be anz-dominator in the BDD of Boolean func- (a) (b} (c)
tion I". The BDD of I" can be algebraically decomposed Bis= Fig.8. Anz-dominatorleading to algebraigNor decompositionF’ = («+
GTH, whereG is a BDD rooted at; BDD of H is obtained from v)&(@ + 7 + q).

F by redirecting the regular edges pointing to nede terminal 1 and

the complemont edges pointing to nodm termioal 0. . Notice that 1-paths of that pass through node are alwaysom-
Proof: Fig. 7(a) shows a generic BDD with andominatorv. plementaryith respect to (w.r.t.) those passing through noddience

The BDD of G rooted at is copied with negative polarityX) so that ¢ portions of BDD above the two nodes dfeand @, respectively.

the complement edges pointing@can be transformed into negative Example 5: Fig. 8(a) shows a BDD with c-edges for Boolean func-

edges pointing t67, as shown in Fig. 7(b). The BDD df can now be tion F = {(@a+ 7+ ¢)(x + y) + urgzy}. An z-dominator can be

represented as a disjunction of two parts, one @itleplaced by node igentified at node: (variablex); the function rooted at is G = =+ .

0, and the other witk replaced by node 0, as shown in Fig. 7(c). Not®y expressing the c-edge coming int@s a negative edge, the BDD

thatG' andG are 1-dominators in their respective BDDs. By definfilg - can be represented as a BDD with regular edges in Fig. 8(b). Here node

to be a Boolean function derived frof by redirecting all the edges v is split intov, , associated witlis = = + y, and nodes,, associated

pointing toG to node 1, and all the edges pointing@oto 0, as in with G = &y. In this BDD all 1-paths pass either through nadeor

Fig. 7(c), functionF can be represented Bs= G-H+G-H = GEH. through node. Therefore ' = (x + y)T (@ + 7 + ¢), see Fig. 8(c).

O O

872 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

generalized x-dominators O @

(a) (b) (c)

Fig. 9. Boolearxnor decomposition of functionnd4-1, F = (21 Dx4)D(x2(25 + x124)).

The algebraicxor decomposition defined here is essentially iden-
tical to that of [21].

We shall now consideBooleanxNOR decompositionf' = GEH,
with no constraints imposed on the supportg:oénd H . While func-
tion F may not have an algebraioR decomposition, it has many
Booleanxor decompositions, as expressed by the following theorem.

Theorem 6: For a Boolean functiorf” and an arbitrary Boolean
functionG, there always exists a Boolean functiéih such that?” = Fig. 10. FunctionaMux decomposition¥ = Af + hg.

Proof: The proof is based on the Boolean transformatibre=
GD (GOF) = GO H, whereG is an arbitrary Boolean function, and
H = G&F. O

This theorem points out that a Boole#orR decomposition is not
unique, in fact it has infinitely many decompositions, each associated
with an arbitrary Boolean functio&'. While exhaustive search for all
combinations of#, H that minimizeF is clearly prohibitive, a set of
good candidates fak can be detected directly from the BDD by iden-
tifying a generalized x-dominatopdefined below.

Definition 10 (Generalized:-dominator): Nodewv € V which is
pointed to by at least one complement and one regular (positive or neg-
ative) edge is called thgeneralized:-dominator O (a) (b)

Once a generalized x-dominata@¥ is identified in the BDD,
H = GEF is computed using a standard apply operator from a BD
package.

Example 6: Fig. 9(a) shows the BDD for circuit rnd4—1 from the
MCNC benchmark suite. There are two generalized x-dominatordVo “articulation” nodesy andy, of this BDD cover all pathg € II.
namelyz;, andz4. We illustrate arxNoR decomposition based an. Subsequently, the function can be representeld asg + 7y, where
First we creates = x1 704, as a function rooted at;; see Fig. 9(b). 9 = #w + zw serves as a control signal for thesx. .
The BDD of H is derived fromG and F' by computing] = G&F, We should recall that Theorem 7 applies only to BDDs without com-
as shown in Fig. 9(b). We show it also without the c-edges in Fig. 9(8)ement edges above andv. One should note the resemblance of
to point out that it exposes a 1-dominatey, so it can be further the functionaMux decomposition with the functional decomposition

algebraically decomposed & = x2 (x5 + z124). This results in the Of Ashenhurst (cf. Section II-C). Specifically, thesx decomposition

B’g. 11. Example of functionalux decompositionF' = ¢z + gy, where
g = zw + Zw.

final decompositionF = (21T 24)E (2 (25 4+ z124)). [with a single control function is identical to a simple disjoint decom-
position of Ashenhurst with column multiplicity of two; in general, the
E. Mux Decomposition column multiplicity corresponds to the number of the “articulation”

.) . nodes (, v) in Theorem 7, as illustrated by the above example.
Each node of a BDD can be viewed as a multiplexor (MUX), leading

to asimple MUX decompositioisuch a decomposition can be gener-
alized to a more effectiveunctional MUX decompositigrwhere the
control signal is a function, instead of a single input variable. Such aThis section briefly reviews the implementation of a complete logic
decomposition often leads to concise multilevel implementations. optimization system, BDS. In order to handle arbitrarily large circuits it
Theorem 7: Consider a BDD structure, in which two nodesande, operates in theartitionedBoolean network environment. The details
cover all path$ € II. The BDD canthen be decompose(fas: hf+ of the initial implementation of the system are presented in [26] and
hg, wheref andg are functions rooted at nodesandwv, respectively, [27].
andh is obtained from the BDD of’ by redirecting node: to 1, and]
nodev to 0. A. Synthesis Flow
Proof: The proof is similar to that of Theorem 5; see Fig. ID. BDS adopts a general synthesis flow of SIS, as shown in Fig. 12.
Example 7: Fig. 11 shows an example of a functiomalx decom- The similarity between BDS and SIS is obvious. The fundamental dif-
position forF' = (zw + zw)z + (2w + zw)z, shown in Fig. 1(b). ference between the two systems is in the way they represent Boolean

IV. BDS SYSTEM—IMPLEMENTATION

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 873

Boolean Network

SIS ———J \————— BDS

Network partitioning

A \

Sweep. Constant propagation.

Sweep. Constant propagation . .
Removal of functionally equivalent nodes

) Y

Eliminate based on factored form Eliminate based on BDD statistics

BDD decomposition engine)|
V
Logic simplification through

\
Logic simplification using two-level

logic minimization techniques

BDD variable reordering

) i v i

Recursive BDD decomposition
Sharing extraction from muiti-BDDs
Sharing extraction on factoring trees

Factorization, resubstitution, etc.

Technology mapping

Fig. 12. Synthesis flows of SIS and BDS.

nodes and carry out the individual optimization procedures. SIS worB®Ds are constructed from primary inputs to primary outputs. At any
on an algebraic representation of the entire Boolean network, iterativelyint, if the size of a BDD is larger than a predefined fixed threshold,
factoring out algebraic expressions and performing node collapsing and intermediate variable is introduced. This approach, however,
logic simplification. BDS first partitions the network into a set of nodedgnores a specific structure of the Boolean network. As a result, the
represents each asl@cal BDD, and then performs BDD decompo-elimination often stops at boundaries which are not natural for a given
sition. All the subsequent procedures are carried out on local BDDggic network; this approach may also cause memory explosion. The
using the decomposition algorithms especially tailored for BDDs. second approach is based ierative elimination[29] and is quite
The first step in the employed synthesis flow is the removal of initiaimilar to theeliminate procedure of SIS [2]BDS adopts a similar
redundancy from the Boolean network using procedure sweep. Whdlgproach, except that it uses the number of BDD nodes as the cost
there is no real logic optimization involved in this procedure, it play&inction to guide the elimination, instead of the literal count.
an important role in preparing the network for a subsequent decom4n practice, a straightforward implementation of theninate pro-
position. In addition to removing constant and single-variable nodedure is complicated by the BDD variable reordering. When local
all functionally equivalent nodes are also identified and removed froBDDs are constructed for a Boolean network, an intermediate variable
the Boolean network. Removal of functionally duplicated nodes at thiscreated for each Boolean node. Therefore, in addition to all primary
initial stage significantly improves runtime complexity BDSover inputs, a BDD manager also contains all intermediate variables. The
traditional approaches. number of such variables could be very large even for a medium-sized
circuit, and reordering a BDD manager with all the variables will se-
verely degrade the overall runtime performance. Furthermore, the re-
B. Network Partitioning By Node Elimination moval of one node from the Boolean network corresponds to the demise
of one variable in the BDD manager; such a variable becamased
Applying logic optimization to the entire Boolean network usinghfter several iterations and the removal of many Boolean nodes the
global BDD representation may not be practical for large designs. @BDD manager contains a large number of unused variables. It has been
the other hand, applying logic optimization to a completelial rep- found that in the entire ISCAS benchmark set about 63% of variables in
resentation may not work either, as it may leave a significant amount BDD manager become unused just after first iteration. Obviously,
of redundancy in the network. A reasonable tradeoff can be achieygstforming variable reordering in a BDD manager with such a large
by partially collapsing the Boolean network into a setstipernodes number of unused variables is highly inefficient. In our system, instead
Each supernode can then be represented as a local BDD and syndhgezordering the BDD manager with all the variables, a new BDD man-
sized. Partial collapsing is critical to a logic synthesis system; it helpger, containing only thesedvariables, is initialized. Each BDD is
to remove logic redundancy, caused, for example, by lminver- then transferred into the new BDD manager using our proprietary bd-
gence often present in a multilevel network. dPool mechanism, described in [27]. During this process, variables are
Partial collapsing can be implemented with a help ofdhminate substituted according to a mapping functiéf, which maps the vari-
procedure, which attempts to maintain the right granularity of trebles from the old BDD manager onto the new one. When all BDDs
Boolean network. A properly designetiminate scheme provides a are reconstructed in the new BDD manager, a set of BDDs which are
good starting point for logic optimization algorithms. Two approachésomorphic to the original ones, but much more compact in the range of
have been proposed in the literature for ¢hieinate procedure using indexes, is obtained. This process is referred toBBR mappind27].
BDDs. The first one is based gogressive eliminatiofi28], where Thanks to an efficientimplementation of BDD mapping elitinate

874 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

(2) (b) (c)

Fig. 13. Sharing extraction on the factoring trees: (a) original BDD, (b) factoring trees after BDD decomposition, and (c) factoring treedrajtexshation
(A = XOR; @ = XNOR; dotted oval= complemented gate).

(a) (b (c)

Fig. 14. Decomposition and extraction sharing on the factoring tregsaafi.

procedure is on average 85 times faster than that of [29]. The runtiméependently of each other, one usingominator and the other using

advantage oBDSbecomes even more pronounced for larger circuitdunctionalmMux decomposition. The factoring trees are constructed for
each function, resulting in the structure shown in Fig. 14(b). Finally, the

C. The BDD Decomposition Engine logic shared between the two factoring trees is extracted and shared in

In our system, a BDD is first subjected to a variable reordering [3d2€ final network, as shown in Fig. 14(c). o
This serves as a means to achieve an initial logic simplification, a good=inally, we should comment on difference between our approach to
starting point for further logic decomposition. The decomposition éhe the decomposition of multiple-output functions and the one based
the ordered BDD consists of two major parts: 1)iterative BDD ©On EVBDDs, described in [14]. An EVBDD-based method requires
decompositionwhere a large BDD is recursively decomposed inté1at all outputs share the same bound set to be decomposable. Our ap-
smaller parts, and 2) a construction and processing ofat@ring proach, which decomposed each output independently, offers freedom
trees Factoring trees are constructed along with the BDD decompl§-select each “bound set” individually, potentially leading to better re-
sition as a means to record the result of the decomposition. sults.

The iterative BDD decomposition is a search process for the most ef-
ficient decomposition. The BDD dominators, introduced in Section 11| \/. EXPERIMENTAL RESULTS
are empirically ordered in terms of the resulting decomposition effi-
ciency as follows: 1) simple dominators (1-, 0- andlominator); 2)
functionalmux; 3) generalized dominator; and 4) generalizedom-

The experiments have been conducted on a Pentium-I11/500 ma-
chine running Linux. They cover all nontrivial combinational circuits

inator. If all searches fail, the BDD is decomposed using a simple d5M theé MCNC benchmark set. The test circuits were divided into
factor (simplemux) w.r.t. a top variable in the BDD. In practice, this™WO 9roups: 1)AND/OR-intensive (random logic) functions, and 2)
last step is rarely reached:; it is kept to ensure that the BDD will still B&R-intensive, arithmetic functions. All the circuits were synthesized
decomposed when all other attempts fail. by both BI_DS and by SIS usingcript.rugged[2] and mapped onto
A BDD decomposition process begins with the BDD structural scdRcnc.genlibBoth a tree-based mapper of SIS and a mapper based on
in which the structural information of a BDD needed to guide the vaB0olean matchingceres[31], were used in the experiment.
ious decomposition types is obtained. The result of BDD decompo-The results for small and medium size circuits, which can be
sition for each output is stored infactoring tree Subsequentlyfpgic ~Modeled as a global BDD, were presented and analyzed in [32]. For
sharingbetween different factoring trees is detected to further optimiZ&\D/OR-intensive (random logic) circuits, BDS uses on average 4%
the synthesis results. For this purpose, BDDs are constructed forfawer gates but requires 5% more area than SIS. At the same time,
factoring trees in a bottom-up fashion, and the canonicity property oP&®S outperforms SIS by 37% in CPU time for this class of circuits.
BDD is used to identify functionally equivalent subtrees. Fig. 13 showhe slight increase in area is due to the higher coskam gates
an example of sharing extraction for circtit.blif from the MCNC assigned by the mapper. For the class of arithmetic functions and
benchmark set. XOR-intensive logic, BDS outperforms SIS in all aspects: the number
Example 8: Consider a two-output functior,g, 2}, with global of literals (on average by 40%), gate count (by 23%), gate area (by
BDD representations shown in Fig. 14(a). The BDDs are decomposkt?s), and CPU time (by 84%). A tree-based SIS mapper was used

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 875

TABLE |
COMPARISON BETWEEN BDS AND SIS
Circuits SIS BDS
Area \? | Delay [ns] | CPU [s] | Mem [MB] || Area A? | Delay [ns] | CPU [s] | Mem [MB]

C1355 689 39.40 6.6 3.3 711 45.60 0.4 1.0

C1908 695 68.60 8.1 3.1 730 65.00 0.8 1.0

C3540 1695 81.40 16.1 15.1 1713 81.20 3.6 1.9

C432 290 75.90 46.1 6.4 357 78.40 0.2 0.5

C499 689 39.40 6.8 3.5 708 43.60 0.6 0.5

C5315 2286 68.60 10.2 5.6 2402 70.50 5.3 3.0

C6288 4631 237.8 21.8 14.8 4677 178.3 3.8 1.1

C7552 3038 115.70 54.2 45.2 3112 83.30 4.2 4.8

C880 567 56.10 1.9 2.2 563 43.20 0.7 0.8

pair 2274 74.30 16.1 6.8 2466 52.60 2.1 2.0

rot 965 51.60 4.5 2.7 1025 51.90 1.0 0.9

dalu 1306 61.0 70.5 4.8 2604 117.2 7.2 2.6

vda 837 39.8 19.7 3.3 1054 47.8 7.1 1.4

Total 19962 1009.6 282.6 116.8 22122 958.6 37.0 21.5

TABLE I
RESULTS OFBDS AND SIS FOR LARGE ARITHMETIC CIRCUITS

Circuits SIS BDS Speedup
name gates | area [A\?] [delay [ns] | CPU [s] || gates | area [\?] [delay [ns] [CPU [s]
bshift16 158 406.0 19.0 3.9 145 376.0 21.8 1.0 3.9
bshift32 292 774.0 27.5 19.1 255 704.0 31.1 2.3 8.3
bshift64 653 1796.0 34.9 100.2 570 1656.0 47.2 6.5 154
bshift128 1478 4237.0 55.5 643.9 1193 3750.0 75.3 22.9 28.1
bshift2566 3683 9981.0 95.3 8666.4 2782 8614.0 132.6 28.9 300.0
bshift512 - - - | > 15 hrs 7367 | 22598.0 240.0 95.1 > 560.0
m2x2 8 17.0 9.1 0.2 11 22.0 5.7 0.1 2.0
mdx4 97 220.0 56.1 2.7 112 256.0 375 0.4 6.7
m8x8 514 1224.0 121.2 424 561 1351.0 81.8 2.2 19.3
ml16x16 2312 5678.0 264.0 110.8 2517 6111.0 186.5 9.7 114
m32x32 9941 24213.0 531.3 12154 || 10511 25787.0 387.9 48.0 25.3
m64x64 41040 | 99787.0 1069.8 23881.7 || 42947 | 105749.0 789.3 321.8 74.2

Total [60176 | 148333 | 2073.7 | 34719.2 [61604 | 154376 | 1796.7 | 443.8 |

in this experiment sinceereswas not stable on this set of circuits.100 times faster than SIS. The overall runtime complexity of BDS is
As a result only 33% ofxors were preserved by the mapper. Asignificantly lower than that of SIS.

demonstrated in [32], the performance of BDS in terms of the numberNotice that circuit area synthesized wBlSis only slightly (on av-

of gates compares favorably with the technique of Tetadl. [33], erage 3%) larger than that obtained with SIS. There are two reasons
developed specifically for arithmetic functions. for that. First, sincdDShas a capability to performor andMux de-

Table | summarizes a set of larger experimental results from thempositions, thexor andMux structures are representerplicitly
LGSynth91est case suite, showing the circuit delay and memory usaigethe factoring trees and in the finklif files. However, only a small
by both systems. The circuits were mapped by the SIS mapper. The dedetion ofXxORs andvuxs are actually mapped @R andMux gates;
area of circuits synthesized by BDS is consistently larger than SIS this is a known weakness of the tree-based technology mapper of SIS
this set by about 11% on average. The delay is on average 6% smalkd in our experiment. Secondly, currently BDS does not have the
than that of SIS. The amount of memory required by BDS is on averag@pability to perfornsatisfiability don’t careminimization. If the re-

82% lower. In terms of the CPU performance, BDS demonstrates séisndancy cannot be removed by thigninate eliminate procedure, it
nificant advantage over SIS; on average itis more than eight times fastélt most likely remain in the final synthesized circuit.

on this set of circuits. The results for two test casiediiandvda merit All the results produced by BDS, except for C6288, were indepen-
additional explanation; they are inferior to SIS both in circuit area ardently verified w.r.t. the original specification by our internal verifier
delay. This can be explained by the fact that BDS does not perform nd@®S with option-verify) and by SIS. Since both tools build global
simplification with local and satisfiability don’t cares derived from thaBDDs to perform verification, they could not verify the C6288 mul-
network, as it is done ifull simplify of SIS. A specialized BDD-based tiplier. However, since we verify each step of the elimination process
Boolean network optimization with don’t cares would be a desirablevhen building local BDDs) we believe the result to be correct too.
feature in order to improve these results.

To prove the potential of BDS to optimize large circuits, where net-
work partitioning into local BDDs is necessary, we tested our system
on a set of arithmetic circuits generated by a proprietary HDL-to-blif The experimental results show that BDD-based logic optimization is
translator. The results are shown in Table Il. On average, BDS is owgpromising alternative to the existing logic optimization approaches. In

VI. CONCLUSION

876

particular, it offers a superior runtime advantage over traditional logic [8]
synthesis techniques based on algebraic transformations. It can also be
useful as a tool for fast and reliable estimation of logic optimization. 9
An up-to-date version of the BDS software can be downloaded frorrplO]
[34].

The capability of current BDD-based methodology can be further
enhanced by incorporating the following future work. [11]

1) While BDS offers great runtime improvement, especially for[12]
arithmetic circuits, it cannot successfully compete in terms of
gate area with highly tuned and perfected algebraic methods for
random logic circuits. BDD-based logic minimization with sat-
isfiability don't cares, similar tdull-simplify of SIS, should be
developed to improve the area performance of BDS.

The minimization of BDDs with don't care nodes (Section I11-B) [14]
remains an open and difficult problem requiring more research.
Improving this procedure could significantly improve the results.
One of the current weaknesses of BDS is its inability to properly[; 5
balance the factoring tree, which is crucial for the delay mini-
mization. This can be overcome by selecting, among several can-
didate dominators, the ones closest to the middle of the tree. Thi[§6]
requires further tuning of the cost function. [
Recently, we found that BDS is also amenable to FPGA syn-
thesis. In-depth analysis of the underlying algorithms for BDD
decomposition should be performed to fully understand thd18l
reason for its applicability to FPGAs. Very encouraging initial
results, showing over 30% improvement in the LUT count, havey; gj
already been obtained [35].

The common logic extraction performed on the factored tree$20]
is currently limited to completely specified functions of the tree 21]
nodes. The caching technique recently proposed in [17] can b[é
readily used used to remedy this problem.

Compared with the state-of-the-art logic synthesis methodologyl22]
which has evolved from continuous research and development durirLg
the past 20 years, the presented BDD-based logic optimizatio
technique is very young and much less mature. Extensive research
must be performed to make this approach a truly successful synthedi#]
method. We hope that this work will initiate a new round of research
in logic synthesis area in the years to come. [25]

2)

3)

4)

5)

ACKNOWLEDGMENT [26]

The authors are indebted to A. Mishchenko for illuminating discus-
sions on the BDD-based logic decomposition methods and for his hel{g7]
in providing a reliable methodology to verify the synthesis results. The3f28]
would also like to thank the reviewers for providing insightful com-
ments about the paper.

[29]
REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli, “Multi-
level logic synthesis,Proc. IEEE pp. 264-300, Feb 1990.
[2

E. Sentovichet al, “SIS: A System for Sequential Circuit Synthesis,” [31]
ERL, Dept. EECS, Univ. California, Berkeley, UCB/ERL M92/41, 1992.

[3] C.Y.Lee, “Representation of switching circuits by binary decision pro-
grams,”Bell System Techn.,dol. 38, no. 4, pp. 985-999, June 1959.

[4] S. B. Akers, “Functional testing with binary decision diagrams,” in
Eighth Annual Conf. Fault-Tolerant Computint978, pp. 75-82.

(5]

R. Bryant, “Graph-based algorithms for boolean function manipula-[33]
tion,” IEEE Trans. Computersol. 35, pp. 677-691, Aug. 1986.

[6]

[71

[30]

(32]

K. Brace, R. Rudell, and R. Bryant, “Efficientimplementation of a BDD [34]
package,” irProc. Design Automation Confl990, pp. 40-45.

R. L. Ashenhurst, “The decomposition of switching functions,Piroc.
Int. Symp. Theory of Switchingpl. XXIX, Ann. Computation Lab. Har-
vard Univ., Cambridge, MA, 1959, pp. 74-116.

(35]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

H. A. Curtis, A New Approach to the Design of Switching Cir-
cuits Boston, MA: D. Van Nostrand, 1962.

] J. P. Roth and R. M. Karp, “Minimization over boolean graphBM J.

Res. Dey.pp. 227-238, Apr. 1962.

Y-T. Lai, M. Pedram, and S. Vrudhula, “Bdd based decomposition of
logic for functions with applications to FPGA synthesis,”"Rmoc. De-
sign Automation Conf1993, pp. 642—-647.

T. SasaoFPGA Design by Generalized Functional Decomposition, in
Logic Synthesis and OptimizationBoston, MA: Kluwer, 1993.

Y.-T. Lai, K.-R. Pan, and M. Pedram, “OBDD-based function decompo-
sition: Algorithms and implementattion|EEE Trans. Computer-Aided
Design vol. 15, pp. 977-990, Aug. 1996.

13] S.-C. Chang, M. Marek-Sadowska, and T. Hwang, “Technology map-

ping for TLI FPGA's based on decomposition of binary decision dia-
grams,”|EEE Trans. Computer-Aided Desigvol. 15, pp. 1226-1235,
Oct. 1996.

Y.-T. Lai, M. Pedram, and S. Vrudhula, “Evbdd-based algorithms for
integer linear programming, spectracl transformation, and function
decomposition,”IEEE Trans. Computer-Aided Desigwol. 8, pp.
959-974, Aug. 1994.

D. Bochman, F. Dresig, and B. Steinbach, “A new decomposition
method for multilevel circuit design,” ifProc. Eur. DAC 1991, pp.
374-377.

T. Stanion and C. Sechen, “Quasialgebraic decomposition of switching
functions,” inAdvanced Res. VLS1995.

17] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for

bi-decomposition of logic functions,” iRroc. Design Automation Conf.
2001, pp. 103-108.

C. Files and M. Perkowski, “New multi-valued functional decomposi-
tion algorithms based on MDD’s[EEE Trans. Computer-Aided De-
sign vol. 19, pp. 1081-1086, Sept. 2000.

K. Karplus, “Using if-then-else DAG’s for multi-level logic minimiza-
tion,” Univ. California, Santa Cruz, UCSC-CRL-88-29, 1988.

V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” InIEEE Int. Conf. Computer-Aided DesigtP97, pp. 78-82.

T. Stanion and C. Sechen, “Boolean division and factorization using bi-
nary decision diagrams|EEE Trans. Computer-Aided Desigrol. 13,

pp. 1179-1184, Sept. 1994.

G. D. Hachtel and F. Someniipgic Synthesis and Verification Algo-
rithms Boston, MA: Kluwer, 1996.

] M. Sauerhoff and |. Wegener, “On the complexity of minimizing the

OBDD size for incompletely specified functiondEEE Trans. Com-
puter-Aided Desigrvol. 15, pp. 1435-1437, Nov. 1996.

A. L. Oliveira, L. Carloni, T. Villa, and A. L. Sangiovanni-Vincentelli,
“Exact minimization of binary decision diagrams using implicit tech-
niques,”IEEE Trans. Computersol. 47, pp. 1282-1296, Nov. 1998.

O. Coudert and J. C. Madre, “A unified framework for the formal veri-
fication of sequential circuits,” iffroc. ICCAD 1990, pp. 126-129.

C. Yang and M. Ciesielski, “BDS: BDD-Based logic optimization
system,” Dept. Electrical and Computer Engineering, Univ. Massachu-
setts Amherst, TR-CSE-00-01, 2000.

——, “BDS: A BDD-based logic optimization system,” Rroc. Design
Automation Conf.2000, pp. 92-97.

P. Buch, A. Narayan, R. Newton, and A. Sangiovanni-Vincentelli, “On
synthesizing pass transistor logic,” intl. Workshop Logic Synthesis
1997.

R. Chaudhry, T. Liu, A. Aziz, and J. Burns, “Area-oriented synthesis
for pass-transistor logic,” innt. Conf. Computer Designl998, pp.
160-167.

R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” inlEEE Int. Conf. Computer-Aided Desigh993, pp. 42-47.

F. Mailhot and G. D. Micheli, “Algorithms for technology mapping
based on binary decision diagrams and on boolean operati®sE
Trans. Computer-Aided Desigwol. 12, pp. 599-620, May 1993.

C. Yang, V. Singhal, and M. Ciesielski, “BDD decomposition for
efficient logic synthesis,” inint. Conf. Computer Desigril999, pp.
626-631.

C. Tsai and M. Marek-Sadowska, “Multilevel logic synthesis for arith-
metic functions,” inProc. Design Automation Confl996, pp. 242-247.
BDS system [Online]. Available: http://www.ecs.umass.edu/ece/labs/vl-
sicad/ciesielski.html

N. Vemuri, “BDD-Based logic synthesis for LUT-based FPGA',”
Masters, Dept. Electrical Computer Engineering, Univ. Massachusetts
Ambherst, 2001.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

