

Artificial Neural Network Implementation Using Many-Valued
Quantum Computing

Anas N. Al-Rabadi and George G. Lendaris

Systems Science Ph.D. Program at Portland State University
[alrabadi@ece.pdx.edu, lendaris@sysc.pdx.edu]

Abstract

Neural network (NN) implementation using the general
scheme of many-valued (MV) quantum computing (QC) is
presented in this paper. The proposed method uses the
many-valued orthonormal computational basis states to
implement such computations. Physical implementation of
NNQC is performed by controlling the potential to yield
specific wavefunction as a result of solving Shrodinger’s
equation that governs the dynamics of QC.

1 Introduction
 The notion of implementing neural networks using
quantum computing has been suggested by various
authors, e.g., [9][10][11][14]. To date, the work reported in
such references has been confined to the case of using
binary-valued quantum methods, namely, via the quantum
bit, known as the qubit [5][7][13]. Researchers have
succeeded in implementing many-valued logic gates using
many-valued quantum systems (e.g., [12]). The present
paper investigates implementing neural networks using
many-valued quantum computing, based on previous work
of one of the authors [1][2][3][4].
 Motivations for pursuing the possibility of
implementing NNs using quantum computing (QC) would
include items such as (1) power: the fact that,
theoretically, the internal computations in QC systems
consume no power [7][13] (power is only consumed by the
writing-into or reading-from quantum operators); (2) size:
the current trends related to more dense hardware
implementations are heading towards 1 Angstrom, at
which quantum mechanical effects have to be accounted
for [7][13]; and (3) speed: if the properties of
superposition and entanglement of quantum mechanics can
be usefully employed in the neural network context,
significant computational speed enhancements can be
expected [5][7][13].
 The main contributions of this paper are:
 (1) Quantum implementation of NNs using many-valued
QC. This is achieved via the use of discrete-grid weight
space and making an assignment of points on the grid to
individual components of a many-valued orthonormal set
of quantum basis states.
(2) Show the underlying mathematical methodology and
formalisms for such many-valued QC of NNs.
(3) Propose a “reverse engineering” way to develop look-
up tables (LUT) for potential functions associated with

specified many-valued logic functions to be performed.
 The remainder of this paper is organized as follows:
Section 2 discusses related background in neural networks;
Section 3 presents the fundamentals of QC; Section 4
introduces many-valued quantum computing (MVQC) of
NNs; Section 5 introduces NN implementation using
MVQC; and Section 6 provides conclusions and discusses
some planned future work.

2 Neural Networks

 The importance of neural networks in application is
their ability to learn to perform functions in a problem do-
main, based on interacting with data from that domain [8].
A key role in the process is performed by the training set
(a collection of input-output pairs from the problem do-
main). The training set can be said to provide problem
domain “constraints.”
 The role of learning in the classical domain can be
implemented in the quantum domain by the dynamics of a
physical system governed by the Schrodinger equation
(SE) [6]. The role of training set in classical NN learning
can be implemented in the quantum domain by the poten-
tial function V (also considered as “constraints”). Thus,
there is motivation to establish a mechanism for converting
the training set (collection of input-output pairs) from the
problem domain into an appropriate V function in the
quantum domain. An approach for this is presented in Sec-
tion 5.

3 Quantum Computing

 QC is a method of computation that uses a dynamic
process governed by the Schrodinger Equation (SE)
[6][7][13]. The one-dimensional time-dependent SE
(TDSE) takes the following general form [6]:

t
hiV

xm

h

∂
∂

=+
∂

∂
−

ψ
πψ

ψπ
)2/(

2

)2/(
2

22

 (1)

t
hiHor

∂
∂

=
ψ

πψ)2/((2)

where h is Planck’s constant (6.626⋅10-34 J⋅S), V(x,t) is the
potential, m is particle’s mass, i is the imaginary number,
|ψ(x,t)> is the quantum state, H is the Hamiltonian opera-
tor (H = - [(h/2π)2/2m]∇ 2 + V), and ∇ 2 is the Laplacian
operator.

 While the above holds for all physical systems, in the
quantum computing (QC) context, the time-independent
SE (TISE) is normally used [6]:

ψ
π

ψ)(
)2/(

2
2

2 EV
h

m −=∇ (3)

where the solution |ψ> is an expansion over orthogonal
basis states |φi> defined in Hilbert space Η as follows:

∑=
i

iic φψ (4)

where the coefficients ci are called probability amplitudes,
and |ci|

2 is the probability that the quantum state |ψ> will
collapse into the (eigen) state |φi>. The probability is equal
to the inner product |<φi|ψ>|2, with the unitary condition
∑|ci|

2 = 1. In QC, a linear and unitary operator ℑ is used to
transform an input vector of quantum bits (qubits) into an
output vector of qubits [7][13].
 In two-valued QC, a qubit is a vector of bits defined as
follows [13]:









=≡








=≡

1

0
11_,

0

1
00_ qubitqubit (5)

A two-valued quantum state |ψ> is a superposition of
quantum basis states |φi>, such as those defined in Equa-
tion (5). Thus, for the orthonormal computational basis
states {|0>,|1>}, one has the following quantum state:

10 βαψ += (6)

where αα * = |α|2 = p0 ≡ the probability of having state |ψ>
in state |0>, ββ* = |β|2 = p1 ≡ the probability of having state
|ψ> in state |1>, and |α|2 + |β|2 = 1. The calculation in QC
for multiple systems (e.g., the equivalent of a register) fol-
low the tensor product (⊗) [1][2][3][4][13][14]. For exam-
ple, given two states |ψ1> and |ψ2> one has the following
QC:

() ()
11100100

1010

21212121

2211

2121

ββαββααα

βαβα

ψψψψ

+++=

+⊗+=

⊗=

 (7)

 A physical system, describable by the following equa-
tion [13]:

SpindowncSpinupc 21 +=ψ (8)

(e.g., the hydrogen atom), can be used to physically im-
plement a two-valued QC. Another common alternative
form of equation (8) is:

2

1

2

1
21 −++= ccψ (9)

 Many-valued QC can also be accomplished [1][4][12].
For the three-valued QC, the qubit becomes a 3-
dimensional vector, and in general, for many-valued QC
(MVQC) the qubit is of dimension “many”. For example,
one has for 3-state QC (in Hilbert space H) the following
qubits:
















=≡
















=≡
















=≡

1

0

0

22_,

0

1

0

11_,

0

0

1

00_ qubitqubitqubit (10)

 A three-valued quantum state is a superposition of
three quantum orthonormal basis states (vectors). Thus, for
the orthonormal computational basis states {|0>,|1>,|2>},
one has the following quantum state:
 210 γβαψ ++=

where αα * = |α|2 = p0 ≡ the probability of having state |ψ>
in state |0>, ββ* = |β|2 = p1 ≡ the probability of having state
|ψ> in state |1>, γγ* = |γ|2 = p2 ≡ the probability of having
state |ψ> in state |2>, and |α|2 + |β|2 + |γ|2 = 1. The calcula-
tion in QC for many-valued multiple systems follow the
tensor product in a manner similar to the one demonstrated
for two-valued QC [1][2][4].
 A physical system comprising trapped ions under mul-
tiple-laser excitations can be used to reliably implement
MVQC [12]. A physical system in which an atom (parti-
cle) is exposed to a specific potential field (function) can
also be used to implement MVQC (two-valued being a
special case) [13]. In such an implementation, the (result-
ing) distinct energy states are used as the orthonormal ba-
sis states. The latter is illustrated in Example 1 below.
Example 1. We assume the following constraints: (1)
spring potential V(x) = (1/2) kx2, where m is a particle, k =
mω2 is spring constant, and ω is angular frequency (=
2π⋅frequency), and (2) boundary conditions. Also, assum-
ing the solution of Equation (3) for these constraints is of
the following form (i.e., the Gaussian function),

 2

2

)(
x

Cex
α

ψ
−

=

where α = mω/(h/2π). The general solution for the wave-
function |ψ> (for a spring potential) is [6]:

)(
!2

1
4/1

xH
n

C n
n

α
π
α





=

where Hn(x) are the Hermite polynomials. This solution
leads to the sequence of evenly spaced energy levels (ei-
genvalues) En characterized by a quantum number (n) as
follows:

 ωπ)2/)(
2

1
(hnEn +=

The distribution of the energy states (eigenvalues) and
their associated probabilities are shown in Figure 1.

4 Many-Valued Quantum Implementation of
Neural Networks: Methodology and Notation

 A classic shortcoming of single-neuron neural net-
works (e.g., perceptron, Adeline) is their inability to im-
plement the XOR function [8]. In [14] on the other hand, a

 (a) (b) (c)

Figure 1. Harmonic oscillator potential and wavefunc-
tions: (a) wavefunctions for various energy levels (sub-
scripts), (b) spring potential V(x) and the associated energy
levels En, and (c) probabilities for measuring particle (m)
in each energy state (En).

single quantum neuron is shown to be capable of solving
this not-linearly separable (NLS) function. In this section,
we develop a methodology and formalisms for dealing
with many-valued logic functions using many-valued
quantum neurons. The notion of linearly separable and not-
linearly separable mappings in the two-valued context
generalizes to the many-valued case.
 We describe the notion of associating a quantum state
to a point in the weight space of a neural network (NN)
using a two-weight NN as an example (extension to any
number of weights is straightforward).
 . Assume each weight can take a finite (discrete) set of
 values.
 . Form a 2-dimensional grid of all possible combinations
 of weight value pairs (2-tuples).
 . Assign each of the grid points (i.e., each 2-tuple) to be a
 quantum basis state (in quantum state space).
 . If each of the two weights (w1 and w2) can take m
 values, then there will be m2 quantum basis states, each
 with dimension m2 (to yield an orthonormal basis set).
 . Let

1,...,2,1,0,,
2

1 −=







= mji

w

w
w

j

i
ji

�

 (11)

 represent the m2 points in the 2-dimensional weight
 space, where the i,j are position indices for the vector wij
 and the components of wij are weight values at the
 corresponding positions (i,j).
 . Then define









































=

−−

−

T
mm

T

T
m

T

T

m

w

w

w

w

w

w

1,1

10

1,0

01

00

,2

...

...

�

�

�

�

�

� (12)

 where the superscript refers to 2 dimensions, with m
 (discrete) values in each dimension. To reference a
 subset of all these possibilities, an appropriate subscript
 may be provided.

 For example, by letting each weight take three values
from the set {a,b,c} where a, b, c are any discrete real val-
ues (i.e., m = 3) then one would have nine grid points
{00,01,02,10,11,12,20,21,22}, and Equation (12) becomes:





































=





































=

cc

cb

ca

bc

bb

ba

ac

ab

aa

w

w

w

w

w

w

w

w

w

w

T

T

T

T

T

T

T

T

T

22

21

20

12

11

10

02

01

00

3,2�

Based on Equation (10), the following nine ternary or-
thonormal computational basis states for the MV quantum
space are obtained [1][2][4][13]:

[]

[]

[]

[]

[]

[]

[]

[]

[]T

T

T

T

T

T

T

T

T

100000000

1

0

0

1

0

0

2222

010000000

0

1

0

1

0

0

1221

001000000

0

0

1

1

0

0

0120

000100000

1

0

0

0

1

0

0112

000010000

0

1

0

0

1

0

1111

000001000

0

0

1

0

1

0

0110

000000100

1

0

0

0

0

1

2002

000000010

0

1

0

0

0

1

1001

000000001

0

0

1

0

0

1

0000

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

=















⊗
















=⊗=

 V(x)

x

x

x

x

x

x

x

x

En

Note that this has resulted in an orthonormal basis set. One
can perform MVQC by making the following assignments
between the weight space and the quantum space:

 MV Weight Space MV Quantum Space





































=

cc

cb

ca

bc

bb

ba

ac

ab

aa

w 3,2�





































=

22

21

20

12

11

10

02

01

00

3,2w
�

 (13)

Using the notation of Equation (7), the above may be writ-
ten as follows [1][2][4][13]:

() ()

2221201211

10020100

210210

2121212121

21212121

222111

2121

γγβγαγγβββ

αβγαβααα

γβαγβα

ψψψψ

++++

++++=

++⊗++=

⊗=

 (14)

 Note that each component of the tensor product is as-
sociated with a product of two probabilities.
 The coefficients of the quantum basis functions in
Equation (4) (probabilities) are the system parameters,
obtained by solving the waveequation with the specified
potential function V applied. We note that different V’s
will (normally) result in different solutions (i.e., different
probabilities) for each of the quantum basis states. Upon
measurement of an observable variable in a physical quan-
tum implementation, by definition, the highest probability
state is the most likely one to occur. In the context of neu-
ral networks (NNs) with an assignment such as the one
given in Equation (13), each basis state corresponds to a
particular combination of weight values. These weight
values determine the mapping performed (e.g., logic func-
tion) by the NN. See Figure 2.
 1
 w0(Bias)
 x1 w1
 … … ∑ f y
 wN-1
 xN-1

 Figure 2. A simple neuron.

where f is the activation (transfer) function, and













= ∑

−

=

1

0

N

i

iixwfy

 = f (w0⋅1 + w1x1 + w2x2 +…+ wN-1xN-1) (15)

and f can be an appropriate mapping such as threshold
function, sigmoid, etc [8].

 The manner in which the MVQC is implemented for
neural computing (NC) is illustrated in Figure 3.

 Constriants: {V, I.C.}

 |α1α2|

2 |α1β2|
2 … |γ1γ2|

2
 wij

 |00> |01> … |22>

 Dynamics : SE

Figure 3. MVQC scheme to implement a NN using a ter-
nary 2-qubit QC system. (All possible quantum states are
shown in different colors.)

Example 2. For a quantum neuron, let the following uni-
tary ternary quantum operator A [1][2][4] perform a func-
tion analogous to the activation function (AF) and sum-
ming junction (SJ) in classical artificial neurons.
















=

010

100

001

A

Let us denote a ternary 2-weight quantum neuron as in
Figure 4:

 Figure 4. Ternary quantum neuron.

Then, for instance, for binary inputs {x1,x2}, the MVQC
would proceed as follows to produce the following ternary
function f*:

The quantum weights will be determined by a suitable
learning algorithm utilizing the operator A (e.g., the algo-
rithm using bipolar quantum Fourier operater in [14]),
which is equivalent to solving the TISE with an appropri-
ate potential V. In the notation of Figure 4, an example
result would be:

X1 X2 f*
0 0 0
0 1 2
1 0 0
1 1 2

*

010

100

001

010

100

001

f































⊗
















w1

w2

V1

V2

X1

X2

where in the MV quantum space:

 []Tww 010000000

0

1

0

1

0

0

2121 =















⊗
















=→

Then the MVQC (in Figure 4) is performed in the follow-
ing manner: the matrix of inputs {x1,x2} is transformed,
before being processed by the activation function (AF), to
a new matrix of inputs by multiplying the set of inputs by
the values of the corresponding weights {w1 = 2, w2 = 1}
as follows:
 [x1 x2] → [w1x1 w2x2]





















→





















12

02

10

00

11

01

10

00

Encoding the new matrix of inputs in the MV quantum
space (H) will lead to:

[]
[]
[]
[] 




















=





















→





















T

T

T

T

010000000

001000000

000000010

000000001

21

20

01

00

12

02

10

00

By using the 2-qubit ternary operator:

[] []





















































































=































⊗
















=⊗

010

100

001

010

100

001

010

100

001

010

100

001

010

100

001

AA

the matrix of the output functions will be obtained from
the matrix of the weighted inputs as follows:

[]
[]
[]
[]

[]
[]
[]
[]

,

000100000

000001000

000000100

000000001

010000000

001000000

000000010

000000001

010

100

001

010

100

001

010

100

001





















=









































































































T

T

T

T

T

T

T

T

but in MV quantum space, the matrix of outputs corre-
spond to the following values:

 [] *
112100200

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

ff→=





















































































































































































Then by measuring the second output one obtains the func-
tion f*. (Note that in this example another function f1 is
naturally obtained, and thus this adds a possibility of utiliz-
ing such additional output in a separate computation.) The
generation of other many-valued logic functions, at the
output of the quantum neuron in Figure 4, is performed
using the same topology and same AF (and SJ) by chang-
ing the values of the weights.
 Other varieties of quantum operators from [1][2][4]
could be used as well to perform the functionality of the
AF (and SJ) in Figure 4. For instance, one could use the
quantum Chrestenson operator defined as [1][2][4]:
















=

12

21
)3(
)1(

1

1

111

3

1

dd

ddC

where the superscript indicates the radix, the subscript
indicates number of variables, and d1 and d2 are complex
numbers. The quantum Chrestenson operator used here is
the quantum many-valued Fourier operator (which is
equivalently called the quantum many-valued Walsh-
Hadamard operator), which is the generalization (exten-
sion) of the quantum bipolar Fourier operator (which is
equivalently called the quantum (two-valued) Walsh-
Hadamard operator) [4][14]. Consequently, the (quantum)
learning algorithm proposed in [14] for the quantum Walsh
operator could be extended to be used for the quantum
Chrestenson operator as well.

5 Further NN Implementations Using MVQC

 As noted earlier, the quantum analog of a training set
in the classical NN context is the potential function V, and
the quantum analog for the training process are the dynam-
ics described by the SE. An approach to implement a quan-
tum NN suggested here is as follows (cf. Figure 5a): (1)
specify a set of functions, Fi, and train a separate neural
network (in the first stages of this work, think in terms of a
single-neuron NN, e.g., perceptron) for each function; (2)
construct a table that associates the trained NN weight
vector for each function Fi; (3) construct a separate wave-
function ψi in the MV quantum space for each Fi such that
its highest probability is at the weight vector in the table,
and relatively low at all other weight values as illustrated
in Figure 5b; (4) substitute this ψi into the TISE and solve
for Vi. After the above information has been generated and
tabulated (as a look-up table) as indicated in Figure 5c, one
could implement a full quantum NN as shown in Figure 6.
In this more general case, we specify a single V for an

 w1 |2>

 w2 |1>

 Classical Domain

 I/O (map) wij |Ψ> V

 Quantum Domain (a)
 |Ψ>

 w1i I/Oi | Vi

 w2j Input Output
 (b) (c)
Figure 5. (a) Possible MVQC strategy to implement a NN,
(b) MV Quantum-Weight space to obtain |Ψ>, and (c)
Look-Up-Table to implement a NN for all logic functions.

entire weight vector going into a single quantum neuron
(corresponding to a single neural element of a NN). Such a
quantum neuron (QN) is here represented as shown in Fig-
ure 6a. A full network would be a collection of such QNs,
connected in a specified topology, as in Figure 6b.

Figure 6. An MVQC implementation of a NN: (a) a quan-
tum neuron (QN), which is a dynamical system governed
by TISE constrained by Vp

qr, where I is the interface
mechanism, superscript p is the number of incoming
weights, subscript q is the layer number, and subscript r is
the element number in layer q, and (b) a 3-layer NN.

6 Conclusions and Future Work
 In this paper, we proposed a methodology of imple-
menting a NN using a many-valued quantum computation
(MVQC). This method uses the encoding of many-valued
orthonormal computational basis states in the quantum
space to be the weights in a NN. The potential plays the
role of a training (I/O) set and the dynamics of the solution
of SE to be the training process. Future work will involve
(1) simulations for various designs of potential distribu-
tions that correspond to specific logic functions; (2) deter-

mine MVQC equivalents of supervised, reinforcement, and
unsupervised learning strategies; and (3) for storing given
number of patterns Si in Auto-Associative memory (as in a
Hopfield NN) where i = 1, 2, …, N and the pattern vector
Si is of dimension D. This is done conceptually as follows:
. construct a state-space grid (equivalent to weight-space
grid discussed earlier). Each point on the grid corresponds
to a specific pattern Si.
. Design a wavefunction ψi for each given pattern to be
stored. Then solve the TISE for the corresponding poten-
tial function Vi.
. For a query that is a “dirty” version of a stored pattern Si

*,
construct a corresponding ψi

*
 and Vi

*, where the designed
ψi

* corresponds to the query pattern, and Vi
* is obtained by

solving the TISE.
. If the original ψi was crafted such that probability is
maximum at Si and gradually decreases for nearby pat-
terns, then the application of Vi

* should yield the quantum
state Si (the “clean”/complete pattern).

7 References
[1] A. N. Al-Rabadi, “Synthesis and Canonical Representations
of Equally Input-Output Binary and Multiple-Valued Galois
Quantum Logic: Decision Trees, Decision Diagrams, Quantum
Butterflies, Quantum Chrestenson Gate, and Multiple-Valued
Bell-Einstein-Podolsky-Rosen Basis States,” Technical Report
#2001/007, ECE Dept., Portland State University, 22 Aug. 2001.
[2] A. Al-Rabadi, L. W. Casperson, M. Perkowski, and X. Song,
“Multiple-Valued Quantum Logic,” Booklet of the 11th Post-
Binary Ultra Large Scale Integration (ULSI)’2002 workshop, pp.
35-45, Boston, Massachusetts, 15 May 2002.
[3] A. N. Al-Rabadi, L. W. Casperson, M. Perkowski, and X.
Song, “Canonical Representations for Two-Valued Quantum
Computing,” International Workshop on Boolean Problems
(WBP)’2002, pp. 23-32, Freiberg, Germany, 19-20 Sep. 2002.
[4] A. N. Al-Rabadi, Novel Methods for Reversible Logic Synthe-
sis and their Application to Quantum Computing, Ph.D. Disserta-
tion, ECE Dept., PSU, Portland, Oregon, Fall 2002.
[5] D. Deutsch, “Quantum Computational Networks,” in Proc.
Royal Soc. of London A, vol. 425, pp. 73-90. 1989.
[6] P. Dirac, The Principles of Quantum Mechanics, first edition,
Oxford University Press, 1930.
[7] R. Feynman, Feynman Lectures on Computation, Addison
Wesley, 1996.
[8] S. Haykin, Neural Networks, 2nd Edition, Prentice-Hall, 1999.
[9] S. Kak, “Quantum Neural Computing,” Advances in Imaging
and Electron Physics, vol. 94, pp. 259-313, 1995.
[10] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial Neural
Network Methods in Quantum Mechanics,” Comp. Phys. Com-
mun., vol. 104, pp. 1-14, 1997.
[11] T. Menneer, Quantum Artificial Neural Networks, Ph.D.
Dissertation, University of Exeter, UK, May 1998.
[12] A. Muthukrishnan and C. R. Stroud, “Multivalued Logic
Gates for Quantum Computation,” Phy. Rev. A, V. 62, 2000.
[13] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, 2000.
[14] D. Ventura, Quantum and Evolutionary Approaches to
Computational Learning, Ph.D. Dissertation, Computer Science
Department, Brigham Young University, 1998.

I I QN f

Vp
qr

(a)

(b)

I QN I

Vn
11

I QN I

Vn
12

I QN I

Vn
1m

…

I QN I

Vm
21

I QN I

Vm
2k

… I QN I

Vk
31 x1

xn

.

.

.

y

