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Abstract 

Neural network (NN) implementation using the general 
scheme of many-valued (MV) quantum computing (QC) is 
presented in this paper. The proposed method uses the 
many-valued orthonormal computational basis states  to 
implement such computations. Physical implementation of 
NNQC is performed by controlling the potential to yield 
specific wavefunction as a result of solving Shrodinger’s 
equation that governs the dynamics of QC. 
 

1 Introduction     
       The notion of implementing neural networks using 
quantum computing has been suggested by various 
authors, e.g., [9][10][11][14]. To date, the work reported in 
such references has been confined to the case of using 
binary-valued quantum methods, namely, via the quantum 
bit, known as the qubit [5][7][13]. Researchers have 
succeeded in implementing many-valued logic gates using 
many-valued quantum systems (e.g., [12]). The present 
paper investigates implementing neural networks using 
many-valued quantum computing, based on previous work 
of one of the authors [1][2][3][4]. 
       Motivations for pursuing the possibility of 
implementing NNs using quantum computing (QC) would 
include items such as (1) power: the fact that, 
theoretically, the internal computations in QC systems 
consume no power [7][13] (power is only consumed by the 
writing-into or reading-from quantum operators); (2) size: 
the current trends related to more dense hardware 
implementations are heading towards 1 Angstrom, at 
which quantum mechanical effects have to be accounted 
for [7][13]; and (3) speed: if the properties of 
superposition and entanglement of quantum mechanics can 
be usefully employed in the neural network context, 
significant computational speed enhancements can be 
expected [5][7][13]. 
       The main contributions of this paper are: 
 (1) Quantum implementation of NNs using many-valued 
QC. This is achieved via the use of discrete-grid weight 
space and making an assignment of points on the grid to 
individual components of a many-valued orthonormal set 
of quantum basis states. 
(2) Show the underlying mathematical methodology and 
formalisms for such many-valued QC of NNs. 
(3) Propose a “reverse engineering” way to develop look-
up tables (LUT) for potential functions associated with 

specified many-valued logic functions to be performed.  
       The remainder of this paper is organized as follows: 
Section 2 discusses related background in neural networks; 
Section 3 presents the fundamentals of QC; Section 4 
introduces many-valued quantum computing (MVQC) of 
NNs; Section 5 introduces NN implementation using 
MVQC; and Section 6 provides conclusions and discusses 
some planned future work. 
 
2 Neural Networks 

       The importance of neural networks in application is 
their ability to learn to perform functions in a problem do-
main, based on interacting with data from that domain [8]. 
A key role in the process is performed by the training set 
(a collection of input-output pairs from the problem do-
main). The training set can be said to provide problem 
domain “constraints.”  
       The role of learning in the classical domain can be 
implemented in the quantum domain by the dynamics of a 
physical system governed by the Schrodinger equation 
(SE) [6]. The role of training set in classical NN learning 
can be implemented in the quantum domain by the poten-
tial function V (also considered as “constraints”). Thus, 
there is motivation to establish a mechanism for converting 
the training set (collection of input-output pairs) from the 
problem domain into an appropriate V function in the 
quantum domain. An approach for this is presented in Sec-
tion 5. 
 

3 Quantum Computing 

       QC is a method of computation that uses a dynamic 
process governed by the Schrodinger Equation (SE) 
[6][7][13]. The one-dimensional time-dependent SE 
(TDSE) takes the following general form [6]: 
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where h is Planck’s constant (6.626⋅10-34 J⋅S), V(x,t) is the 
potential, m is particle’s mass, i is the imaginary number,  
|ψ(x,t)> is the quantum state, H is the Hamiltonian opera-
tor (H = - [(h/2π)2/2m]∇ 2 + V), and ∇ 2 is the Laplacian 
operator. 



  

       While the above holds for all physical systems, in the 
quantum computing (QC) context, the time-independent 
SE (TISE) is normally used [6]:  
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where the solution |ψ> is an expansion over orthogonal 
basis states |φi> defined in Hilbert space Η as follows: 
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where the coefficients ci are called probability amplitudes, 
and |ci|

2 is the probability that the quantum state |ψ> will 
collapse into the (eigen) state |φi>. The probability is equal 
to the inner product |<φi|ψ>|2, with the unitary condition 
∑|ci|

2 = 1. In QC, a linear and unitary operator ℑ  is used to 
transform an input vector of quantum bits (qubits) into an 
output vector of qubits [7][13].  
       In two-valued QC, a qubit is a vector of bits defined as 
follows [13]:  
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A two-valued quantum state |ψ> is a superposition of 
quantum basis states |φi>, such as those defined in Equa-
tion (5). Thus, for the orthonormal computational basis 
states {|0>,|1>}, one has the following quantum state: 

10 βαψ +=                                                              (6) 

where αα * = |α|2 = p0 ≡ the probability of having state |ψ> 
in state |0>, ββ* = |β|2 = p1 ≡ the probability of having state 
|ψ> in state |1>, and |α|2 + |β|2 = 1. The calculation in QC 
for multiple systems (e.g., the equivalent of a register) fol-
low the tensor product (⊗ ) [1][2][3][4][13][14]. For exam-
ple, given two states |ψ1> and |ψ2> one has the following 
QC: 
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       A physical system, describable by the following equa-
tion [13]: 

SpindowncSpinupc 21 +=ψ                                    (8) 

(e.g., the hydrogen atom), can be used to physically im-
plement a two-valued QC. Another common alternative 
form of equation (8) is: 
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       Many-valued QC can also be accomplished [1][4][12]. 
For the three-valued QC, the qubit becomes a 3-
dimensional vector, and in general, for many-valued QC 
(MVQC) the qubit is of dimension “many”. For example, 
one has for 3-state QC (in Hilbert space H) the following 
qubits:  
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       A three-valued quantum state is a superposition of 
three quantum orthonormal basis states (vectors). Thus, for 
the orthonormal computational basis states {|0>,|1>,|2>}, 
one has the following quantum state: 
                            210 γβαψ ++=  

where αα * = |α|2 = p0 ≡ the probability of having state |ψ> 
in state |0>, ββ* = |β|2 = p1 ≡ the probability of having state 
|ψ> in state |1>, γγ* = |γ|2 = p2 ≡ the probability of having 
state |ψ> in state |2>, and |α|2 + |β|2 + |γ|2 = 1. The calcula-
tion in QC for many-valued multiple systems follow the 
tensor product in a manner similar to the one demonstrated 
for two-valued QC [1][2][4].  
       A physical system comprising trapped ions under mul-
tiple-laser excitations can be used to reliably implement 
MVQC [12]. A physical system in which an atom (parti-
cle) is exposed to a specific potential field (function) can 
also be used to implement MVQC (two-valued being a 
special case) [13]. In such an implementation, the (result-
ing) distinct energy states are used as the orthonormal ba-
sis states. The latter is illustrated in Example 1 below.  
Example 1. We assume the following constraints: (1) 
spring potential V(x) = (1/2) kx2, where m is a particle, k = 
mω2 is spring constant, and  ω is angular frequency ( = 
2π⋅frequency), and (2) boundary conditions. Also, assum-
ing the solution of Equation (3) for these constraints is of 
the following form (i.e., the Gaussian function), 
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where α = mω/(h/2π). The general solution for the wave-
function |ψ> (for a spring potential) is [6]: 
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where Hn(x) are the Hermite polynomials. This solution 
leads to the sequence of evenly spaced energy levels (ei-
genvalues) En characterized by a quantum number (n) as 
follows: 
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The distribution of the energy states (eigenvalues) and 
their associated probabilities are shown in Figure 1. 
 
4 Many-Valued Quantum Implementation of 
Neural Networks: Methodology and Notation 

       A classic shortcoming of single-neuron neural net-
works (e.g., perceptron, Adeline) is their inability to im-
plement the XOR function [8]. In [14] on the other hand, a 



  

 

 
                (a)                        (b)                       (c) 
 
Figure 1. Harmonic oscillator potential and wavefunc-
tions: (a) wavefunctions for various energy levels (sub-
scripts), (b) spring potential V(x) and the associated energy 
levels En, and (c) probabilities for measuring particle (m) 
in each energy state (En). 
 
single quantum neuron is shown to be capable of solving 
this not-linearly separable (NLS) function. In this section, 
we develop a methodology and formalisms for dealing 
with many-valued logic functions using many-valued 
quantum neurons. The notion of linearly separable and not-
linearly separable mappings in the two-valued context 
generalizes to the many-valued case.   
       We describe the notion of associating a quantum state 
to a point in the weight space of a neural network (NN) 
using a two-weight NN as an example (extension to any 
number of weights is straightforward). 
  . Assume each weight can take a finite (discrete) set of     
    values. 
  . Form a 2-dimensional grid of all possible combinations    
    of weight value pairs (2-tuples).  
  . Assign each of the grid points (i.e., each 2-tuple) to be a   
     quantum basis state (in quantum state space). 
  . If each of the two weights (w1 and w2) can take m   
    values, then there will be m2 quantum basis states, each   
    with dimension m2 (to yield an orthonormal basis set).  
  . Let 

1,...,2,1,0,,
2

1 −=







= mji

w

w
w

j

i
ji

�

                             (11) 

    represent the m2 points in the 2-dimensional weight    
    space, where the i,j are position indices for the vector wij   
    and the components of wij are weight values at the   
    corresponding positions (i,j). 
  . Then define 
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    where the superscript refers to 2 dimensions, with m     
    (discrete) values in each dimension. To reference a   
    subset of all these possibilities, an appropriate subscript   
    may be provided.  
 
       For example, by letting each weight take three values 
from the set {a,b,c} where a, b, c are any discrete real val-
ues (i.e., m = 3) then one would have nine grid points 
{00,01,02,10,11,12,20,21,22}, and Equation (12) becomes: 
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Based on Equation (10), the following nine ternary or-
thonormal computational basis states for the MV quantum 
space are obtained [1][2][4][13]: 
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Note that this has resulted in an orthonormal basis set. One 
can perform MVQC by making the following assignments 
between the weight space and the quantum space: 
 

    MV Weight Space             MV Quantum Space 
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Using the notation of Equation (7), the above may be writ-
ten as follows [1][2][4][13]: 
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       Note that each component of the tensor product is as-
sociated with a product of two probabilities.  
       The coefficients of the quantum basis functions in 
Equation (4) (probabilities) are the system parameters, 
obtained by solving the waveequation with the specified 
potential function V applied. We note that different V’s 
will (normally) result in different solutions (i.e., different 
probabilities) for each of the quantum basis states. Upon 
measurement of an observable variable in a physical quan-
tum implementation, by definition, the highest probability 
state is the most likely one to occur. In the context of neu-
ral networks (NNs) with an assignment such as the one 
given in Equation (13), each basis state corresponds to a 
particular combination of weight values. These weight 
values determine the mapping performed (e.g., logic func-
tion) by the NN. See Figure 2. 
           1 
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                     Figure 2. A simple neuron. 
 
where f is the activation (transfer) function, and  
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    = f (w0⋅1 + w1x1 + w2x2 +…+ wN-1xN-1)                      (15) 
 
and f can be an appropriate mapping such as threshold 
function, sigmoid, etc [8]. 

       The manner in which the MVQC is implemented for 
neural computing (NC) is illustrated in Figure 3.  
 

                             Constriants: {V, I.C.} 
 
 
                             |α1α2|

2 |α1β2|
2  …   |γ1γ2|

2                      
                                                                                          wij 
 
                               |00>    |01>    …   |22>                                           
 
                                  Dynamics : SE 
 
Figure 3. MVQC scheme to implement a NN using a ter-
nary 2-qubit QC system. (All possible quantum states are 
shown in different colors.) 
 
Example 2. For a quantum neuron, let the following uni-
tary ternary quantum operator A [1][2][4] perform a func-
tion analogous to the activation function (AF) and sum-
ming junction (SJ) in classical artificial neurons. 
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Let us denote a ternary 2-weight quantum neuron as in 
Figure 4: 
 

                  Figure 4.  Ternary quantum neuron. 
 
Then, for instance, for binary inputs {x1,x2}, the MVQC 
would proceed as follows to produce the following ternary 
function f*: 
 

 
  
 
 
 
 
The quantum weights will be determined by a suitable 
learning algorithm utilizing the operator A (e.g., the algo-
rithm using bipolar quantum Fourier operater in [14]), 
which is equivalent to solving the TISE with an appropri-
ate potential V. In the notation of Figure 4, an example 
result would be:  
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where in the MV quantum space: 
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Then the MVQC (in Figure 4) is performed in the follow-
ing manner: the matrix of inputs {x1,x2} is transformed, 
before being processed by the activation function (AF), to 
a new matrix of inputs by multiplying the set of inputs by 
the values of the corresponding weights {w1 = 2, w2 = 1} 
as follows: 
                              [x1  x2] → [w1x1  w2x2] 
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Encoding the new matrix of inputs in the MV quantum 
space (H) will lead to: 
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By using the 2-qubit ternary operator: 
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the matrix of the output functions will be obtained from 
the matrix of the weighted inputs as follows: 
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but in MV quantum space, the matrix of outputs corre-
spond to the following values: 
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Then by measuring the second output one obtains the func-
tion f*. (Note that in this example another function f1 is 
naturally obtained, and thus this adds a possibility of utiliz-
ing such additional output in a separate computation.) The 
generation of other many-valued logic functions, at the 
output of the quantum neuron in Figure 4, is performed 
using the same topology and same AF (and SJ) by chang-
ing the values of the weights.  
       Other varieties of quantum operators from [1][2][4] 
could be used as well to perform the functionality of the 
AF (and SJ) in Figure 4. For instance, one could use the 
quantum  Chrestenson operator defined as [1][2][4]: 
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where the superscript indicates the radix, the subscript 
indicates number of variables, and d1 and d2 are complex 
numbers. The quantum Chrestenson operator used here is 
the quantum many-valued Fourier operator (which is 
equivalently called the quantum many-valued Walsh-
Hadamard operator), which is the generalization (exten-
sion) of the quantum bipolar Fourier operator (which is 
equivalently called the quantum (two-valued) Walsh-
Hadamard operator) [4][14]. Consequently, the (quantum) 
learning algorithm proposed in [14] for the quantum Walsh 
operator could be extended to be used for the quantum 
Chrestenson operator as well. 
 

5 Further NN Implementations Using MVQC 

       As noted earlier, the quantum analog of a training set 
in the classical NN context is the potential function V, and 
the quantum analog for the training process are the dynam-
ics described by the SE. An approach to implement a quan-
tum NN suggested here is as follows (cf. Figure 5a): (1) 
specify a set of functions, Fi, and train a separate neural 
network (in the first stages of this work, think in terms of a 
single-neuron NN, e.g., perceptron) for each function; (2) 
construct a table that associates the trained NN weight 
vector for each function Fi; (3) construct a separate wave-
function ψi in the MV quantum space for each Fi such that 
its highest probability is at the weight vector in the table, 
and relatively low at all other weight values as illustrated 
in Figure 5b; (4) substitute this ψi into the TISE and solve 
for Vi. After the above information has been generated and 
tabulated (as a look-up table) as indicated in Figure 5c, one 
could implement a full quantum NN as shown in Figure 6. 
In this more general case, we specify a single V for an 
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  w2j                                                   Input    Output  
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Figure 5. (a) Possible MVQC strategy to implement a NN, 
(b) MV Quantum-Weight space to obtain |Ψ>, and (c) 
Look-Up-Table to implement a NN for all logic functions.  
 
entire weight vector going into a single quantum neuron 
(corresponding to a single neural element of a NN). Such a 
quantum neuron (QN) is here represented as shown in Fig-
ure 6a. A full network would be a collection of such QNs, 
connected in a specified topology, as in Figure 6b. 

Figure 6. An MVQC implementation of a NN: (a) a quan-
tum neuron (QN), which is a dynamical system governed 
by TISE constrained by Vp

qr, where I is the interface 
mechanism, superscript p is the number of incoming 
weights, subscript q is the layer number, and subscript r is 
the element number in layer q, and (b) a 3-layer NN.   
 

6 Conclusions and Future Work 
       In this paper, we proposed a methodology of imple-
menting a NN using a many-valued quantum computation 
(MVQC). This method uses the encoding of many-valued 
orthonormal computational basis states in the quantum 
space to be the weights in a NN. The potential plays the 
role of a training (I/O) set and the dynamics of the solution 
of SE to be the training process. Future work will involve 
(1) simulations for various designs of potential distribu-
tions that correspond to specific logic functions; (2) deter-

mine MVQC equivalents of supervised, reinforcement, and 
unsupervised learning strategies; and (3) for storing given 
number of patterns Si in Auto-Associative memory (as in a 
Hopfield NN) where i = 1, 2, …, N and  the pattern vector 
Si is of dimension D. This is done conceptually as follows:  
.  construct a state-space grid (equivalent to weight-space 
grid discussed earlier). Each point on the grid corresponds 
to a specific pattern Si. 
. Design a wavefunction ψi for each given pattern to be 
stored. Then solve the TISE for the corresponding poten-
tial function Vi. 
. For a query that is a “dirty” version of a stored pattern Si

*, 
construct a corresponding  ψi

*
 and  Vi

*, where the designed 
ψi

* corresponds to the query pattern, and Vi
* is obtained by 

solving the TISE.  
. If the original ψi was crafted such that probability is 
maximum at Si and gradually decreases for nearby pat-
terns, then the application of  Vi

* should yield the quantum 
state Si (the “clean”/complete pattern).  
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