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Abstract

This paper presents a heuristic algorithm for disjoint decom-
position of a Boolean function based on its ROBDD representa-
tion. Two distinct features make the algorithm feasible for large
functions. First, for an n-variable function, it checks only O(n2)
candidates for decomposition out of O(2n) possible ones. A spe-
cial strategy for selecting candidates makes it likely that all other
decompositions are encoded in the selected ones. Second, the de-
compositions for the approved candidates are computed using a
novel IntervalCut algorithm. This algorithm does not require re-
ordering of ROBDD. The combination of both techniques allows
us to decompose the functions of size beyond that possible with
the exact algorithms. The experimental results on 582 benchmark
functions show that the presented heuristic finds 95% of all decom-
positions on average. For 526 of those functions, it finds 100% of
the decompositions.

1 Introduction

The disjoint decomposition of a Boolean function is a represen-
tation of type f (X) = h(g(Y );Z) with Y and Z being sets of vari-
ables partitioning the set X . Disjoint decomposition has many ap-
plications in computer science and discrete mathematics, includ-
ing logic synthesis (decomposition of Boolean functions), reliabil-
ity theory (decomposition of coherent systems [1]), game theory
(decomposition of simple n-persons games [2]) and combinatorial
optimization problems over graphs and networks (see [3] for an
overview).

This wide range of applications makes it important to have ef-
ficient algorithms for finding all, or at least some, decompositions
for a given structure. Fast decomposition algorithms are known
for binary relations and graphs [4, 5, 6]. For Boolean functions,
however, the existing methods either involve the solution of an
NP-complete problem (as in [7]) or have exponential running time
[8, 9, 10, 11]. More recent ROBDD-based decomposition algo-
rithms, including [12, 13, 14], show much better average-time per-
formance.

This paper presents a heuristic algorithm targeting to find all
disjoint decompositions of an n-variable Boolean function repre-
sented by a ROBDD. The heuristic is based on two properties: (1)
all decompositions of a Boolean function (which can be O(2n))
can be uniquely described by a certain subset of decompositions
A (which is only O(n)); (2) there exist a best variable ordering

for a ROBDD in which the variables Y from any decomposition
f (X) = h(g(Y );Z) belonging to A are adjacent.

If we had such a best ordering, we could examine all its lin-
ear intervals to find which Y results in a decomposition f (X) =
h(g(Y );Z). However, computing best orderings is infeasible for
large functions. The algorithm presented in this paper is heuristic
because it starts from a “good” ordering which is not necessarily
keeping the variables Y adjacent. The experimental results show
that if sifting ordering algorithm [15] is used to get a “good” initial
order, then our heuristic finds 95% of all decompositions on aver-
age. The presented heuristic algorithm is also able to decompose
functions which are too large for the exact algorithms.

2 Previous work

The first major investigation on the subject was carried out
by Ashenhurst [16]. He studied simple disjoint decomposition
f (X) = h(g(Y );Z) for Boolean functions f ;g;h : Bn ! B, where
B = f0;1g. Ashenhurst’s fundamental contribution is a theorem
which states that any Boolean function has a unique disjoint tree-
like decomposition such that all possible simple disjoint decompo-
sitions of f are exhibited.

Curtis [17] and Roth and Karp [18] extended Ashenhurst the-
ory to the decomposition of type f (X) = h(g(Y );Z) with g;H
being multiple-valued functions of type g:BjY j ! M and h:M �
BjZj ! B, where M = f0;1; :::;m�1g. The function g can be en-
coded by k = dlog2 me Boolean functions g1;g2; : : : ;gk , giving a
decomposition of the form f (X) = h(g1(Y ); : : : ;gk(Y );Z), often
referred to as Roth-Karp decomposition. Unfortunately Ashen-
hurst’s main theorem does not extend directly to multiple-valued
functions (for a counterexample see chapter 4 of [19]). A conse-
quence of this is that there is no unique disjoint tree-like Roth-
Karp decomposition. Von Stengel [20] has defined a class of
multiple-valued functions for which Ashenhurst’s main theorem
holds.

Early algorithms for decomposition used decomposition charts
[16], [17]. The decomposition chart for f (Y;Z) is a two-
dimensional table where the columns represent all combinations
of the variables from the set Y and the rows represent all combi-
nations of the variables from the set Z. The set Y is a bound set if
and only if the chart has column multiplicity at most two, i.e. there
are at most two distinct columns in the chart [16].

In a short time, decomposition charts were abandoned in fa-
vor of cube representation [21]. The task of computing column
multiplicity on charts was replaced by the task of computing com-
patible classes for a set of cubes. Two assignments x1;x2 2 BjY j



are said to be compatible with respect to the reference function
f (Y;Z) if, for all y 2 BjZj such that f (x1;y) and f (x2;y) are de-
fined, f (x1;y) = f (x2;y) [21]. The set Y is a bound set if and
only if BjY j can be partitioned into k � 2 mutually compatible
classes [21]. If f (X) is completely specified, then compatibility is
an equivalence relation and k is the number of equivalence classes.
It is easy to see the one-to-one mapping between a column in a de-
composition chart and a compatible class.

Due to the exponential size of decomposition charts and cube
representations, early decomposition algorithms were rarely ap-
plied to large practical circuits. Instead, algebraic methods were
used [22]. ROBDDs [23] made possible developing new algo-
rithms for decomposition, feasible for much larger functions than
previously possible.

In a ROBDD, the column multiplicity can be easily computed
by moving the variables Y to the upper part of the graph and check-
ing the number of children below the boundary line, usually called
cut line. The decomposition f (X) = h(g(Y );Z) exists if and only
if there are only two children below the cut line [24].

This approach has been adopted by a number of BDD-
based decomposition algorithms [24, 25, 26, 27]. Stanion and
Sechen [28] used cut to find quasi-algebraic decomposition of the
form f (X) = g(Y )�h(Z), where ”�” is any binary Boolean oper-
ation and jY [Zj= k for some k � 0. This type decomposition is
often referred to as bi-decomposition [29, 30].

BDD-based decomposition algorithms following cut-strategy
proved to be orders of magnitude faster than those based on de-
composition charts and cube representations. However, they re-
quire reordering of variables of BDD to move the variables on the
top or to check bi-decompositions for partitionings which are not
consistent with the variable order. As an alternative, a number
of methods use the fact that BDDs themselves are a decomposed
representation of the function and exploit the structure of BDDs,
rather than cut, to find disjoint decompositions. Karplus [31] ex-
tended the classical concept of dominator on graphs [32] to 0,1-
dominators on BDDs. A node v is a 1-dominator (0-dominator) if
every path from the root to one (zero) terminal node contains v. If
v is a 1-dominator, then the function represented by the BDD pos-
sesses a conjunctive (AND) decomposition. If v is a 0-dominator,
then the function can be decomposed disjunctively (OR). This idea
was extended by Yang et al [33] to XOR-type decompositions and
to more general type of dominators. Minato and De Micheli [13]
presented an algorithm which computes disjoint decompositions
by generating irreducible sum-of-product for the function from its
BDD and applying factorization. The algorithm of Bertacco and
Damiani [12] makes a single traversal of the BDD to identify the
decomposition of the co-factors and then combine them to obtain
the decomposition for the entire function. The algorithm is im-
pressively fast; however, as Sasao has observed in [34], it fails
to compute some of the disjoint decompositions. This problem
was corrected by Matsunaga [14], who added the missing cases
in [12] allowing to treat the OR/XOR functions correctly. The al-
gorithm [14] appears to be the fastest of existing exact algorithms
for finding all disjoint decompositions.

3 New heuristic algorithm

The new heuristic algorithm is based on the following two
properties.

Property 1 All disjoint decompositions of an n-variable Boolean
function can be uniquely described by a certain subset of disjoint
decompositions A. The size of A is O(n).

Property 2 There exist a best variable ordering for a ROBDD
for f in which the variables Y from any decomposition f (X) =
h(g(Y );Z) belonging to A are adjacent.

Property 1 follows from the results of [20]. We describe these
results briefly in Section 3.1. Property 2 follows from the main
theorem of [35].

The presented algorithm examines all linear intervals of vari-
ables from a given ordering of a ROBDD and, for each interval
Y , checks whether it is a bound set. The procedure IntervalCut
described in Section 3.2, is used to perform the checking as well
as to compute the functions g and h in the resulting decomposition
f (X) = h(g(Y );Z).

3.1 Properties of the disjoint decomposition

This section describes the properties of the disjoint decompo-
sition from [20], implying Property 1. The formulation of the def-
initions and theorems is adjusted to the notation of this paper.

Definition 1 A bound set Y of f (X), Y � X, is strong if any other
bound set of f (X) is either a subset of Y , a superset of Y , or dis-
joint to Y .

The partial order induced by set theoretical inclusion between
pairs of strong bound sets of f defines a tree.

Definition 2 The decomposition tree T ( f ) of f (X) is a tree whose
nodes represent all strong bound sets of f (X), related by inclusion.
Any node has two labels:

(a) a type, which is either “prime” or “full”,
(b) an associated function.

The following Theorem shows how decompositions of a func-
tion can be derived from its decomposition tree and character-
izes the functions associated with the nodes. It also states that
the decomposition tree is unique for a given function (up to iso-
topy/isomorphy). Remind that two Boolean functions are isotopic
if they are identical up to complementation of variables or function
values. Two binary operations � and � are isomorphic if there is a
bijection φ : B! B such that φ(a�b) = φ(a)�φ(b).

Theorem 1 Let T ( f ) be the decomposition tree of a Boolean func-
tion f (X) with support set X. Let Y1; : : : ;Yk be the children of the
root X. Then f (X) has a decomposition of type

f (X) = h(g1(Y1);g2(Y2); : : : ;gk(Yk))

for functions gi : BjYij ! B (1 � i� k) and h : Bk ! B where
(a) h is non-decomposable if X is labeled “prime”,
(b) h is an associative and commutative Boolean operation if X is

labeled “full”,
(c) h is unique up to isotopy in (a) and up to isomorphy in (b).
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Figure 1: Example of a decomposition tree.

An example of a decomposition tree is shown in Figure 1. Ab-
breviations “P” and “F” stand for labels “prime”, and “full”, re-
spectively. Letters a;b;c;d;e;g;h denote the functions associated
with the nodes, whereas � and � denote operations. In accordance
with the tree, the complete disjoint decomposition of the function
is

f (x1; : : : ;x6) = (c(a(x1);b(x2))�d(x3)� e(x4))�g(x5)�h(x6)

with � and � being associative and commutative Boolean opera-
tions. a;b;c;d;e;g;h are non-decomposable Boolean functions. In
this case all those functions except c are unary Boolean functions
(identity or complement).

Theorem 1 shows that the decompositions associated with
strong bound sets uniquely represent all disjoint decompositions
of a function. These are the decompositions A of Property 1. It
was proved in [36] that the number of strong bound sets of an n-
variable Boolean function is O(n), while the number of all bound
sets is O(2n).

3.2 IntervalCut procedure for finding bound sets

Let V be a set of nodes of a ROBDD G of an n-variable function
f (X). Every non-terminal node v 2 V has an associated variable
index, index(v) 2 f1; : : : ;ng. The index of the root node is 1. In
order to have a unified notation in the proof of the main result, we
assume that the terminal nodes also have an index, which is n+1.

Suppose that all nodes with index � i are in the upper part of
the graph and all nodes with index > i are in the lower part of
the graph, for some i 2 f1; : : : ;ng. The boundary line between the
upper and lower parts of the graph is called cut(i). If the number
of nodes with index > i which are children of the nodes above the
cut(i) is two, then the set of variables Y = fx1; : : : ;xig is a bound
set [25].

One possibility to check whether a set of variables Y is a bound
set is to move the variables Y to the top of the ROBDD and then
check the number of children below cut(jY j), as in [25, 26]. How-
ever, re-ordering is computationally expensive. Instead, we have
developed a procedure, called Interval Cut which checks whether
a given linear interval of variables of a ROBDD is a bound set
without reordering. To describe the procedure, we first introduce
some definitions.

Suppose the variables Y lie between two cuts, cut(a) and
cut(b), such that a < b, a;b 2 f0; : : : ;ng. Let cut set(a) denote
a set of nodes v 2 G with indexes a < index(v) � b which are
children of the nodes above the cut(a) of G. Let Gv stand for a
ROBDD rooted at some v 2 cut set(a). Then, cut set(bv) is the

IntervalCut(G;a;b)
input: ROBDD G of f (X), two cuts cut(a) and cut(b), a < b, a;b 2
f0; : : : ;ng.
output: ”not a bound set” if the set of variables Y between cut(a) and
cut(b) is not a bound set of f (X); functions g and h if Y is a bound set
resulting in f (X) = h(g(Y );Z).

for all v 2 cut set(a)
if (jcut set(bv)j> 2)

return(”not a bound set”);
for all v1;v2; : : : ;vk 2 cut set(a)

if (gvi 6= gvi+1 ) /* up to complementation */
return(”not a bound set”);

h = substitute each subgraph gv, 8v 2 cut set(a), by a node;
g = gv;
return(g;h);

Figure 2: Pseudo code of the IntervalCut procedure.

set of nodes u 2 Gv with indexes b < index(u) � n+1 which are
children of the nodes of Gv above the cut(b). If jcut set(bv)j= 2,
then gv is a Boolean function represented by the subgraph rooted
at v whose terminal nodes are obtained by replacing the two nodes
of cut set(bv). The resulting gv is unique up to complementation.

Using this notation, we can describe the pseudo code of the
algorithm IntervalCut(G;a;b) as shown in Figure 2. Next, we
prove that it computes the decompositions correctly.

Theorem 2 Algorithm IntervalCut(G;a;b) computes a decom-
position f (X) = h(g(Y );Z) in O(jcut set(a)j �max(jgvj)) time,
v 2 cut set(a).

Proof: Let Y be the variables between cut(a) and cut(b), Z1 be the
variables above cut(a) and Z2 be the variables below cut(b). We
have Z1[Z2 = Z and Y [Z = X .

Let kv(Z1) be a function which is a sum of all the paths leading
to a node v 2 cut set(a). Then f can be co-factored with respect
to kv as

f (X) = ∑
8v2cut set(a)

kv(Z1) � f jkv
(Y;Z2) (1)

If jcut set(bv)j = 2, then Y is a bound set for f jkv
so it can be

decomposed as

f jkv
(Y;Z2) = hv(gv(Y );Z2) (2)

for some hv, gv. Furthermore, if for all v2 cut set(a) the functions
gv are equal up to complementation, then we can denote gv by g
and write (2) as

f jkv
(Y;Z2) = hv(g(Y );Z2) (3)

From (1) and (3) we can conclude that f can be represented as

f (X) = h(g(Y );Z)

with h = ∑8v2cut set(a) kv �hv.
Let max(jgvj) be the size of the largest subgraph representing

gv, for some v 2 cut set(a). Since substitution of a ROBDD by
a node is a constant-time operation, the complexity of the pseudo
code in Figure 2 is O(jcut set(a)j �max(jgvj)).

2



4 Experimental results

To make a thorough evaluation of the presented heuristic, we
have implemented an exact decomposition algorithm1 from [37]
and applied both, exact and heuristic versions, to iwls93 bench-
mark set. For all single outputs, for which the exact algorithm
did not time out2, 582 in total, we have computed the total num-
ber of strong bound sets found by each algorithm. In the first set
of experiments, we used sifting ordering algorithm [15] to get a
good initial order for ROBDDs. The heuristic algorithm has suc-
ceeded to find 95% of all the decompositions on average. For 526
of those 582 single-output functions, it found 100% of the decom-
positions. In the second set of experiments, we switched the sift-
ing off, and build ROBDDs using the breadth first traversal order
from the benchmark’s circuit description. For 191 functions out of
582 the result got worse (by 57% on average). Nevertheless, the
heuristic still found all the decompositions for 365 functions.

We have also applied the presented heuristic to the benchmarks
reported in [13], [12] and [14]. The results are summarized in
Table 1. Column 4 shows how many non-trivial strong bound sets
are found for each benchmark by our algorithm. Every output is
handled as a separate function. The number given in Column 4 is
the total sum of bound sets for all the outputs. Columns 5-8 show
runtime comparison. Our experiments were run on Sun Ultra 60
operating with two 360 MHz CPU and with 1024 MB RAM main
storage. The algorithm [13] uses a SUN Ultra 30, [12] uses a PC
equipped with 150 MHz Pentium and 96 MB RAM main storage
and [14] uses a PC with Pentium-II 233Mhz processor.

5 Conclusion

This paper presents a heuristic algorithm for finding disjoint
decompositions of Boolean functions. Benchmark experiments
demonstrate the effectiveness of the described technique.

Future work includes extension of the presented algorithm to
Roth-Karp decomposition. We are also investigating a possibility
of combining IntervalCut with decomposition algorithms exploit-
ing the structure of BDDs, like [14].
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