
For IEEE SMC’97, Orlando, FL, Oct. 1997.

More on Training Strategies for Critic and Action Neural Networks
 in Dual Heuristic Programming Method

George G. Lendaris1, Christian Paintz2, Thaddeus Shannon3
1.Professor, Systems Science & Electrical Engineering, lendaris@sysc.pdx.edu

2. Graduate Student, Electrical Engineering, 3. Graduate Student, Systems Science Ph.D. Program
Portland State University

PO Box 751, Portland, OR 97207

ABSTRACT
This paper for the special session on Adaptive Critic

Design Methods at the SMC '97 Conference describes a
modification to the (to date) usual procedures reported for
training the Critic and Action neural networks in the Dual
Heuristic Programming (DHP) method [7]-[12]. This
modification entails updating both the Critic and the
Action networks each computational cycle, rather than
only one at a time. The distinction lies in the introduction
of a (real) second copy of the Critic network whose
weights are adjusted less often (once per "epoch", where
the epoch is defined to comprise some number N>1 com-
putational cycles), and the "desired value" for training the
other Critic is obtained from this Critic-Copy.

In a previous publication [4], the proposed modified
training strategy was demonstrated on the well-known
pole-cart controller problem. In that paper, the full 6
dimensional state vector was input to the Critic and Action
NNs, however, the utility function only involved pole
angle, not distance along the track (x). For the first set of
results presented here, the 3 states associated with the x
variable were eliminated from the inputs to the NNs, keep-
ing the same utility function previously defined. This
resulted in improved learning and controller performance.
From this point, the method is applied to two additional
problems, each of increasing complexity: for the first, an
x-related term is added to the utility function for the pole-
cart problem, and simultaneously, the x-related states were
added back in to the NNs (i.e., increase number of state
variables used from 3 to 6); the second relates to steering a
vehicle with independent drive motors on each wheel. The
problem contexts and experimental results are provided.

1. BACKGROUND
Dual Heuristic Programming (DHP) is a neural network

approach to solving the Bellman equation [12]. The idea is
to maximize a specified (secondary) utility function:

(1)

The term is a discount factor () and is
the primary utility function, defined by the user for the spe-
cific application context. A useful identity:

(2)
In this paper, is assumed to be 1, and the usual meth-

J t() γkU t k+()

k 0=

∞

∑=

γk 0 γ 1< < U t()

J t() U t() γJ t 1+()+=
γ

ods of discretizing continuous models of plants is used.
For DHP, at least two neural nets are needed, one for the
actionNN functioning as the controller, and one for the
criticNN used to train the actionNN. A third NN could be
trained to copy the plant if an analytical description
(model) of the plant is not available.

R(t) [dimension n] is the state of the plant at time t. The
control signal u(t) [dimension a] is generated in response
to the input R(t) by the actionNN. The signal u(t) is then
asserted to the plant. As a result of this, the plant changes
its state to R(t+1). The criticNN’s role is to assist in
designing a controller (actionNN) that is “good” relative
to minimizing the specified cost function U(R(t),u(t)),
which is designed to expresses the objective of the control
application. In the DHP method, the criticNN estimates
the gradient of J(t) with respect to R(t); the letter λ is used
as a short-hand notation for this gradient, so the output of
the criticNN is designated λ.

2. UPDATING PROCESS
We refer to Figure 1 to describe the computational steps

used in the DHP methodology. First, we mention that the
boxes with dark shading mean that we have an analytical
expression for that item [note: if an analytical representa-
tion of the plant is not available, a NN may be trained up
to emulate the plant and used in this role)]. The clear
boxes are neural networks (NNs). The medium shaded
boxes represent some critical equations that are to be
solved in the training process. The dotted lines represent
calculated values being fed into the respective boxes. The
heavier dot-dash lines indicate where the learning/updat-
ing process occurs.

Reading Figure 1 from left to right, the current state
R(t) is fed to the actionNN, which then generates u(t). The
model is informed of R(t) and u(t), and then generates
R(t+1). R(t) is also fed to the critic#1 box and to the utility
box, which generate, respectively, λ(R(t)) and U(R(t)).
[Note, in the examples used herein, the Utility functions
defined make use of R(t) but not u(t); if u(t) is included in
the definition of the utility U, then we would show a con-
nection from the output of the actionNN to the utility
box.] After the model generates R(t+1), this is fed to the
critic#2 box, which then yields λ(R(t+1)) -- more simply
denoted as λ(t+1). This value is a key component of the
calculations in the medium-shaded boxes, which in turn

Page 2

are needed to perform learning/adaptation of the
actionNN and the criticNN. The upper medium-shaded
box calculates , and the lower medium-shaded box

calculates , the “desired” or “target” value for λ(t) to

enable backpropagation-type training of critic#1.
We now show the basic equations for the two medium-

shaded boxes, and in particular, point out the role of
λ(t+1) in those computations.

2.1 The upper medium-shaded box.
 In the present work, a basic Backpropagation algorithm
is used (no embellishments) to adjust the weights in the ac-
tion box. The weight-adjustment is calculated via:

(3)

where

and

and finally,
(4)

Abbreviation:
(5)

is approximated by the critic, in response to the
input R(t+1).

 can be calculated from analytical equa-

tions of the plant, if they are available, or by backpropaga-
tion through a third neural net that has been previously
trained to copy the plant.

2.2 The lower medium-shaded box.
In [4], the following equation is shown to hold:

(6)

which makes use of the identity of Equation 2. Note again
the term containing the gradient of J(t+1) with respect to
R(t+1): λ(t+1). The subscript s indicates the components
of the vector quantity λ(t+1).

 For convenience, we paraphrase Equation (6) in
Equation (7). Using this version, we note that the [~Ac-
tion] terms are calculated via the action box in Figure 1,
and the [~Critic(t+1)] terms are calculated via the critic#2
box. Similarly, the and the terms are
calculated via the respective dark-shaded box in Figure 1.

∆wij

λ° t()

∆wij t() lcoef
wij t()∂

∂ J t()•=

wij t()∂
∂ J t()

uk t()∂
∂ J t()

wij t()∂
∂ uk t()•

k 1=

a

∑=

uk t()∂
∂ J t()

uk t()∂
∂ U t()

uk t()∂
∂ J t 1+()+=

uk t()∂
∂ J t 1+()

Rs t 1+()∂
∂ J t 1+()

uk t()∂
∂ Rs t 1+()•

s 1=

n

∑=

Rs t 1+()∂
∂ J t 1+() λ t 1+()=

λ t 1+()

uk t()∂
∂ Rs t 1+()

λs° t()
Rs t()∂

∂ U t()
uj t()∂
∂ U t()

Rs t()∂
∂ uj t()•

j 1=

a

∑+=

Rk t 1+()∂
∂ J t 1+()

Rs t()∂
∂ Rk t 1+()•

k 1=

n

∑+

Rk t 1+()∂
∂ J t 1+()

uj t()∂
∂ Rk t 1+()

Rs t()∂
∂ uj t()••

j 1=

a

∑

k 1=

n

∑+

[~Plant] [~Utility]

 (7)

2.3 The training/update process.
Detailed descriptions of various strategies were given

in [4] for "solving" (iterating) Equation 7. We describe
some of them here (more loosely) using Figure 1. Keep in
mind that the output of critic#2 is required for performing
the calculations in the medium-shaded boxes, which in
turn must be calculated to perform learning updates in the
action and critic#1 boxes.

Strategy 1. Straight application of the equation.
In Figure 1, this means that after λ(t+1) is calculated,
both of the paths leaving critic#2 are traversed, so
that the action box and the critic#1 box are updated in
each iteration [in this strategy, the two boxes labeled
critic#1 and critic#2 are always maintained identical -
- i.e., could be the same physical box, just used for
two different calculations].

Strategy 2a. Basic 2-stage process [“flip/flop”].[7]-[12]
During stage 1, train criticNN, not actionNN;

In Figure 1, this means that after λ(t+1) is calculat-
ed, only the path which adapts critic#1 is traversed,
not the path which adapts the action box. This is re-
peated for a designated number of iterations, and
then changed to stage 2 (from “flip” to “flop”). As
in Strategy 1, critic#1 critic#2.

During stage 2, train actionNN, not criticNN.
In Figure 1, this means that after λ(t+1) is calculat-
ed, only the path which adapts the action box is tra-
versed, not the path which adapts critic#1. This is
repeated for a designated number of iterations, and
then changed to stage 1 (from “flop” to “flip”).

 Strategy 3a. Modify 1st stage of the 2-stage process.
The modification here is to make critic#1 and critic#2
two physically distinct objects. Then, during Stage
1, after λ(t+1) is calculated, adapt critic#1 as in Strat-
egy 2, however, leave critic#2 unchanged. Repeat
this for the designated number of iterations for Stage
1 (“flip” portion) of the process. Then, just before
moving into Stage 2 (the “flop” portion), upload the
weight values from critic#1 into critic#2, and then
proceed to Stage 2.

Strategy 4. Single-stage process (as in Strategy 1),but
use modifications introduced in Strategy 3.

Strategy 1 is modified to make critic#1 and critic#2
two physically distinct objects (as in Strategy 3).

λs° t() [~Utility]+ [~Utility] [~Action]•()

j 1=

a

∑=

[~Critic(t+1)] [~Plant] [~Action]••()

j 1=

a

∑

k 1=

n

∑+

[~Critic(t+1)] [~Plant]•()

k 1=

n

∑+

≡

Page 3

dure was to randomly initialize all the NNs (weight range:
[-01, 01]), and to then provide a specified sequence of
starting angles (with zero being the “desired” angle), al-
lowing the system to train on each starting angle for a
specified number of seconds. The measure used for com-
paring the various DHP strategies takes the values
achieved by the primary utility function during training
and accumulates these over the sequence of starting angles
[this part is called C(j)], and add to this a penalty term ac-
cording to the number of times the pole was dropped and
had to be reset [this part is called D(j)], yielding a total
measure M(j). The argument j labels a separate pass
through the sequence of angles. In a sense, this measure
incorporates the convergence speed of the strategy as well
as the quality of the controller’s actions along the way.

3.1 Speed of training convergence.
As is well known, convergence speed of the training

process is directly influenced by the values of the learning
coefficients [interchangeably called “gains” here]; if the
gains are too high, the process does not converge; if set too
low, while convergence may be achieved, the process
takes a long time. There is an intermediate range of gain
values for which the system may or may not converge; this
is explored by re-initializing the system and re-starting the
process. Depending on the test, we ran up to 100 trials to
determine a kind of “probability of convergence”.

We approximately determined for each strategy what
range of gains resulted in convergence with probability
very close to one. A set of gains was selected from these
for each strategy, and a series of trials was run. As the
gains were increased, at some point the convergence prob-
ability dropped significantly. The strategy being tested
was determined to converge with probability close to 1 if
the learning process converged to a controller capable of
balancing the pole with zero drops through one complete
pass through the training angles for at least 39 out of 40
trials. The gain values were then increased or decreased
until the approximate edge of the “almost-sure” conver-
gence region was determined (i.e., the highest values of
the gains just before the probability started dropping away

from one -- sort of an “edge” condition;e.g., 99%+ for
gains of .30, but much less for .35). We dubbed these the
Edge Gain Values, recognizing of course that these were
only approximately determinable.

The reason for going through this process is to provide
a kind of “optimal” design for each of the training proce-
dures, so they might be compared more fairly. A nice set
of (approximate) Edge Gain Values were determined for
the pole-cart “theta-only” and “theta-x” versions. Only
partial results along this line were achieved with the steer-
ing control problem.

3.2 Pole-Cart test bed.
 In [4], the actionNN and the criticNN for the pole-cart

test bed were both provided the full state vector R(t) at

4a. After λ(t+1) is calculated, adapt both, the action
box and the critic#1 box as in Strategy 1, however,
leave critic#2 unchanged. Repeat this for a designat-
ed number of iterations (the familiar term ‘epoch’ is
used here for the designated number of iterations),
and at the end of each epoch, upload the weight val-
ues from critic#1 into critic#2, and continue the pro-
cess, epoch at a time.

4b. [Synopsis: while this version also adapts critic#1
via critic#2, in contrast to 4a this strategy adapts the
action box via critic #1.] After λ(t+1) is calculated
via critic#2, do the bottom medium-shaded box [cal-
culate (t) for adapting critic#1] as in 4a; however,
now do something not shown in Figure 1: apply
R(t+1) to critic#1, and use the resulting λ(t+1) value
to enter the upper medium-shaded box, and proceed
to adapt the action box. Now apply R(t) to critic#1,

and based on the (t) already calculated, adapt crit-
ic#1. As in 4a, at the end of the epoch, upload the
weight values from critic#1 into critic#2.

2.4 Benefits of the modifications.
The modified strategies described above have demon-

strated a benefit of allowing increased learning rates, thus
reducing the convergence time for the learning process.

In [4], comparative training results were shown for all
the strategies described. The well known pole-cart control

problem [3], with the pole angle being controlled,
was used as the test application. Strategy 4 was demon-
strated to yield the fastest convergence, and among the
best controller designs. In that paper, the full 6 dimension-
al state vector was input to the Critic and Action NNs,
however, the utility function only involved pole angle, not
distance along the track (x).

In the present paper, the 3 states associated with the x
variable were first eliminated from the inputs to the NNs,
keeping the same utility function previously defined. This
resulted in improved learning and controller performance.
Experimental results are given in Section 4.

Next, two applications of increased complexity are in-
vestigated, and comparative results are presented. This
time, the exploration is confined to Strategies 1, 2a & 4.
Strategy 1 is used as the baseline; next, Strategy 2a (cf.
[7]-[12]) is shown with its relative performance; and final-
ly, the new Strategies 4a & 4b are demonstrated with their
relative improvements over both, Strategies 1 and 2a.

The two additional demonstration applications are:
a) the pole-cart problem again, except distance-along-the-
track (x) is added in the utility function -- thus increasing
the number of system states needed by the critic box from
3 to 6; b) steering control of a 4-wheel vehicle with inde-
pendent electric motors on each wheel.

3. TEST-BED APPLICATIONS
For the pole-balancer test bed [3][4], the training proce-

λ°

λ°

Θ t()

Page 4

their input [as has been typical in the literature]. In our ex-
ploration for the present research to determine the Edge
Gain Values, none could be discovered. This led to reduc-
ing the complexity of the action and critic NNs by elimi-
nating from their inputs those states that are not used in
the Utility function (i.e., not used in stipulating the objec-

tives of the control task). Since was
used [angle measured from vertical; target value of 0] only

the states are needed by the critic and
action NNs. After removing the x(t)-related states for the
present research, we were able to discover for each of the
strategies a region of gains for which “probability one”
convergence would occur. The Edge Gain Values of these
regions for each strategy were determined, and used for a
new set of comparative results, given in Section 4.

For the next level of complexity on which to explore
the proposed new strategies, a utility function was defined
for the same pole-cart problem which includes a distance-
along-the-track term, x, with target position x=0:

 .
Since this equation includes both angle and distance
terms, the critic and action NNs will profit from having
both the 3 -related and the 3 x(t)-related states fed
into them. This was done, and again, a region of gains for
which “probability one” convergence would occur was
sought for each of the training strategies. Where success-
ful, the Edge Gain Values for each strategy were deter-
mined, and used for the comparative results given in
Section 4.

3.3 Steering control for 4-wheel vehicle test bed.
For a more complex plant, we turn to a 4-wheel vehicle

with an independent electric drive motor on each wheel.
The equations and documentation for the steering model
were extracted from [1] which in turn were based on equa-
tions developed in [5].

A full nonlinear model for the vehicle is used along
with the classical constant-velocity bicycle model [5]
which was used in [2] for developing a front/rear wheel
steering decoupling system. A front-wheel-only steering
model is obtained via restricting rear-wheel steering angle
to zero. The key unknown system parameters for which
robustness is required are vehicle mass and tire/road side-
slip coefficient of friction.

Figure 2 shows the assumed geometry. Reference coor-
dinates: xo-yo; chassis coordinates: x-y, rotated by angle

. Mass is assumed concentrated at front and back
wheels, with total mass m; wheelbase is l = lf + lb. Vehicle

velocity at center of gravity has magnitude v, at angle

from x direction. Velocity v is assumed to be constant;

varies through a turn. At each wheel, steering angle is ,
subscripted by f & b for front and back. Velocity of chas-
sis at the ith axle, i={f,b}, has assumed magnitude vi, at

U t() Θ t() 0–()2=

Θ t() Θ
·

t(), Θ
··

t(),

U t() Θ t() 0–()2 x t() 0–()2+=

Θ t()

ψ

β
β
δ

angle from the x axis. Thus, the wheel side-slip angle is

, which represents the angular difference be-

tween the direction in which the wheel is pointed and the
direction in which it is actually moving (due to slipping).
This, in turn, produces a side force on the wheel with mag-
nitude in the direction perpendicular to that in
which the wheel is steered, where is a monotonic func-
tion of .

In [1], a set of kinematic, force and dynamic equations
are developed, and these are combined to define a set of
second order nonlinear state equations [bicycle steering

model]. The state variables are and [where],
and the inputs are front and back wheel steering com-

mands, and . For the hierarchical control structure

defined in [1], the steering control system is required to
generate velocity commands for the wheel controllers. In
Figure 3, these are shown as the outputs uf and ub. The
symbols fy and mz represent, the tire side force in the y di-
rection and the sum-of-the-moments generated by the two
tire side forces around the center of gravity.

A Utility function was defined by the present authors
for applying the DHP method as follows:

As discussed earlier, since this utility function involves
both position and velocity in the y direction, the associated
state variables are fed to the action and critic NNs.

The preliminary experiments reported here are for per-
forming a lane change, which entails a left-turn plus a
right-turn type maneuver. The DHP method was used to
design a controller for this task. It was decided to train up
a separate NN for each of the left-turn and right-turn parts
of the lane-change maneuver. These were then (easily)
“pieced together” with some simple logic. After succeed-
ing with this procedure using Strategy 4a, subsequent ex-
periments performed for comparative purposes used only
the left-turn portion of the lane-change task.

4. EXPERIMENTAL RESULTS

4.1 Pole-Cart test bed.
Results are tabulated in Tables I, II and III, for both the

“Theta-Only” and the “Theta-X” versions of the Pole-Cart
control test bed.

In both cases, we start with selecting the highest gains
for which Strategy 1 has “probability one” convergence.
This “optimal” performance for Strategy 1 provides a
benchmark for comparisons. See Table III for gains. The
value recorded in each row of columns 2 and 3 of Tables I
& II is the M measure cited earlier. M is defined here as
the sum C(1)+C(2)+C(3)+2*(D(1)+D(2)+D(3)), thus in-
voking a 2.0 utility penalty for a restart after a drop, a rela-
tively inexpensive assumption.

βi

αi δi βi–=

fi f αi()=

fi
αi

β ρ ρ ψ·=

δf δb

U t() yposdes yposact–()–
2

.5– yveldes yvelact–()2
=

Page 5

Theta Only version.
When we use the Strategy 1 Edge Gains for Strategy 2a

(column 2 in Table I) performance is worse than for Strate-
gy 1, particularly relative to the number of “drops”.

When the Strategy 1 Edge Gains are used for Strategies
4a and 4b, relative to each other, they perform approxi-
mately the same; however, relative to Strategy 1, we note
the following: the standard error for the Strategy 1 mean
cost is +25%, whereas for Strategy 4 it is less than +2%.
The sample mean itself improves by approx. 40%, with the
“drops” for the three methods being approx. the same (left
number in column 4, Table I).

When the “optimal” Edge Gains for Strategies 4a and
4b are used (column 3 in Table I), there is another factor of
2 improvement in the total cost, with the number of
“drops” going from approx. 17 down to 6.

These experimental results give more substantive em-
pirical support for the (more qualitative) conclusions given
in the previous paper [4].

Theta-X version.
When we used the Strategy 1 Edge Gains for Strategy

2a, a “stable region” of convergence could not be found --
the closest “probability of convergence” found was ap-
proximately .9.

When the Strategy 1 Edge Gains are used for Strategies
4a and 4b, relative to each other, they again perform ap-
proximately the same. Relative to Strategy 1, we note the
following: the standard error is roughly the same for all
three methods, but in this case, the total cost goes up
slightly for Strategy 4 (using Strategy 1’s gains).

When the “optimal” Edge Gains for Strategies 4a and
4b are used, however, Strategy 4 does provide improved
results. As in the previous problem, the sample mean itself
again improves approximately 40%, with the “drops” for
Strategy 4a showing substantial improvement: from 58 -->
33, and for Strategy 4b from 58 -->41.

TABLE I: Theta-Only version of Pole-Cart problem.
TABLE II: Theta-X version of Pole-Cart problem.
Columns 2 & 3 are total cost [reported as sample mean +standard
error]. Column 4 gives average number of drops for the two gains.

Strategy via Strategy 1
Edge Gains

via corresp.
Edge Gains

D(1)S1/D(1)TEG

1 349 + 11 349 + 11 58 / 58

2a not run none found -----

4a 394 + 7.5 207 + 9.5 62 / 33

4b 390 + 10.5 230 + 9.5 67 / 41

Strategy via Strategy 1
Edge Gains

via corresp.
Edge Gains

D(1)S1/D(1)TEG

1 206 + 53 206 + 53 18 / 18

2a 239 + 2.5 226 + 3.5 45 / 42

4a 115 + 2.0 49 + 1.0 16 / 6

4b 128 + 2.5 48 + 1.0 17 / 6

TABLE III : Edge Gains (learning coefficients) for Pole-Cart

These experiments again support the conclusion that
Strategy 4, with its ability to utilize higher learning rates
(gains), is able to provide better performance.

4.1 Four-wheel vehicle Steering test bed.
As with the pole-cart problem, experiments were run

with strategies 1, 2a and 4. We were not able to find a
region of “probability one” convergence for the car as we
had been able to do for the pole-cart. In the quest to
improve the situation, it was reasoned that since the utility
function includes desired values for and , and the fact
that these change with time, it would be difficult for the
critic to infer these changing targets based on indirect
information. Therefore, it was decided to directly input
target values for these two quantities to the critic (as well
as to the action NN). The situation improved, such that for
Strategy 4b, the “probability of convergence” reached .7-
.8. For the other strategies, it came up to a range of .3-.5.
We discovered again that it was better to leave out the bias
terms in both NNs (we gave a similar observation in [4]).

In order to achieve convergence in the DHP process for
this kind of problem, it was found useful to adapt a train-
ing method proposed in [6]. This method divides the state
space into portions. The NNs start to train on the smallest
fraction, here defined as a unit of time along the trajectory
to be learned. Then, after successful learning to control the
plant in that unit, the NNs are trained on two units of time,
the fraction already learned and another one of the same
size. After learning this bigger fraction of state space, a
third one is added, etc., until the full expected range is suc-
cessfully trained.

When Strategy 1 converges (relatively rare occurrence),
it does so for only small gain values. Critic/Action gain
values of .01/.03 gave reasonably good results (in terms of
the total “cost” accumulated during training). On the other
hand, gain values about a factor of 2 higher typically
yielded divergent training. Also, for this application, using
extremely low gain values also diverged (couldn’t keep up
with the changing desired trajectory?).

Strategy 2a appeared to have a (slightly) higher “proba-
bility of convergence” for the gains explored than did
Strategy 1. Nevertheless, the accumulated cost was still
about an order of magnitude higher than achieved with
Strategies 4a and especially 4b.

Strategy 4a and 4b had substantially higher conver-
gence probability, as indicated above.

 We are not able at this time to give the kind of compar-

Strategy
Theta-Only

critic/action gains
Theta-X

critic/action gains

1 .07/.25 .02/.2

2a .07/1.0 none

4a .3/.9 .04/.4

4b .3/.9 .03/.4

y y·

Manuscript date: June 23,1997 Page 6

ative statistical data given for the pole-cart. The process of
following a desired trajectory is substantially more com-
plex for us to capture the kinds of measures that were done
with the pole-cart.

 A potentially important observation was that, using
Strategy 4b (the fastest strategy), even after successful
training, allowing the critic to continue to operate during a
test run yielded lower total cost than was achieved with
just the trained controller doing a “solo” run over the tra-
jectory. This has good implications for the possibility of
on-line training. A first hint in this direction was reported
in [4] with the pole-cart in the context of increasing pole
length from 1m to 2.4m, and the critic adapted the action
NN, on-line, without dropping the pole.

 5. CONCLUSION
The proposed modification to the training strategy for

the DHP method continues to demonstrate improved
learning performance over the more prevalent method,
here called Strategy 2a. The proposed Strategies 4a & 4b
were first evolved while working on the “theta-only” ver-
sion of the Pole-Cart control problem [4], and now further
demonstrated on the more complex “theta-x” version of
the Pole-Cart problem, and thirdly, on an even more com-
plex dynamical system, steering a 4-wheel vehicle.

These explorations also demonstrated to us that the specific
information provided to the critic and action boxes can
have a significant impact on performance. In particular,
providing the full state vector R(t) to the critic may be det-
rimental, as demonstrated here for the theta-only test bed.
For the steering control problem, it was found beneficial to
additionally provide the critic with the desired (or target)
values for and . It appears that the choice of what in-
puts to provide the critic should be guided by the form of
the specific utility function being used.

REFERENCES
[1] Accurate Automation Corp., “Advanced Intelligent Control of Next

Generation Vehicles”, NSF SBIR Phase I Final Report, Aug 1995.
[2] Ackermann, J., “Robust Decoupling, Ideal Steering Dynamics and

Yaw Stabil. of 4WS Cars”, Automatica, vol. 60, pp1761-1768, 1994.
[3] Barto, A., Sutton, R. & Anderson, C. " Neuronlike Adaptive Elements

that can Solve Difficult Learning Control Problems" in IEEE SMC
Transactions, Vol. SMC-13, No.5, Sep/Oct 1983.

[4] Lendaris,G. and Paintz, C. “Training Strategies for Critic and Action
Neural Nets in Dual Heuristic Programming Method”, in PROCEED-
INGS of ICNN’97, Houston, IEEE, pp712-717, June, 1997.

[5] Mitschke, M., Dynakik der Kraftfahrzeuge, vol. C, Springer -Verlag,
Berlin, 1990.

[6] Nguyen D. and Widrow, B., “The Truck Backer-Upper: an Example
of Self Learning in Neural Networks”, Ch 12 in Neural Networks for
Control, Miller, Sutton & Werbos (eds), MIT Press, 1991.

[7] Prokhorov, D. and Wunsch, D. "Advanced Adaptive Critic Designs",
PROC WCNN'96, pp. 83-87, San Diego, Erlbaum, Sept. 1996.

[8] Prokhorov, D., Santiago, R. & Wunsch, D., “Adaptive Critic Designs:
A Case Study for Neurocontrol”, in Neural Networks, vol. 8, no. 9, pp
1367-1372, 1995.

[9] Santiago, R., First Joint Mexico-US International Workshop on Neu-
ral Networks and Neurocontrol, Playacar, Mexico, Sept. 1995.

[10] Santiago, R. & Werbos, P. "New Progress Towards Truly Brain-Like
Intelligent Control", PROC WCNN '94, pp. I-2toI-33, Erlbaum, 1994.

y y·

[11] Visnevski, N. & Prokhorov, D. "Control of a Nonlinear Multivariable
System with Adaptive Critic Designs", in Intelligent Engineering
Systems through Artificial Neural Networks 6 (PROC. ANNIE ‘96),
Dagli, et.al., Eds., ASME Press, pp. 559-565, 1996.

[12] Werbos, P. "Approximate Dynamic Programming for Real-Time
Control and Neural Modeling", Ch. 13 in Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approaches, (White, D.A. and
Sofge, D.A., eds.), Van Nostrand Reinhold, New York, NY, 1994.

Figure 1: Computing Schema for Discussing Strategies.

Figure 2. Assumed vehicle model geometry (after [1]).

Figure 3. Block diagram for bicycle steering model. [1]

R(t)
action

model

critic#1

critic#2

utility

u(t)
R(t+1)

λ(R(t))

λ(R(t+1)

calculate

calculate ∆wij

λ° R t()()

β
v

[l = lb + l f]
c.g.lb l f

x direction

 [back wheel, front wheel, one side of chassis]

of chassis

x

y

αi

βi

δi

wheeli, (back,front)i b f,=

vi

x

y
yo

xo

ψ

δb δf

.

.. .

.
. ..

.
S.C. K.E. F.E. D.E. O.E..

δb
αb

fy

mz

ρ·

β·

ρ

β

uf
ub

αf

δf

S.C.= Steering Controller D.E.=Dynamic Equations
K.E.=Kinematic Equations O.E.=Output Equations
F.E.= Force Equations

For IEEE SMC’97, Orlando, FL, Oct. 1997.

More on Training Strategies for Critic and Action Neural Networks
 in Dual Heuristic Programming Method

George G. Lendaris1, Christian Paintz2, Thaddeus Shannon3
1.Professor, Systems Science & Electrical Engineering, lendaris@sysc.pdx.edu

2. Graduate Student, Electrical Engineering, 3. Graduate Student, Systems Science Ph.D. Program
Portland State University

PO Box 751, Portland, OR 97207

ABSTRACT
This paper for the special session on Adaptive Critic

Design Methods at the SMC '97 Conference describes a
modification to the (to date) usual procedures reported for
training the Critic and Action neural networks in the Dual
Heuristic Programming (DHP) method [7]-[12]. This
modification entails updating both the Critic and the
Action networks each computational cycle, rather than
only one at a time. The distinction lies in the introduction
of a (real) second copy of the Critic network whose
weights are adjusted less often (once per "epoch", where
the epoch is defined to comprise some number N>1 com-
putational cycles), and the "desired value" for training the
other Critic is obtained from this Critic-Copy.

In a previous publication [4], the proposed modified
training strategy was demonstrated on the well-known
pole-cart controller problem. In that paper, the full 6
dimensional state vector was input to the Critic and Action
NNs, however, the utility function only involved pole
angle, not distance along the track (x). For the first set of
results presented here, the 3 states associated with the x
variable were eliminated from the inputs to the NNs, keep-
ing the same utility function previously defined. This
resulted in improved learning and controller performance.
From this point, the method is applied to two additional
problems, each of increasing complexity: for the first, an
x-related term is added to the utility function for the pole-
cart problem, and simultaneously, the x-related states were
added back in to the NNs (i.e., increase number of state
variables used from 3 to 6); the second relates to steering a
vehicle with independent drive motors on each wheel. The
problem contexts and experimental results are provided.

1. BACKGROUND
Dual Heuristic Programming (DHP) is a neural network

approach to solving the Bellman equation [12]. The idea is
to maximize a specified (secondary) utility function:

(1)

The term is a discount factor () and is
the primary utility function, defined by the user for the spe-
cific application context. A useful identity:

(2)
In this paper, is assumed to be 1, and the usual meth-

J t() γkU t k+()

k 0=

∞

∑=

γk 0 γ 1< < U t()

J t() U t() γJ t 1+()+=
γ

ods of discretizing continuous models of plants is used.
For DHP, at least two neural nets are needed, one for the
actionNN functioning as the controller, and one for the
criticNN used to train the actionNN. A third NN could be
trained to copy the plant if an analytical description
(model) of the plant is not available.

R(t) [dimension n] is the state of the plant at time t. The
control signal u(t) [dimension a] is generated in response
to the input R(t) by the actionNN. The signal u(t) is then
asserted to the plant. As a result of this, the plant changes
its state to R(t+1). The criticNN’s role is to assist in
designing a controller (actionNN) that is “good” relative
to minimizing the specified cost function U(R(t),u(t)),
which is designed to expresses the objective of the control
application. In the DHP method, the criticNN estimates
the gradient of J(t) with respect to R(t); the letter λ is used
as a short-hand notation for this gradient, so the output of
the criticNN is designated λ.

2. UPDATING PROCESS
We refer to Figure 1 to describe the computational steps

used in the DHP methodology. First, we mention that the
boxes with dark shading mean that we have an analytical
expression for that item [note: if an analytical representa-
tion of the plant is not available, a NN may be trained up
to emulate the plant and used in this role)]. The clear
boxes are neural networks (NNs). The medium shaded
boxes represent some critical equations that are to be
solved in the training process. The dotted lines represent
calculated values being fed into the respective boxes. The
heavier dot-dash lines indicate where the learning/updat-
ing process occurs.

Reading Figure 1 from left to right, the current state
R(t) is fed to the actionNN, which then generates u(t). The
model is informed of R(t) and u(t), and then generates
R(t+1). R(t) is also fed to the critic#1 box and to the utility
box, which generate, respectively, λ(R(t)) and U(R(t)).
[Note, in the examples used herein, the Utility functions
defined make use of R(t) but not u(t); if u(t) is included in
the definition of the utility U, then we would show a con-
nection from the output of the actionNN to the utility
box.] After the model generates R(t+1), this is fed to the
critic#2 box, which then yields λ(R(t+1)) -- more simply
denoted as λ(t+1). This value is a key component of the
calculations in the medium-shaded boxes, which in turn

Page 2

are needed to perform learning/adaptation of the
actionNN and the criticNN. The upper medium-shaded
box calculates , and the lower medium-shaded box

calculates , the “desired” or “target” value for λ(t) to

enable backpropagation-type training of critic#1.
We now show the basic equations for the two medium-

shaded boxes, and in particular, point out the role of
λ(t+1) in those computations.

2.1 The upper medium-shaded box.
 In the present work, a basic Backpropagation algorithm
is used (no embellishments) to adjust the weights in the ac-
tion box. The weight-adjustment is calculated via:

(3)

where

and

and finally,
(4)

Abbreviation:
(5)

is approximated by the critic, in response to the
input R(t+1).

 can be calculated from analytical equa-

tions of the plant, if they are available, or by backpropaga-
tion through a third neural net that has been previously
trained to copy the plant.

2.2 The lower medium-shaded box.
In [4], the following equation is shown to hold:

(6)

which makes use of the identity of Equation 2. Note again
the term containing the gradient of J(t+1) with respect to
R(t+1): λ(t+1). The subscript s indicates the components
of the vector quantity λ(t+1).

 For convenience, we paraphrase Equation (6) in
Equation (7). Using this version, we note that the [~Ac-
tion] terms are calculated via the action box in Figure 1,
and the [~Critic(t+1)] terms are calculated via the critic#2
box. Similarly, the and the terms are
calculated via the respective dark-shaded box in Figure 1.

∆wij

λ° t()

∆wij t() lcoef
wij t()∂

∂ J t()•=

wij t()∂
∂ J t()

uk t()∂
∂ J t()

wij t()∂
∂ uk t()•

k 1=

a

∑=

uk t()∂
∂ J t()

uk t()∂
∂ U t()

uk t()∂
∂ J t 1+()+=

uk t()∂
∂ J t 1+()

Rs t 1+()∂
∂ J t 1+()

uk t()∂
∂ Rs t 1+()•

s 1=

n

∑=

Rs t 1+()∂
∂ J t 1+() λ t 1+()=

λ t 1+()

uk t()∂
∂ Rs t 1+()

λs° t()
Rs t()∂

∂ U t()
uj t()∂
∂ U t()

Rs t()∂
∂ uj t()•

j 1=

a

∑+=

Rk t 1+()∂
∂ J t 1+()

Rs t()∂
∂ Rk t 1+()•

k 1=

n

∑+

Rk t 1+()∂
∂ J t 1+()

uj t()∂
∂ Rk t 1+()

Rs t()∂
∂ uj t()••

j 1=

a

∑

k 1=

n

∑+

[~Plant] [~Utility]

 (7)

2.3 The training/update process.
Detailed descriptions of various strategies were given

in [4] for "solving" (iterating) Equation 7. We describe
some of them here (more loosely) using Figure 1. Keep in
mind that the output of critic#2 is required for performing
the calculations in the medium-shaded boxes, which in
turn must be calculated to perform learning updates in the
action and critic#1 boxes.

Strategy 1. Straight application of the equation.
In Figure 1, this means that after λ(t+1) is calculated,
both of the paths leaving critic#2 are traversed, so
that the action box and the critic#1 box are updated in
each iteration [in this strategy, the two boxes labeled
critic#1 and critic#2 are always maintained identical -
- i.e., could be the same physical box, just used for
two different calculations].

Strategy 2a. Basic 2-stage process [“flip/flop”].[7]-[12]
During stage 1, train criticNN, not actionNN;

In Figure 1, this means that after λ(t+1) is calculat-
ed, only the path which adapts critic#1 is traversed,
not the path which adapts the action box. This is re-
peated for a designated number of iterations, and
then changed to stage 2 (from “flip” to “flop”). As
in Strategy 1, critic#1 critic#2.

During stage 2, train actionNN, not criticNN.
In Figure 1, this means that after λ(t+1) is calculat-
ed, only the path which adapts the action box is tra-
versed, not the path which adapts critic#1. This is
repeated for a designated number of iterations, and
then changed to stage 1 (from “flop” to “flip”).

 Strategy 3a. Modify 1st stage of the 2-stage process.
The modification here is to make critic#1 and critic#2
two physically distinct objects. Then, during Stage
1, after λ(t+1) is calculated, adapt critic#1 as in Strat-
egy 2, however, leave critic#2 unchanged. Repeat
this for the designated number of iterations for Stage
1 (“flip” portion) of the process. Then, just before
moving into Stage 2 (the “flop” portion), upload the
weight values from critic#1 into critic#2, and then
proceed to Stage 2.

Strategy 4. Single-stage process (as in Strategy 1),but
use modifications introduced in Strategy 3.

Strategy 1 is modified to make critic#1 and critic#2
two physically distinct objects (as in Strategy 3).

λs° t() [~Utility]+ [~Utility] [~Action]•()

j 1=

a

∑=

[~Critic(t+1)] [~Plant] [~Action]••()

j 1=

a

∑

k 1=

n

∑+

[~Critic(t+1)] [~Plant]•()

k 1=

n

∑+

≡

Page 3

dure was to randomly initialize all the NNs (weight range:
[-01, 01]), and to then provide a specified sequence of
starting angles (with zero being the “desired” angle), al-
lowing the system to train on each starting angle for a
specified number of seconds. The measure used for com-
paring the various DHP strategies takes the values
achieved by the primary utility function during training
and accumulates these over the sequence of starting angles
[this part is called C(j)], and add to this a penalty term ac-
cording to the number of times the pole was dropped and
had to be reset [this part is called D(j)], yielding a total
measure M(j). The argument j labels a separate pass
through the sequence of angles. In a sense, this measure
incorporates the convergence speed of the strategy as well
as the quality of the controller’s actions along the way.

3.1 Speed of training convergence.
As is well known, convergence speed of the training

process is directly influenced by the values of the learning
coefficients [interchangeably called “gains” here]; if the
gains are too high, the process does not converge; if set too
low, while convergence may be achieved, the process
takes a long time. There is an intermediate range of gain
values for which the system may or may not converge; this
is explored by re-initializing the system and re-starting the
process. Depending on the test, we ran up to 100 trials to
determine a kind of “probability of convergence”.

We approximately determined for each strategy what
range of gains resulted in convergence with probability
very close to one. A set of gains was selected from these
for each strategy, and a series of trials was run. As the
gains were increased, at some point the convergence prob-
ability dropped significantly. The strategy being tested
was determined to converge with probability close to 1 if
the learning process converged to a controller capable of
balancing the pole with zero drops through one complete
pass through the training angles for at least 39 out of 40
trials. The gain values were then increased or decreased
until the approximate edge of the “almost-sure” conver-
gence region was determined (i.e., the highest values of
the gains just before the probability started dropping away

from one -- sort of an “edge” condition;e.g., 99%+ for
gains of .30, but much less for .35). We dubbed these the
Edge Gain Values, recognizing of course that these were
only approximately determinable.

The reason for going through this process is to provide
a kind of “optimal” design for each of the training proce-
dures, so they might be compared more fairly. A nice set
of (approximate) Edge Gain Values were determined for
the pole-cart “theta-only” and “theta-x” versions. Only
partial results along this line were achieved with the steer-
ing control problem.

3.2 Pole-Cart test bed.
 In [4], the actionNN and the criticNN for the pole-cart

test bed were both provided the full state vector R(t) at

4a. After λ(t+1) is calculated, adapt both, the action
box and the critic#1 box as in Strategy 1, however,
leave critic#2 unchanged. Repeat this for a designat-
ed number of iterations (the familiar term ‘epoch’ is
used here for the designated number of iterations),
and at the end of each epoch, upload the weight val-
ues from critic#1 into critic#2, and continue the pro-
cess, epoch at a time.

4b. [Synopsis: while this version also adapts critic#1
via critic#2, in contrast to 4a this strategy adapts the
action box via critic #1.] After λ(t+1) is calculated
via critic#2, do the bottom medium-shaded box [cal-
culate (t) for adapting critic#1] as in 4a; however,
now do something not shown in Figure 1: apply
R(t+1) to critic#1, and use the resulting λ(t+1) value
to enter the upper medium-shaded box, and proceed
to adapt the action box. Now apply R(t) to critic#1,

and based on the (t) already calculated, adapt crit-
ic#1. As in 4a, at the end of the epoch, upload the
weight values from critic#1 into critic#2.

2.4 Benefits of the modifications.
The modified strategies described above have demon-

strated a benefit of allowing increased learning rates, thus
reducing the convergence time for the learning process.

In [4], comparative training results were shown for all
the strategies described. The well known pole-cart control

problem [3], with the pole angle being controlled,
was used as the test application. Strategy 4 was demon-
strated to yield the fastest convergence, and among the
best controller designs. In that paper, the full 6 dimension-
al state vector was input to the Critic and Action NNs,
however, the utility function only involved pole angle, not
distance along the track (x).

In the present paper, the 3 states associated with the x
variable were first eliminated from the inputs to the NNs,
keeping the same utility function previously defined. This
resulted in improved learning and controller performance.
Experimental results are given in Section 4.

Next, two applications of increased complexity are in-
vestigated, and comparative results are presented. This
time, the exploration is confined to Strategies 1, 2a & 4.
Strategy 1 is used as the baseline; next, Strategy 2a (cf.
[7]-[12]) is shown with its relative performance; and final-
ly, the new Strategies 4a & 4b are demonstrated with their
relative improvements over both, Strategies 1 and 2a.

The two additional demonstration applications are:
a) the pole-cart problem again, except distance-along-the-
track (x) is added in the utility function -- thus increasing
the number of system states needed by the critic box from
3 to 6; b) steering control of a 4-wheel vehicle with inde-
pendent electric motors on each wheel.

3. TEST-BED APPLICATIONS
For the pole-balancer test bed [3][4], the training proce-

λ°

λ°

Θ t()

Page 4

their input [as has been typical in the literature]. In our ex-
ploration for the present research to determine the Edge
Gain Values, none could be discovered. This led to reduc-
ing the complexity of the action and critic NNs by elimi-
nating from their inputs those states that are not used in
the Utility function (i.e., not used in stipulating the objec-

tives of the control task). Since was
used [angle measured from vertical; target value of 0] only

the states are needed by the critic and
action NNs. After removing the x(t)-related states for the
present research, we were able to discover for each of the
strategies a region of gains for which “probability one”
convergence would occur. The Edge Gain Values of these
regions for each strategy were determined, and used for a
new set of comparative results, given in Section 4.

For the next level of complexity on which to explore
the proposed new strategies, a utility function was defined
for the same pole-cart problem which includes a distance-
along-the-track term, x, with target position x=0:

 .
Since this equation includes both angle and distance
terms, the critic and action NNs will profit from having
both the 3 -related and the 3 x(t)-related states fed
into them. This was done, and again, a region of gains for
which “probability one” convergence would occur was
sought for each of the training strategies. Where success-
ful, the Edge Gain Values for each strategy were deter-
mined, and used for the comparative results given in
Section 4.

3.3 Steering control for 4-wheel vehicle test bed.
For a more complex plant, we turn to a 4-wheel vehicle

with an independent electric drive motor on each wheel.
The equations and documentation for the steering model
were extracted from [1] which in turn were based on equa-
tions developed in [5].

A full nonlinear model for the vehicle is used along
with the classical constant-velocity bicycle model [5]
which was used in [2] for developing a front/rear wheel
steering decoupling system. A front-wheel-only steering
model is obtained via restricting rear-wheel steering angle
to zero. The key unknown system parameters for which
robustness is required are vehicle mass and tire/road side-
slip coefficient of friction.

Figure 2 shows the assumed geometry. Reference coor-
dinates: xo-yo; chassis coordinates: x-y, rotated by angle

. Mass is assumed concentrated at front and back
wheels, with total mass m; wheelbase is l = lf + lb. Vehicle

velocity at center of gravity has magnitude v, at angle

from x direction. Velocity v is assumed to be constant;

varies through a turn. At each wheel, steering angle is ,
subscripted by f & b for front and back. Velocity of chas-
sis at the ith axle, i={f,b}, has assumed magnitude vi, at

U t() Θ t() 0–()2=

Θ t() Θ
·

t(), Θ
··

t(),

U t() Θ t() 0–()2 x t() 0–()2+=

Θ t()

ψ

β
β
δ

angle from the x axis. Thus, the wheel side-slip angle is

, which represents the angular difference be-

tween the direction in which the wheel is pointed and the
direction in which it is actually moving (due to slipping).
This, in turn, produces a side force on the wheel with mag-
nitude in the direction perpendicular to that in
which the wheel is steered, where is a monotonic func-
tion of .

In [1], a set of kinematic, force and dynamic equations
are developed, and these are combined to define a set of
second order nonlinear state equations [bicycle steering

model]. The state variables are and [where],
and the inputs are front and back wheel steering com-

mands, and . For the hierarchical control structure

defined in [1], the steering control system is required to
generate velocity commands for the wheel controllers. In
Figure 3, these are shown as the outputs uf and ub. The
symbols fy and mz represent, the tire side force in the y di-
rection and the sum-of-the-moments generated by the two
tire side forces around the center of gravity.

A Utility function was defined by the present authors
for applying the DHP method as follows:

As discussed earlier, since this utility function involves
both position and velocity in the y direction, the associated
state variables are fed to the action and critic NNs.

The preliminary experiments reported here are for per-
forming a lane change, which entails a left-turn plus a
right-turn type maneuver. The DHP method was used to
design a controller for this task. It was decided to train up
a separate NN for each of the left-turn and right-turn parts
of the lane-change maneuver. These were then (easily)
“pieced together” with some simple logic. After succeed-
ing with this procedure using Strategy 4a, subsequent ex-
periments performed for comparative purposes used only
the left-turn portion of the lane-change task.

4. EXPERIMENTAL RESULTS

4.1 Pole-Cart test bed.
Results are tabulated in Tables I, II and III, for both the

“Theta-Only” and the “Theta-X” versions of the Pole-Cart
control test bed.

In both cases, we start with selecting the highest gains
for which Strategy 1 has “probability one” convergence.
This “optimal” performance for Strategy 1 provides a
benchmark for comparisons. See Table III for gains. The
value recorded in each row of columns 2 and 3 of Tables I
& II is the M measure cited earlier. M is defined here as
the sum C(1)+C(2)+C(3)+2*(D(1)+D(2)+D(3)), thus in-
voking a 2.0 utility penalty for a restart after a drop, a rela-
tively inexpensive assumption.

βi

αi δi βi–=

fi f αi()=

fi
αi

β ρ ρ ψ·=

δf δb

U t() yposdes yposact–()–
2

.5– yveldes yvelact–()2
=

Page 5

Theta Only version.
When we use the Strategy 1 Edge Gains for Strategy 2a

(column 2 in Table I) performance is worse than for Strate-
gy 1, particularly relative to the number of “drops”.

When the Strategy 1 Edge Gains are used for Strategies
4a and 4b, relative to each other, they perform approxi-
mately the same; however, relative to Strategy 1, we note
the following: the standard error for the Strategy 1 mean
cost is +25%, whereas for Strategy 4 it is less than +2%.
The sample mean itself improves by approx. 40%, with the
“drops” for the three methods being approx. the same (left
number in column 4, Table I).

When the “optimal” Edge Gains for Strategies 4a and
4b are used (column 3 in Table I), there is another factor of
2 improvement in the total cost, with the number of
“drops” going from approx. 17 down to 6.

These experimental results give more substantive em-
pirical support for the (more qualitative) conclusions given
in the previous paper [4].

Theta-X version.
When we used the Strategy 1 Edge Gains for Strategy

2a, a “stable region” of convergence could not be found --
the closest “probability of convergence” found was ap-
proximately .9.

When the Strategy 1 Edge Gains are used for Strategies
4a and 4b, relative to each other, they again perform ap-
proximately the same. Relative to Strategy 1, we note the
following: the standard error is roughly the same for all
three methods, but in this case, the total cost goes up
slightly for Strategy 4 (using Strategy 1’s gains).

When the “optimal” Edge Gains for Strategies 4a and
4b are used, however, Strategy 4 does provide improved
results. As in the previous problem, the sample mean itself
again improves approximately 40%, with the “drops” for
Strategy 4a showing substantial improvement: from 58 -->
33, and for Strategy 4b from 58 -->41.

TABLE I: Theta-Only version of Pole-Cart problem.
TABLE II: Theta-X version of Pole-Cart problem.
Columns 2 & 3 are total cost [reported as sample mean +standard
error]. Column 4 gives average number of drops for the two gains.

Strategy via Strategy 1
Edge Gains

via corresp.
Edge Gains

D(1)S1/D(1)TEG

1 349 + 11 349 + 11 58 / 58

2a not run none found -----

4a 394 + 7.5 207 + 9.5 62 / 33

4b 390 + 10.5 230 + 9.5 67 / 41

Strategy via Strategy 1
Edge Gains

via corresp.
Edge Gains

D(1)S1/D(1)TEG

1 206 + 53 206 + 53 18 / 18

2a 239 + 2.5 226 + 3.5 45 / 42

4a 115 + 2.0 49 + 1.0 16 / 6

4b 128 + 2.5 48 + 1.0 17 / 6

TABLE III : Edge Gains (learning coefficients) for Pole-Cart

These experiments again support the conclusion that
Strategy 4, with its ability to utilize higher learning rates
(gains), is able to provide better performance.

4.1 Four-wheel vehicle Steering test bed.
As with the pole-cart problem, experiments were run

with strategies 1, 2a and 4. We were not able to find a
region of “probability one” convergence for the car as we
had been able to do for the pole-cart. In the quest to
improve the situation, it was reasoned that since the utility
function includes desired values for and , and the fact
that these change with time, it would be difficult for the
critic to infer these changing targets based on indirect
information. Therefore, it was decided to directly input
target values for these two quantities to the critic (as well
as to the action NN). The situation improved, such that for
Strategy 4b, the “probability of convergence” reached .7-
.8. For the other strategies, it came up to a range of .3-.5.
We discovered again that it was better to leave out the bias
terms in both NNs (we gave a similar observation in [4]).

In order to achieve convergence in the DHP process for
this kind of problem, it was found useful to adapt a train-
ing method proposed in [6]. This method divides the state
space into portions. The NNs start to train on the smallest
fraction, here defined as a unit of time along the trajectory
to be learned. Then, after successful learning to control the
plant in that unit, the NNs are trained on two units of time,
the fraction already learned and another one of the same
size. After learning this bigger fraction of state space, a
third one is added, etc., until the full expected range is suc-
cessfully trained.

When Strategy 1 converges (relatively rare occurrence),
it does so for only small gain values. Critic/Action gain
values of .01/.03 gave reasonably good results (in terms of
the total “cost” accumulated during training). On the other
hand, gain values about a factor of 2 higher typically
yielded divergent training. Also, for this application, using
extremely low gain values also diverged (couldn’t keep up
with the changing desired trajectory?).

Strategy 2a appeared to have a (slightly) higher “proba-
bility of convergence” for the gains explored than did
Strategy 1. Nevertheless, the accumulated cost was still
about an order of magnitude higher than achieved with
Strategies 4a and especially 4b.

Strategy 4a and 4b had substantially higher conver-
gence probability, as indicated above.

 We are not able at this time to give the kind of compar-

Strategy
Theta-Only

critic/action gains
Theta-X

critic/action gains

1 .07/.25 .02/.2

2a .07/1.0 none

4a .3/.9 .04/.4

4b .3/.9 .03/.4

y y·

Manuscript date: June 23,1997 Page 6

ative statistical data given for the pole-cart. The process of
following a desired trajectory is substantially more com-
plex for us to capture the kinds of measures that were done
with the pole-cart.

 A potentially important observation was that, using
Strategy 4b (the fastest strategy), even after successful
training, allowing the critic to continue to operate during a
test run yielded lower total cost than was achieved with
just the trained controller doing a “solo” run over the tra-
jectory. This has good implications for the possibility of
on-line training. A first hint in this direction was reported
in [4] with the pole-cart in the context of increasing pole
length from 1m to 2.4m, and the critic adapted the action
NN, on-line, without dropping the pole.

 5. CONCLUSION
The proposed modification to the training strategy for

the DHP method continues to demonstrate improved
learning performance over the more prevalent method,
here called Strategy 2a. The proposed Strategies 4a & 4b
were first evolved while working on the “theta-only” ver-
sion of the Pole-Cart control problem [4], and now further
demonstrated on the more complex “theta-x” version of
the Pole-Cart problem, and thirdly, on an even more com-
plex dynamical system, steering a 4-wheel vehicle.

These explorations also demonstrated to us that the specific
information provided to the critic and action boxes can
have a significant impact on performance. In particular,
providing the full state vector R(t) to the critic may be det-
rimental, as demonstrated here for the theta-only test bed.
For the steering control problem, it was found beneficial to
additionally provide the critic with the desired (or target)
values for and . It appears that the choice of what in-
puts to provide the critic should be guided by the form of
the specific utility function being used.

REFERENCES
[1] Accurate Automation Corp., “Advanced Intelligent Control of Next

Generation Vehicles”, NSF SBIR Phase I Final Report, Aug 1995.
[2] Ackermann, J., “Robust Decoupling, Ideal Steering Dynamics and

Yaw Stabil. of 4WS Cars”, Automatica, vol. 60, pp1761-1768, 1994.
[3] Barto, A., Sutton, R. & Anderson, C. " Neuronlike Adaptive Elements

that can Solve Difficult Learning Control Problems" in IEEE SMC
Transactions, Vol. SMC-13, No.5, Sep/Oct 1983.

[4] Lendaris,G. and Paintz, C. “Training Strategies for Critic and Action
Neural Nets in Dual Heuristic Programming Method”, in PROCEED-
INGS of ICNN’97, Houston, IEEE, pp712-717, June, 1997.

[5] Mitschke, M., Dynakik der Kraftfahrzeuge, vol. C, Springer -Verlag,
Berlin, 1990.

[6] Nguyen D. and Widrow, B., “The Truck Backer-Upper: an Example
of Self Learning in Neural Networks”, Ch 12 in Neural Networks for
Control, Miller, Sutton & Werbos (eds), MIT Press, 1991.

[7] Prokhorov, D. and Wunsch, D. "Advanced Adaptive Critic Designs",
PROC WCNN'96, pp. 83-87, San Diego, Erlbaum, Sept. 1996.

[8] Prokhorov, D., Santiago, R. & Wunsch, D., “Adaptive Critic Designs:
A Case Study for Neurocontrol”, in Neural Networks, vol. 8, no. 9, pp
1367-1372, 1995.

[9] Santiago, R., First Joint Mexico-US International Workshop on Neu-
ral Networks and Neurocontrol, Playacar, Mexico, Sept. 1995.

[10] Santiago, R. & Werbos, P. "New Progress Towards Truly Brain-Like
Intelligent Control", PROC WCNN '94, pp. I-2toI-33, Erlbaum, 1994.

y y·

[11] Visnevski, N. & Prokhorov, D. "Control of a Nonlinear Multivariable
System with Adaptive Critic Designs", in Intelligent Engineering
Systems through Artificial Neural Networks 6 (PROC. ANNIE ‘96),
Dagli, et.al., Eds., ASME Press, pp. 559-565, 1996.

[12] Werbos, P. "Approximate Dynamic Programming for Real-Time
Control and Neural Modeling", Ch. 13 in Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approaches, (White, D.A. and
Sofge, D.A., eds.), Van Nostrand Reinhold, New York, NY, 1994.

Figure 1: Computing Schema for Discussing Strategies.

Figure 2. Assumed vehicle model geometry (after [1]).

Figure 3. Block diagram for bicycle steering model. [1]

R(t)
action

model

critic#1

critic#2

utility

u(t)
R(t+1)

λ(R(t))

λ(R(t+1)

calculate

calculate ∆wij

λ° R t()()

β
v

[l = lb + l f]
c.g.lb l f

x direction

 [back wheel, front wheel, one side of chassis]

of chassis

x

y

αi

βi

δi

wheeli, (back,front)i b f,=

vi

x

y
yo

xo

ψ

δb δf

.

.. .

.
. ..

.
S.C. K.E. F.E. D.E. O.E..

δb
αb

fy

mz

ρ·

β·

ρ

β

uf
ub

αf

δf

S.C.= Steering Controller D.E.=Dynamic Equations
K.E.=Kinematic Equations O.E.=Output Equations
F.E.= Force Equations

For IEEE SMC’97, Orlando, FL, Oct. 1997.

More on Training Strategies for Critic and Action Neural Networks
 in Dual Heuristic Programming Method

George G. Lendaris1, Christian Paintz2, Thaddeus Shannon3
1.Professor, Systems Science & Electrical Engineering, lendaris@sysc.pdx.edu

2. Graduate Student, Electrical Engineering, 3. Graduate Student, Systems Science Ph.D. Program
Portland State University

PO Box 751, Portland, OR 97207

ABSTRACT
This paper for the special session on Adaptive Critic

Design Methods at the SMC '97 Conference describes a
modification to the (to date) usual procedures reported for
training the Critic and Action neural networks in the Dual
Heuristic Programming (DHP) method [7]-[12]. This
modification entails updating both the Critic and the
Action networks each computational cycle, rather than
only one at a time. The distinction lies in the introduction
of a (real) second copy of the Critic network whose
weights are adjusted less often (once per "epoch", where
the epoch is defined to comprise some number N>1 com-
putational cycles), and the "desired value" for training the
other Critic is obtained from this Critic-Copy.

In a previous publication [4], the proposed modified
training strategy was demonstrated on the well-known
pole-cart controller problem. In that paper, the full 6
dimensional state vector was input to the Critic and Action
NNs, however, the utility function only involved pole
angle, not distance along the track (x). For the first set of
results presented here, the 3 states associated with the x
variable were eliminated from the inputs to the NNs, keep-
ing the same utility function previously defined. This
resulted in improved learning and controller performance.
From this point, the method is applied to two additional
problems, each of increasing complexity: for the first, an
x-related term is added to the utility function for the pole-
cart problem, and simultaneously, the x-related states were
added back in to the NNs (i.e., increase number of state
variables used from 3 to 6); the second relates to steering a
vehicle with independent drive motors on each wheel. The
problem contexts and experimental results are provided.

1. BACKGROUND
Dual Heuristic Programming (DHP) is a neural network

approach to solving the Bellman equation [12]. The idea is
to maximize a specified (secondary) utility function:

(1)

The term is a discount factor () and is
the primary utility function, defined by the user for the spe-
cific application context. A useful identity:

(2)
In this paper, is assumed to be 1, and the usual meth-

J t() γkU t k+()

k 0=

∞

∑=

γk 0 γ 1< < U t()

J t() U t() γJ t 1+()+=
γ

ods of discretizing continuous models of plants is used.
For DHP, at least two neural nets are needed, one for the
actionNN functioning as the controller, and one for the
criticNN used to train the actionNN. A third NN could be
trained to copy the plant if an analytical description
(model) of the plant is not available.

R(t) [dimension n] is the state of the plant at time t. The
control signal u(t) [dimension a] is generated in response
to the input R(t) by the actionNN. The signal u(t) is then
asserted to the plant. As a result of this, the plant changes
its state to R(t+1). The criticNN’s role is to assist in
designing a controller (actionNN) that is “good” relative
to minimizing the specified cost function U(R(t),u(t)),
which is designed to expresses the objective of the control
application. In the DHP method, the criticNN estimates
the gradient of J(t) with respect to R(t); the letter λ is used
as a short-hand notation for this gradient, so the output of
the criticNN is designated λ.

2. UPDATING PROCESS
We refer to Figure 1 to describe the computational steps

used in the DHP methodology. First, we mention that the
boxes with dark shading mean that we have an analytical
expression for that item [note: if an analytical representa-
tion of the plant is not available, a NN may be trained up
to emulate the plant and used in this role)]. The clear
boxes are neural networks (NNs). The medium shaded
boxes represent some critical equations that are to be
solved in the training process. The dotted lines represent
calculated values being fed into the respective boxes. The
heavier dot-dash lines indicate where the learning/updat-
ing process occurs.

Reading Figure 1 from left to right, the current state
R(t) is fed to the actionNN, which then generates u(t). The
model is informed of R(t) and u(t), and then generates
R(t+1). R(t) is also fed to the critic#1 box and to the utility
box, which generate, respectively, λ(R(t)) and U(R(t)).
[Note, in the examples used herein, the Utility functions
defined make use of R(t) but not u(t); if u(t) is included in
the definition of the utility U, then we would show a con-
nection from the output of the actionNN to the utility
box.] After the model generates R(t+1), this is fed to the
critic#2 box, which then yields λ(R(t+1)) -- more simply
denoted as λ(t+1). This value is a key component of the
calculations in the medium-shaded boxes, which in turn

Page 2

are needed to perform learning/adaptation of the
actionNN and the criticNN. The upper medium-shaded
box calculates , and the lower medium-shaded box

calculates , the “desired” or “target” value for λ(t) to

enable backpropagation-type training of critic#1.
We now show the basic equations for the two medium-

shaded boxes, and in particular, point out the role of
λ(t+1) in those computations.

2.1 The upper medium-shaded box.
 In the present work, a basic Backpropagation algorithm
is used (no embellishments) to adjust the weights in the ac-
tion box. The weight-adjustment is calculated via:

(3)

where

and

and finally,
(4)

Abbreviation:
(5)

is approximated by the critic, in response to the
input R(t+1).

 can be calculated from analytical equa-

tions of the plant, if they are available, or by backpropaga-
tion through a third neural net that has been previously
trained to copy the plant.

2.2 The lower medium-shaded box.
In [4], the following equation is shown to hold:

(6)

which makes use of the identity of Equation 2. Note again
the term containing the gradient of J(t+1) with respect to
R(t+1): λ(t+1). The subscript s indicates the components
of the vector quantity λ(t+1).

 For convenience, we paraphrase Equation (6) in
Equation (7). Using this version, we note that the [~Ac-
tion] terms are calculated via the action box in Figure 1,
and the [~Critic(t+1)] terms are calculated via the critic#2
box. Similarly, the and the terms are
calculated via the respective dark-shaded box in Figure 1.

∆wij

λ° t()

∆wij t() lcoef
wij t()∂

∂ J t()•=

wij t()∂
∂ J t()

uk t()∂
∂ J t()

wij t()∂
∂ uk t()•

k 1=

a

∑=

uk t()∂
∂ J t()

uk t()∂
∂ U t()

uk t()∂
∂ J t 1+()+=

uk t()∂
∂ J t 1+()

Rs t 1+()∂
∂ J t 1+()

uk t()∂
∂ Rs t 1+()•

s 1=

n

∑=

Rs t 1+()∂
∂ J t 1+() λ t 1+()=

λ t 1+()

uk t()∂
∂ Rs t 1+()

λs° t()
Rs t()∂

∂ U t()
uj t()∂
∂ U t()

Rs t()∂
∂ uj t()•

j 1=

a

∑+=

Rk t 1+()∂
∂ J t 1+()

Rs t()∂
∂ Rk t 1+()•

k 1=

n

∑+

Rk t 1+()∂
∂ J t 1+()

uj t()∂
∂ Rk t 1+()

Rs t()∂
∂ uj t()••

j 1=

a

∑

k 1=

n

∑+

[~Plant] [~Utility]

 (7)

2.3 The training/update process.
Detailed descriptions of various strategies were given

in [4] for "solving" (iterating) Equation 7. We describe
some of them here (more loosely) using Figure 1. Keep in
mind that the output of critic#2 is required for performing
the calculations in the medium-shaded boxes, which in
turn must be calculated to perform learning updates in the
action and critic#1 boxes.

Strategy 1. Straight application of the equation.
In Figure 1, this means that after λ(t+1) is calculated,
both of the paths leaving critic#2 are traversed, so
that the action box and the critic#1 box are updated in
each iteration [in this strategy, the two boxes labeled
critic#1 and critic#2 are always maintained identical -
- i.e., could be the same physical box, just used for
two different calculations].

Strategy 2a. Basic 2-stage process [“flip/flop”].[7]-[12]
During stage 1, train criticNN, not actionNN;

In Figure 1, this means that after λ(t+1) is calculat-
ed, only the path which adapts critic#1 is traversed,
not the path which adapts the action box. This is re-
peated for a designated number of iterations, and
then changed to stage 2 (from “flip” to “flop”). As
in Strategy 1, critic#1 critic#2.

During stage 2, train actionNN, not criticNN.
In Figure 1, this means that after λ(t+1) is calculat-
ed, only the path which adapts the action box is tra-
versed, not the path which adapts critic#1. This is
repeated for a designated number of iterations, and
then changed to stage 1 (from “flop” to “flip”).

 Strategy 3a. Modify 1st stage of the 2-stage process.
The modification here is to make critic#1 and critic#2
two physically distinct objects. Then, during Stage
1, after λ(t+1) is calculated, adapt critic#1 as in Strat-
egy 2, however, leave critic#2 unchanged. Repeat
this for the designated number of iterations for Stage
1 (“flip” portion) of the process. Then, just before
moving into Stage 2 (the “flop” portion), upload the
weight values from critic#1 into critic#2, and then
proceed to Stage 2.

Strategy 4. Single-stage process (as in Strategy 1),but
use modifications introduced in Strategy 3.

Strategy 1 is modified to make critic#1 and critic#2
two physically distinct objects (as in Strategy 3).

λs° t() [~Utility]+ [~Utility] [~Action]•()

j 1=

a

∑=

[~Critic(t+1)] [~Plant] [~Action]••()

j 1=

a

∑

k 1=

n

∑+

[~Critic(t+1)] [~Plant]•()

k 1=

n

∑+

≡

Page 3

dure was to randomly initialize all the NNs (weight range:
[-01, 01]), and to then provide a specified sequence of
starting angles (with zero being the “desired” angle), al-
lowing the system to train on each starting angle for a
specified number of seconds. The measure used for com-
paring the various DHP strategies takes the values
achieved by the primary utility function during training
and accumulates these over the sequence of starting angles
[this part is called C(j)], and add to this a penalty term ac-
cording to the number of times the pole was dropped and
had to be reset [this part is called D(j)], yielding a total
measure M(j). The argument j labels a separate pass
through the sequence of angles. In a sense, this measure
incorporates the convergence speed of the strategy as well
as the quality of the controller’s actions along the way.

3.1 Speed of training convergence.
As is well known, convergence speed of the training

process is directly influenced by the values of the learning
coefficients [interchangeably called “gains” here]; if the
gains are too high, the process does not converge; if set too
low, while convergence may be achieved, the process
takes a long time. There is an intermediate range of gain
values for which the system may or may not converge; this
is explored by re-initializing the system and re-starting the
process. Depending on the test, we ran up to 100 trials to
determine a kind of “probability of convergence”.

We approximately determined for each strategy what
range of gains resulted in convergence with probability
very close to one. A set of gains was selected from these
for each strategy, and a series of trials was run. As the
gains were increased, at some point the convergence prob-
ability dropped significantly. The strategy being tested
was determined to converge with probability close to 1 if
the learning process converged to a controller capable of
balancing the pole with zero drops through one complete
pass through the training angles for at least 39 out of 40
trials. The gain values were then increased or decreased
until the approximate edge of the “almost-sure” conver-
gence region was determined (i.e., the highest values of
the gains just before the probability started dropping away

from one -- sort of an “edge” condition;e.g., 99%+ for
gains of .30, but much less for .35). We dubbed these the
Edge Gain Values, recognizing of course that these were
only approximately determinable.

The reason for going through this process is to provide
a kind of “optimal” design for each of the training proce-
dures, so they might be compared more fairly. A nice set
of (approximate) Edge Gain Values were determined for
the pole-cart “theta-only” and “theta-x” versions. Only
partial results along this line were achieved with the steer-
ing control problem.

3.2 Pole-Cart test bed.
 In [4], the actionNN and the criticNN for the pole-cart

test bed were both provided the full state vector R(t) at

4a. After λ(t+1) is calculated, adapt both, the action
box and the critic#1 box as in Strategy 1, however,
leave critic#2 unchanged. Repeat this for a designat-
ed number of iterations (the familiar term ‘epoch’ is
used here for the designated number of iterations),
and at the end of each epoch, upload the weight val-
ues from critic#1 into critic#2, and continue the pro-
cess, epoch at a time.

4b. [Synopsis: while this version also adapts critic#1
via critic#2, in contrast to 4a this strategy adapts the
action box via critic #1.] After λ(t+1) is calculated
via critic#2, do the bottom medium-shaded box [cal-
culate (t) for adapting critic#1] as in 4a; however,
now do something not shown in Figure 1: apply
R(t+1) to critic#1, and use the resulting λ(t+1) value
to enter the upper medium-shaded box, and proceed
to adapt the action box. Now apply R(t) to critic#1,

and based on the (t) already calculated, adapt crit-
ic#1. As in 4a, at the end of the epoch, upload the
weight values from critic#1 into critic#2.

2.4 Benefits of the modifications.
The modified strategies described above have demon-

strated a benefit of allowing increased learning rates, thus
reducing the convergence time for the learning process.

In [4], comparative training results were shown for all
the strategies described. The well known pole-cart control

problem [3], with the pole angle being controlled,
was used as the test application. Strategy 4 was demon-
strated to yield the fastest convergence, and among the
best controller designs. In that paper, the full 6 dimension-
al state vector was input to the Critic and Action NNs,
however, the utility function only involved pole angle, not
distance along the track (x).

In the present paper, the 3 states associated with the x
variable were first eliminated from the inputs to the NNs,
keeping the same utility function previously defined. This
resulted in improved learning and controller performance.
Experimental results are given in Section 4.

Next, two applications of increased complexity are in-
vestigated, and comparative results are presented. This
time, the exploration is confined to Strategies 1, 2a & 4.
Strategy 1 is used as the baseline; next, Strategy 2a (cf.
[7]-[12]) is shown with its relative performance; and final-
ly, the new Strategies 4a & 4b are demonstrated with their
relative improvements over both, Strategies 1 and 2a.

The two additional demonstration applications are:
a) the pole-cart problem again, except distance-along-the-
track (x) is added in the utility function -- thus increasing
the number of system states needed by the critic box from
3 to 6; b) steering control of a 4-wheel vehicle with inde-
pendent electric motors on each wheel.

3. TEST-BED APPLICATIONS
For the pole-balancer test bed [3][4], the training proce-

λ°

λ°

Θ t()

Page 4

their input [as has been typical in the literature]. In our ex-
ploration for the present research to determine the Edge
Gain Values, none could be discovered. This led to reduc-
ing the complexity of the action and critic NNs by elimi-
nating from their inputs those states that are not used in
the Utility function (i.e., not used in stipulating the objec-

tives of the control task). Since was
used [angle measured from vertical; target value of 0] only

the states are needed by the critic and
action NNs. After removing the x(t)-related states for the
present research, we were able to discover for each of the
strategies a region of gains for which “probability one”
convergence would occur. The Edge Gain Values of these
regions for each strategy were determined, and used for a
new set of comparative results, given in Section 4.

For the next level of complexity on which to explore
the proposed new strategies, a utility function was defined
for the same pole-cart problem which includes a distance-
along-the-track term, x, with target position x=0:

 .
Since this equation includes both angle and distance
terms, the critic and action NNs will profit from having
both the 3 -related and the 3 x(t)-related states fed
into them. This was done, and again, a region of gains for
which “probability one” convergence would occur was
sought for each of the training strategies. Where success-
ful, the Edge Gain Values for each strategy were deter-
mined, and used for the comparative results given in
Section 4.

3.3 Steering control for 4-wheel vehicle test bed.
For a more complex plant, we turn to a 4-wheel vehicle

with an independent electric drive motor on each wheel.
The equations and documentation for the steering model
were extracted from [1] which in turn were based on equa-
tions developed in [5].

A full nonlinear model for the vehicle is used along
with the classical constant-velocity bicycle model [5]
which was used in [2] for developing a front/rear wheel
steering decoupling system. A front-wheel-only steering
model is obtained via restricting rear-wheel steering angle
to zero. The key unknown system parameters for which
robustness is required are vehicle mass and tire/road side-
slip coefficient of friction.

Figure 2 shows the assumed geometry. Reference coor-
dinates: xo-yo; chassis coordinates: x-y, rotated by angle

. Mass is assumed concentrated at front and back
wheels, with total mass m; wheelbase is l = lf + lb. Vehicle

velocity at center of gravity has magnitude v, at angle

from x direction. Velocity v is assumed to be constant;

varies through a turn. At each wheel, steering angle is ,
subscripted by f & b for front and back. Velocity of chas-
sis at the ith axle, i={f,b}, has assumed magnitude vi, at

U t() Θ t() 0–()2=

Θ t() Θ
·

t(), Θ
··

t(),

U t() Θ t() 0–()2 x t() 0–()2+=

Θ t()

ψ

β
β
δ

angle from the x axis. Thus, the wheel side-slip angle is

, which represents the angular difference be-

tween the direction in which the wheel is pointed and the
direction in which it is actually moving (due to slipping).
This, in turn, produces a side force on the wheel with mag-
nitude in the direction perpendicular to that in
which the wheel is steered, where is a monotonic func-
tion of .

In [1], a set of kinematic, force and dynamic equations
are developed, and these are combined to define a set of
second order nonlinear state equations [bicycle steering

model]. The state variables are and [where],
and the inputs are front and back wheel steering com-

mands, and . For the hierarchical control structure

defined in [1], the steering control system is required to
generate velocity commands for the wheel controllers. In
Figure 3, these are shown as the outputs uf and ub. The
symbols fy and mz represent, the tire side force in the y di-
rection and the sum-of-the-moments generated by the two
tire side forces around the center of gravity.

A Utility function was defined by the present authors
for applying the DHP method as follows:

As discussed earlier, since this utility function involves
both position and velocity in the y direction, the associated
state variables are fed to the action and critic NNs.

The preliminary experiments reported here are for per-
forming a lane change, which entails a left-turn plus a
right-turn type maneuver. The DHP method was used to
design a controller for this task. It was decided to train up
a separate NN for each of the left-turn and right-turn parts
of the lane-change maneuver. These were then (easily)
“pieced together” with some simple logic. After succeed-
ing with this procedure using Strategy 4a, subsequent ex-
periments performed for comparative purposes used only
the left-turn portion of the lane-change task.

4. EXPERIMENTAL RESULTS

4.1 Pole-Cart test bed.
Results are tabulated in Tables I, II and III, for both the

“Theta-Only” and the “Theta-X” versions of the Pole-Cart
control test bed.

In both cases, we start with selecting the highest gains
for which Strategy 1 has “probability one” convergence.
This “optimal” performance for Strategy 1 provides a
benchmark for comparisons. See Table III for gains. The
value recorded in each row of columns 2 and 3 of Tables I
& II is the M measure cited earlier. M is defined here as
the sum C(1)+C(2)+C(3)+2*(D(1)+D(2)+D(3)), thus in-
voking a 2.0 utility penalty for a restart after a drop, a rela-
tively inexpensive assumption.

βi

αi δi βi–=

fi f αi()=

fi
αi

β ρ ρ ψ·=

δf δb

U t() yposdes yposact–()–
2

.5– yveldes yvelact–()2
=

Page 5

Theta Only version.
When we use the Strategy 1 Edge Gains for Strategy 2a

(column 2 in Table I) performance is worse than for Strate-
gy 1, particularly relative to the number of “drops”.

When the Strategy 1 Edge Gains are used for Strategies
4a and 4b, relative to each other, they perform approxi-
mately the same; however, relative to Strategy 1, we note
the following: the standard error for the Strategy 1 mean
cost is +25%, whereas for Strategy 4 it is less than +2%.
The sample mean itself improves by approx. 40%, with the
“drops” for the three methods being approx. the same (left
number in column 4, Table I).

When the “optimal” Edge Gains for Strategies 4a and
4b are used (column 3 in Table I), there is another factor of
2 improvement in the total cost, with the number of
“drops” going from approx. 17 down to 6.

These experimental results give more substantive em-
pirical support for the (more qualitative) conclusions given
in the previous paper [4].

Theta-X version.
When we used the Strategy 1 Edge Gains for Strategy

2a, a “stable region” of convergence could not be found --
the closest “probability of convergence” found was ap-
proximately .9.

When the Strategy 1 Edge Gains are used for Strategies
4a and 4b, relative to each other, they again perform ap-
proximately the same. Relative to Strategy 1, we note the
following: the standard error is roughly the same for all
three methods, but in this case, the total cost goes up
slightly for Strategy 4 (using Strategy 1’s gains).

When the “optimal” Edge Gains for Strategies 4a and
4b are used, however, Strategy 4 does provide improved
results. As in the previous problem, the sample mean itself
again improves approximately 40%, with the “drops” for
Strategy 4a showing substantial improvement: from 58 -->
33, and for Strategy 4b from 58 -->41.

TABLE I: Theta-Only version of Pole-Cart problem.
TABLE II: Theta-X version of Pole-Cart problem.
Columns 2 & 3 are total cost [reported as sample mean +standard
error]. Column 4 gives average number of drops for the two gains.

Strategy via Strategy 1
Edge Gains

via corresp.
Edge Gains

D(1)S1/D(1)TEG

1 349 + 11 349 + 11 58 / 58

2a not run none found -----

4a 394 + 7.5 207 + 9.5 62 / 33

4b 390 + 10.5 230 + 9.5 67 / 41

Strategy via Strategy 1
Edge Gains

via corresp.
Edge Gains

D(1)S1/D(1)TEG

1 206 + 53 206 + 53 18 / 18

2a 239 + 2.5 226 + 3.5 45 / 42

4a 115 + 2.0 49 + 1.0 16 / 6

4b 128 + 2.5 48 + 1.0 17 / 6

TABLE III : Edge Gains (learning coefficients) for Pole-Cart

These experiments again support the conclusion that
Strategy 4, with its ability to utilize higher learning rates
(gains), is able to provide better performance.

4.1 Four-wheel vehicle Steering test bed.
As with the pole-cart problem, experiments were run

with strategies 1, 2a and 4. We were not able to find a
region of “probability one” convergence for the car as we
had been able to do for the pole-cart. In the quest to
improve the situation, it was reasoned that since the utility
function includes desired values for and , and the fact
that these change with time, it would be difficult for the
critic to infer these changing targets based on indirect
information. Therefore, it was decided to directly input
target values for these two quantities to the critic (as well
as to the action NN). The situation improved, such that for
Strategy 4b, the “probability of convergence” reached .7-
.8. For the other strategies, it came up to a range of .3-.5.
We discovered again that it was better to leave out the bias
terms in both NNs (we gave a similar observation in [4]).

In order to achieve convergence in the DHP process for
this kind of problem, it was found useful to adapt a train-
ing method proposed in [6]. This method divides the state
space into portions. The NNs start to train on the smallest
fraction, here defined as a unit of time along the trajectory
to be learned. Then, after successful learning to control the
plant in that unit, the NNs are trained on two units of time,
the fraction already learned and another one of the same
size. After learning this bigger fraction of state space, a
third one is added, etc., until the full expected range is suc-
cessfully trained.

When Strategy 1 converges (relatively rare occurrence),
it does so for only small gain values. Critic/Action gain
values of .01/.03 gave reasonably good results (in terms of
the total “cost” accumulated during training). On the other
hand, gain values about a factor of 2 higher typically
yielded divergent training. Also, for this application, using
extremely low gain values also diverged (couldn’t keep up
with the changing desired trajectory?).

Strategy 2a appeared to have a (slightly) higher “proba-
bility of convergence” for the gains explored than did
Strategy 1. Nevertheless, the accumulated cost was still
about an order of magnitude higher than achieved with
Strategies 4a and especially 4b.

Strategy 4a and 4b had substantially higher conver-
gence probability, as indicated above.

 We are not able at this time to give the kind of compar-

Strategy
Theta-Only

critic/action gains
Theta-X

critic/action gains

1 .07/.25 .02/.2

2a .07/1.0 none

4a .3/.9 .04/.4

4b .3/.9 .03/.4

y y·

Manuscript date: June 23,1997 Page 6

ative statistical data given for the pole-cart. The process of
following a desired trajectory is substantially more com-
plex for us to capture the kinds of measures that were done
with the pole-cart.

 A potentially important observation was that, using
Strategy 4b (the fastest strategy), even after successful
training, allowing the critic to continue to operate during a
test run yielded lower total cost than was achieved with
just the trained controller doing a “solo” run over the tra-
jectory. This has good implications for the possibility of
on-line training. A first hint in this direction was reported
in [4] with the pole-cart in the context of increasing pole
length from 1m to 2.4m, and the critic adapted the action
NN, on-line, without dropping the pole.

 5. CONCLUSION
The proposed modification to the training strategy for

the DHP method continues to demonstrate improved
learning performance over the more prevalent method,
here called Strategy 2a. The proposed Strategies 4a & 4b
were first evolved while working on the “theta-only” ver-
sion of the Pole-Cart control problem [4], and now further
demonstrated on the more complex “theta-x” version of
the Pole-Cart problem, and thirdly, on an even more com-
plex dynamical system, steering a 4-wheel vehicle.

These explorations also demonstrated to us that the specific
information provided to the critic and action boxes can
have a significant impact on performance. In particular,
providing the full state vector R(t) to the critic may be det-
rimental, as demonstrated here for the theta-only test bed.
For the steering control problem, it was found beneficial to
additionally provide the critic with the desired (or target)
values for and . It appears that the choice of what in-
puts to provide the critic should be guided by the form of
the specific utility function being used.

REFERENCES
[1] Accurate Automation Corp., “Advanced Intelligent Control of Next

Generation Vehicles”, NSF SBIR Phase I Final Report, Aug 1995.
[2] Ackermann, J., “Robust Decoupling, Ideal Steering Dynamics and

Yaw Stabil. of 4WS Cars”, Automatica, vol. 60, pp1761-1768, 1994.
[3] Barto, A., Sutton, R. & Anderson, C. " Neuronlike Adaptive Elements

that can Solve Difficult Learning Control Problems" in IEEE SMC
Transactions, Vol. SMC-13, No.5, Sep/Oct 1983.

[4] Lendaris,G. and Paintz, C. “Training Strategies for Critic and Action
Neural Nets in Dual Heuristic Programming Method”, in PROCEED-
INGS of ICNN’97, Houston, IEEE, pp712-717, June, 1997.

[5] Mitschke, M., Dynakik der Kraftfahrzeuge, vol. C, Springer -Verlag,
Berlin, 1990.

[6] Nguyen D. and Widrow, B., “The Truck Backer-Upper: an Example
of Self Learning in Neural Networks”, Ch 12 in Neural Networks for
Control, Miller, Sutton & Werbos (eds), MIT Press, 1991.

[7] Prokhorov, D. and Wunsch, D. "Advanced Adaptive Critic Designs",
PROC WCNN'96, pp. 83-87, San Diego, Erlbaum, Sept. 1996.

[8] Prokhorov, D., Santiago, R. & Wunsch, D., “Adaptive Critic Designs:
A Case Study for Neurocontrol”, in Neural Networks, vol. 8, no. 9, pp
1367-1372, 1995.

[9] Santiago, R., First Joint Mexico-US International Workshop on Neu-
ral Networks and Neurocontrol, Playacar, Mexico, Sept. 1995.

[10] Santiago, R. & Werbos, P. "New Progress Towards Truly Brain-Like
Intelligent Control", PROC WCNN '94, pp. I-2toI-33, Erlbaum, 1994.

y y·

[11] Visnevski, N. & Prokhorov, D. "Control of a Nonlinear Multivariable
System with Adaptive Critic Designs", in Intelligent Engineering
Systems through Artificial Neural Networks 6 (PROC. ANNIE ‘96),
Dagli, et.al., Eds., ASME Press, pp. 559-565, 1996.

[12] Werbos, P. "Approximate Dynamic Programming for Real-Time
Control and Neural Modeling", Ch. 13 in Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approaches, (White, D.A. and
Sofge, D.A., eds.), Van Nostrand Reinhold, New York, NY, 1994.

Figure 1: Computing Schema for Discussing Strategies.

Figure 2. Assumed vehicle model geometry (after [1]).

Figure 3. Block diagram for bicycle steering model. [1]

R(t)
action

model

critic#1

critic#2

utility

u(t)
R(t+1)

λ(R(t))

λ(R(t+1)

calculate

calculate ∆wij

λ° R t()()

β
v

[l = lb + l f]
c.g.lb l f

x direction

 [back wheel, front wheel, one side of chassis]

of chassis

x

y

αi

βi

δi

wheeli, (back,front)i b f,=

vi

x

y
yo

xo

ψ

δb δf

.

.. .

.
. ..

.
S.C. K.E. F.E. D.E. O.E..

δb
αb

fy

mz

ρ·

β·

ρ

β

uf
ub

αf

δf

S.C.= Steering Controller D.E.=Dynamic Equations
K.E.=Kinematic Equations O.E.=Output Equations
F.E.= Force Equations

