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Many tasks in robotics and automation require a cyclic

exchange of energy between a machine and its envi-

ronment. Since most environments are "under actu-

ated" | that is, there are more objects to be manip-

ulated than actuated degrees of freedom with which to

manipulate them | the exchange must be punctuated

by intermittent repeated contacts. In this paper, we

develop the appropriate theoretical setting for framing

these problems and propose a general method for reg-

ulating coupled cyclic systems. We prove for the �rst

time the local stability of a (slight variant on a) phase

regulation strategy that we have been using with em-

pirical success in the lab for more than a decade. We

apply these methods to three examples: juggling two

balls, two legged synchronized hopping and two legged

running | considering for the �rst time the analogies

between juggling and running formally.

1 Introduction1

A robot is a source of programmable work. Robot pro-
gramming problems arise when a mechanism designed
with certain directly actuated degrees of freedom is re-
quired to exchange energy with its environment in such

a fashion that some useful work | its \task," involving
the imposition of speci�ed forces over speci�ed motions
| is accomplished. Typically, the environment is not
directly actuated and has its own preferred natural dy-
namics whose otherwise unin
uenced motions would be
at least indi�erent and, possibly, inimical to the task.
The prior century's end has witnessed the practical tri-
umph and emerging formal understanding of programs
for information exchange and manipulation. There
does not yet seem to exist a programming paradigm

1This work is supported in part by DARPA/ONR un-
der grant N00014-98-1-0747 and in part by the NSF under
grant IRI-9510673 at the University of Michigan. It is sup-
ported in part by the NSF under grant DMS-9971629 at
the Georgia Institute of Technology.

that can specify similarly goal oriented work exchange
at any reasonable level of generality with any reason-
able likelihood of successful implementation (much less,
of formal veri�cation).

For reasons we have discussed elsewhere at length
[7, 21], we construe \task" to mean any behavior that
can be encoded as the limit set of the closed loop dy-
namical system resulting from coupling the robot up to
its environment. By \programming" is meant (at the
very least) a means of composing from extant primi-
tive task behaviors new, more specialized, or elaborate
capabilities. A decade's research by the second author
and colleagues has yielded the beginnings of a compo-
sitional methodology for tasks that can be encoded as
point attractors [29, 28, 7, 14, 19]. In the present paper,
we take the �rst steps toward a formal foundation for
tasks that can be encoded as the next simplest class
of steady state dynamical systems behavior | limit
cycles.

1.1 Contributions of the Paper

In this paper we are able to prove for the �rst time the
partial correctness of a (slight variant on) a phase regu-
lation strategy that we have been using with empirical
success in the lab for more than a decade [5, 31]. The
object of study is a discrete dynamical control system
on a co-dimension one subset of the tangent bundle
over the two-torus, � � T2. The theoretical result
is the proof of local asymptotic stability for a speci-
�ed �xed point on this subset, x� 2 �. To illustrate
the potential implications of the emerging theory, we
introduce three example systems that move from jug-
gling toward phase coordination strategies for legged
machines.

We show in our �rst example that this discrete sys-
tem corresponds to the parametrized family of return
maps that arise when a one degree of freedom actu-
ated piston strikes two otherwise unactuated one de-
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gree of freedom balls falling in gravity. This abstrac-
tion presumes su�cient control of the piston to track
a suitably distorted image | a \mirror law" [6] | of
the trajectory described by the two balls, along the
lines of the empirical setup in [5, 30]. Under these
assumptions, the torus bundle represents the phase co-

ordinate representation of the two degree of freedom
hybrid 
ow formed when the paddle repeatedly but
intermittently strikes one or the other ball . The func-
tional freedom a�orded by the choice of \mirror law"
yields the parametrization of the available closed loop
return maps whose domain, �, is now interpreted as
the phase condition at which an impact is made. The
preliminary analysis presented here develops a set of
su�cient conditions on the mirror law that guarantees
the local asymptotic stability of a limit cycle corre-
sponding to the the desired two-juggle. We suspect,
but have not yet proven, that the desired limit cycle is
essentially globally asymptotically stable.

We have not yet formalized the notion of behavioral
composition (as we have begun to do for behaviors en-
coded as point attractors [7, 19]) but it represents a
strong unifying theme throughout the paper. The two-
juggle mirror law may be seen as a kind of informal
\interleaving" of two one-juggle functions. However,
because we desire a more general compositional notion
not tied to the (e�ective but very costly in sensory
e�ort) mirror constructions, we next apply our phase
regulation method to \interleave" a very di�erent style
of individual controller. Speci�cally, with the appro-
priate notion of phase coordinates described above, we
are now able to consider for the �rst time the analogies
between juggling and running.

Our second example concerns two vertical Raibert
hoppers [27], each of whose leg springs has an ad-
justable sti�ness. Now, although both legs are par-
tially actuated, the contact with ground is no longer
instantaneous and we abandon mirror laws in favor of
a Raibert style energy management strategy coordi-
nated over repeated intermittent stance modes so as
to nudge the total vertical energy toward that value
which encodes the desired behavior. When the legs are
decoupled from each other, arguments nearly identical
to those we have developed in past work [20] yield es-
sential global asymptotic stability of the two indepen-
dent vertical \gaits". Note that the reference energy
is achieved asymptotically, rather than by a deadbeat
one step correction as was assumed in the �rst exam-

ple. Nevertheless, applying the identical phase regula-
tion scheme yields a closed loop system that exhibits
in simulation the same striking coordinated behavior
as we have proven to hold true (at least locally) in
the case of the two-juggle. We suspect, but have not
yet proven that the coordinated bipedal vertical gait is
once again (essentially globally) asymptotically stable.

The �nal example represents our �rst and still rather
tentative e�orts to interleave constituent cyclic be-
haviors that arise in systems possessed of more than
one degree of freedom. Raibert's running machines
combined in parallel, for each leg, three independent
and decoupled controllers that operated in three very
strongly coupled degrees of freedom, with excellent
empirical success. Moreover, he devised a notion of
\virtual leg" that successfully coordinated the relative
phases of the \vertical" components of the physical legs
without damaging their other degrees of freedom. In
this paper, we are content simply to extend our emerg-
ing notion of \phase" to a pair of two-degree of freedom
pogo sticks (the \Spring Loaded Inverted Pendulum"
[35]) and assume that their individual phase regulation
mechanisms are deadbeat. Once again, simulations
suggest that this is the appropriate generalization, but
we remain cautious regarding the larger implications
pending more realistic constituent models.

1.2 Motivation and Relation to Existing Lit-

erature

Coupled oscillators have long been used to model com-
plex physical and biological settings wherein phase
regulation of cyclic behavior is paramount [15]. The
biological reality of neural central pattern generators

(CPGs) | oscillatory signals that arise spontaneously
from appropriate intercommunication between neurons
| seems by now to have been conclusively demon-
strated in organisms ranging from insects [26, 12] to
lampreys [9]. Mathematical models proposed to ex-
plain the manner in which families of coupled dynam-
ical systems can stimulate a sustained oscillation and
stably entrain a desired phase relationship have become
progressively more biologically detailed [8, 13, 16]. But
the work presented here has relatively little overlap
with that literature. While we are intrigued by the
capabilities of purely \clock driven" systems [36, 32],
it seems clear that no signi�cant level of autonomy can
be developed in the absence of perceptual feedback.
The present investigation cleaves to the opposite (i.e.,
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perceptually driven) end of the sensory spectrum in
adopting the device of a \mirror law" [6] with its com-
mitment to pro
igate sensory dependence [30]. In this
sense, the present work bears a closer relationship to
the biological literature concerned with re
ex modu-
lated phase regulation [11].

Many tasks in robotics and automation entail a
cyclic exchange of energy between a machine and its
environment. This is evidently the case for legged lo-
comotion systems as well as for many less obvious ex-
amples wherein a mechanism repeatedly changes its
local \shape" so as to e�ect some global \progress"
[24]. When viewed from an appropriate geometric per-
spective, the recourse to repetitive self-motion may be
interpreted as a means of \recti�cation" | exercising
indirectly the unactuated degrees of freedom through
the in
uence of the actuated degrees of freedom aris-
ing from an interaction between symmetries and con-
straints [2]. Because our notion of a task is so com-
pletely bound up with a closed loop dynamical inter-
action between the robot and its environment, this
invaluable geometric control perspective provides no
solution but merely a complete account of the (open
loop) setting within which our search for stabilizing
feedback controllers can begin. Since the dynamics in
question are inevitably nonlinear, the relation between
open loop controllability properties and feedback sta-
bilizability properties is far from clear.

In our understanding, the most relevant connection
to date remains the nearly two decade old observa-
tion of Brockett [4], precluding smooth feedback sta-
bilization to a point in the face of conditions known
[3] to characterize the nonholonomic constraints that

appear in the present underactuated setting [22]. At
the very least, this fact necessitates the appearance
of hybrid controllers | feedback laws whose resulting
closed loops make non-smooth transitions triggered by
state | in the case of tasks encoded as point attrac-
tors [22]. In the present situation, when tasks are en-
coded as limit cycles, we are aware of no similar nec-
essary conditions. Nevertheless, the feedback solutions
we construct have a strong hybrid character. Since the
nonholonomic constraints in our setting arise from the
"under actuated" nature of the problem [21], it seems
intuitively clear that the robot's work on the compo-
nents of its environment must be punctuated by inter-
mittent repeated contacts.

One last in
uence on the present work that bears

some comment concerns the possibility of composition.
Since good regulation mechanisms are hard to �nd,
there is considerable interest in developing techniques
for composing existing behaviors to get new ones. How-
ever, as the degrees of freedom increase, the burdens of
high dimensionality make centralized control schemes
prohibitively expensive. There is considerable interest
in developing cyclic behaviors that are as decoupled
as possible, promoting decentralized regulation. Our
present model for pursuing this desideratum is pro-
vided by our initial work on concurrent composition
of point attractors [19]. Since our reference 
ows have
gradient-like cross-section maps, we harbor some hope
that the connection may be forthcoming.

2 Preliminary Discussion

We start in Section 2.1 by de�ning phase coordinates
that enable us to re-cast physical equations involving
potential and kinetic energy as geometric equations re-
lating progress around a circle and its velocity. In the
examples at hand, the physical control variables are
used to adjust the energy of the unactuated degrees of
freedom upon their intermittent contacts with the ac-
tuated components. In phase coordinates, the phase
velocity of each constituent subsystem is subject to
control at each impact, and e�ects a corresponding re-
setting of the various relative phases.

Having arrived at a convenient model space, the
torus, we next examine in Section 2.2 the notion of
a \reference �eld" | a family of limit cycle generating
vector �elds on the k-torus whose return maps on the
(k�1)-torus admit as a Lyapunov function a \Naviga-

tion Function" [23] down to the �xed point. The topo-
logically unavoidable repellors can be identi�ed with

the application as phase pairs that are to be avoided
(e.g., when both balls come down at exactly the same
of time). Although our ultimate constructions appear
as maps of an appropriate cross section (so the topolog-
ical constraints appear to lose their force) these toral
maps are classical objects and yield very convenient
and workable targets.

2.1 Controlling Phase

Let f t : R�X! X be a 
ow on X. We are concerned
with 
ows that are cyclic in the sense that a global cross
section can be found. Formally, a global cross section
� is a connected submanifold of X which transversally
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Figure 1: The relationship of t�(x) and t
+(x) to x.

intersects every 
owline. For any point x 2 X, de�ne
the time to return of x to be

t
+(x) = minft > 0 j f t(x) 2 �g (1)

and de�ne the time since return of x to be

t
�(x) = minft � 0 j f�t(x) 2 �g : (2)

The �rst return map, P : � ! �, is the discrete, real
valued map given by P (x) = f

t+ (x).

Let s(x) = t
+(x) + t

�(x). s is the time it takes the

system starting at the point f t
�

(x) 2 � to reach �
again. Now, de�ne the phase of a point x by

�(x) =
t
�(x)

s(x)
(3)

Notice that the rate of change of phase, _�, is equal
to 1=s. The relationship of these functions to � is
shown in Figure 1. Therefore, _� is constant or piecewise
constant, changing only when the state passes through
�.

In Section 3, we give a one-dimensional example
(Juggling) where h : X ! Y , de�ned by h(x; _x) =
(�; _�), is actually a change of coordinates where Y =
S
1 �R+. We use the section � 2 X de�ned by x = 0

which corresponds to the set of states where the robot
may contact (and thereby actuate) the system. The
image of this section h(�) will be given by the set
C = f(0; _�) j _� 2 R+g. Because we consider intermit-
tent control situations, it is only in this section that
_� may be altered by the control input u. That is, we
change _� according to a control policy u to get the re-
turn map P

0 : C ! C given by P
0(0; _�) = (0; u( _�))2.

We design the controller so that there is a unique

and stable �xed point at some desired phase velocity
_�� = !.

Of course we really want to control the system so
that the return map P has a stable �xed point at some
x
�. Whether or not h�1(0; !) = (0; _x�) depends on

the dimension of �. If dim � = 1, as it will be in the
examples we supply, then the preimage of ! is indeed
a point.

The main contribution of this paper concerns
the composition or interleaving of two such sys-
tems. That is, we suppose that we have the system
(x1; _x1; x2; _x2) 2 X

2 with corresponding phase coordi-
nates (�1; _�1; �2; _�2) 2 Y

2. As before, system i may
only be actuated when �i = 0. In the examples we
will consider, we suppose that the systems cannot be
actuated simultaneously. Thus the set of states where
�1 = �2 = 0 should be repelling. We will design a
controller such that the attracting limit cycle is given
by

G = f(�1; _�1; �2; _�2) j �1 = �2 +
1

2
(mod 1)

^ _�1 = _�2 = !g : (4)

The constraint �1 = �2+
1
2
(mod 1) encodes our desire

to have the pair of phases as far from the situation

�1 = �2 = 0 as possible. In fact, we will consider
the more general case wherein the phase velocities are
controlled to (�A; �B) for some A;B 2 Zand scaling
factor �.

To analyze and control such a system, we restrict our
attention to the sections �1 � Y

2 and �2 � Y
2 de�ned

by �1 = 0 and �2 = 0 respectively. Suppose that the

ow alternates between the two sections. Let G

t =
H � F t �H�1 be the 
ow in Y

2 conjugate to the 
ow
in X

2 where F = (f; f) and H = (h; h) and �i(w) =
minf� > 0 j H � F � �H�1(w) 2 �3�ig. Start with a
point w 2 �1. Let w0 = G

�1(w) and w
00 = G

�2 (w0).
We have w0 2 �2 and w

00 2 �1, so we have de�ned the
return map on �1. Now since G is parameterized by
the control inputs u1 and u2 we get

w = (0; _�1; �2; _�2) 7! w
0 = (�01; u1; 0;

_�2)

7! w
00 = (0; u1; �

0

2; u2) :

2In Section 3.1, deadbeat control of the phase velocity
is possible. In Section 3.2, the control of phase velocity is
asymptotically stable. Our analysis in Section 4 depends on
the former. We believe a similar treatment will eventually
apply to the latter.
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Thus, the phase velocity updates u1(w) and u2(w
0)

must be found so that (4) is achieved. We do this
with two examples in Section 3 and prove the stability
of our method in Section 4.

Notice that a single phase describes a circle S1 and
two phases describe a torus T2 = S

1 � S
1. In the next

section, we de�ne a \reference" vector �eld on the k-
dimensional Tk which encodes the ideal behavior of
the system as though it were fully actuated. Then, we
show how to use the �eld to generate velocity updates
as above.

2.2 Construction of a Reference Flow on Tk

The problem of composing dynamical systems with
point-goal attractors is relatively straightforward, due
in no small part to the convenient topological fact that
the product of a zero-dimensional set (a point goal)
with a zero-dimensional set is again a zero-dimensional
set: point-goals are well-behaved with respect to Carte-
sian products. This is not so for the case of systems
with an attracting periodic orbit. The Cartesian prod-
uct of k such continuous systems gives rise to a 
ow
with an attracting k-torus Tk , S

1 � � � � � S
1. The

desired behavior for a 
ow on this set is again an at-
tracting periodic orbit; however, such mode locking can
occur only if the oscillators are coupled. More unfor-
tunately, such dynamics arise only through a relatively
careful tuning of the individual systems and their mu-
tual couplings. Baesens et al. [1] carefully explore the
intricacies of this problem, illustrating the prevalence
of complexity in both the dynamics and the bifurcation
structures of 
ows on the attracting Tk in the (osten-
sibly simple) case k = 3.

An important measure of complexity for the dynam-
ics of a 
ow on a torus Tk is the set of winding vectors.
Choose a lift ~�t of the 
ow �t on Tk to the univer-
sal cover Rk of Tk. Then, consider for each x 2 Tk
with lift ~x 2 Rk the vector ~�t(~x) normalized to unit
length: denote this by wt(~x). This vector lies in the
unit (k� 1)-sphere Sk�1 � Rk of directions in Rk. De-
�ne w(x) � S

k�1 to be the set limit points of wt(~x)
as t ! 1. This set (independent of the lift ~x in the
case of a nonsingular 
ow) de�nes the winding vectors

of x. The union of w(x) over all x 2Tk comprises the
winding set of the 
ow. Winding vectors/sets are the
continuous analogues of the rotation vectors/sets de-
�ned for torus homeomorphisms3: cf. the discussions

in [1, 25] in the context of coupled oscillators and [34]
for a topological generalization to arbitrary spaces.

The systems we consider have speci�c constraints on
the winding vectors. In order to have a single mode-
locked attracting periodic orbit, the winding set must
consist of a unique winding vector. In Section 3.1 we
present a system consisting of a piston which must ver-
tically juggle two balls so that the �rst bounces A times
for every B times the second bounces (See Figure 4),
where A and B are integers: the winding vector is thus
(A;B) (rescaled to unit length). The generalization
of this situation to n juggled items requires a winding
vector of integers (A1; A2; : : : ; An).

Our goal is to couple systems with unique attrac-
tors satisfying the above restrictions in such a manner
that the product system remains in the same dynam-
ical class: a single attractor with appropriate winding
vector. In addition, the existence of unstable invariant
sets (in general forced by topological considerations) is
desirable for setting up \walls" of repulsion in the con-
�guration space. For example, in juggling it may be
desirable for the con�guration wherein both balls hit
the paddle simultaneously to be a repellor. For both
attractors and repellors, the freedom to \tune" these
invariant sets geometrically is a necessity. We thus
turn to a brief exposition of two appropriate classes of
reference 
ows on the k-torus Tk which will serve as
skeletons for the goal dynamics of the control schemes
to be constructed.

The 
ows we consider onTk will all have global cross
sections � homeomorphic to Tk�1. To obtain a unique
attracting periodic orbit for the 
ow, we specify the

appropriate dynamics on the cross-section and accord-
ingly suspend to a 
ow: the 
ow is then determined

by the dynamics of the return map and the desired
winding vector.

Consider the di�eomorphism which is the time-1

map of the gradient �eld �rV , where

V : �! R (�1; �2; : : : ; �k�1) 7! �

k�1X
i=1

cos(2��i):

(5)
Here � �= S

1�� � ��S1 is parameterized by k�1 angles
�i 2 [0; 1] and � > 0 is an amplitude which controls the

3More speci�cally, for those homeomorphisms which are
continuously deformable to the identity map.
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Figure 2: (left) The ideal reference dynamics on a T2

cross-section to a 
ow on T3 having a single attracting �xed

point. Here, the 2-torus is represented as a square with op-

posite sides identi�ed. (right) A reference 
ow on T2 with

winding vector (3; 2). The repelling orbit passes through

the origin. The appropriate cross-section here is the circle

along the \diagonal" of the square.

rate of attraction. The dynamics of this return map de-
couples into the cross-product of the circle maps which
have the \north pole" (�i = 0 for all i) as a repellor
and the \south pole" (�i = 1=2 for all i) as an attrac-
tor. It thus follows that (5) has exactly (k�1)-choose-j
hyperbolic �xed points whose unstable manifold is of
dimension j. There is thus a unique attracting �xed
point, and V de�nes a navigation function [29] for the
Poincar�e return map of the 
ow. See Figure 2(left) for
an illustration of the dynamics in the case k = 3.

The existence, quantity, and placement of the unsta-
ble invariant manifolds in the dynamics of (5) are gov-
erned by Morse-theoretic considerations (see [29] for
applications of Morse theory to the design of naviga-
tion functions). Of particular interest is the forced ex-
istence of repelling unstable invariant manifolds of all
dimensions. This is extremely relevant to the control

problem in that the \obstacles" in the con�guration
space (where the \paddle" is forced to contact several
distinct elements simultaneously) can be of variable di-
mension. The prevalence of unstable manifolds in the
dynamics of (5) is a valuable resource when one wants
to \tune" the dynamics on the con�guration space.

Consider the problem of designing a vector �eld on
T
k such that all orbits possess a unique winding vector

w which points in the direction (A1; : : : ; Ak) 2Zk, as-
suming that the Ai are all relatively prime. The cross-
sectional dynamics of this system will be conjugate to
(5) for an appropriate cross-section: namely, the cross-
section which is the orthogonal complement to � , where
� is an integer vector satisfying � � (A1; : : : ; Ak) = 1,
see [1, App. A]. To obtain a reference 
ow with the

Figure 3: Embedding distinct phases as the \beads on a

circle" problem. The beads must rotate around the circle

while maximally avoiding their neighbors.

desired winding vector, we may suspend (5) to a 
ow
onTk and then change coordinates so that the attract-
ing orbit in the new coordinates has slope (A1; : : : ; Ak).
Supposing we start with the slope (0; 0; :::;1), we de-
sire a linear map M on Rk (the covering space for Tk)
such that M � (0; 0; :::;1) = (A1; : : : ; Ak) and so that
M , when projected onto the torus is a change of coor-
dinates. This amounts to requiring that M 2 SL(n;Z)
with its last column given by (A1; : : : ; Ak).

This construction can be tuned so that the attract-
ing orbit does not pass through the pairwise \obstacle"
where two phases are identical. However, in the re-
sulting system the obstacles become dynamically neu-
tral | neither attracting nor repelling. In applications
where these obstacles are not physically meaningful, we
may use this construction. Otherwise we must design a
reference �eld wherein these obstacles are dynamically
repelling.

One manner of generalizing (5) to a 
ow onTk which
avoids determining a complicated coordinate change
and which may be suitable in applications where the
obstacles are important is as follows. We imagine the
phases of the system as coming from k distinct point
on a circle. Each point must rotate around the circle
with some velocity and the distance between any two
consecutive points must be maximized, as in Figure 3.
The potential function

V :Tk! R
(�1; : : : ; �k) 7! �

X
i<j

cos (2�[Ai�j �Aj�i]) (6)

is used to accomplish the latter task. Here the coordi-
nates �i 2 S

1 = [0; 1]=f0� 1g are angular coordinates
on T k. The function V attains a global maximumalong
the straight line (mod 1) through the origin tangent to
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the winding vector (A1; : : : ; Ak). The function attains
its global minimum along a shifted parallel line (mod
1). The addition of a global drift term in the winding
direction gives a realization of the desired 
ow.

_�i = �1Ai � (rV )i (7)

See Figure 2(right) for an illustration of the two dimen-
sional case which is used in the examples in this paper.
With this �eld the obstacles are indeed repelling, but
there are several attracting orbits, one for each of the
(k � 1)! arrangements of k beads on a circular wire.
For applications such as juggling any of these orbits
will represent a viable juggling behavior. For other ap-
plications, such as controlling the gait of a legged ma-
chine, further tuning to achieve the correct order will

be required. In the case of k = 2 that we speci�cally
consider in this paper, the attracting orbit is unique
and maximally bounded away from the origin.

3 From Juggling to Running

In this section we examine in detail the task of regu-
lating the phases of just two cyclic processes. We will
consider intermittent contact systems. For example,
a ball being bounced on a controllable paddle is an
intermittent contact system where the phase velocity
corresponds to the energy of the ball between contacts.
Another type of intermittent contact system is one that
has a stance mode, that is, _�i is controllable only when
�i 2 [a; b] � [0; 1] for some a and b. A hopping robot,
for example, is in its stance mode when it is touching
the ground. Only in stance mode may the controller
change the energy of the robot. We will not consider
stance systems in general but instead show how to con-
sider certain models of hopping robots as though their
phase velocities were determined by their phase veloc-
ities at the single point �i = a = 0, thereby reducing
the problem to one apparently involving instantaneous
contact.

We are concerned with regulating the two systems
so that (1) the rate of change of each phase is some
desired value (i.e. the �rst system oscillates A times
for every B times the second does) and (2) the phases
are maximally separated. That is, we require that

�
_�1
_�2

�
= �1

�
A

B

�
and A�2 = B�1 +

1

2
(mod 1)

(8)

where �1 scales the phase velocities A and B to values
reasonable for the system.

We construct a reference vector �eld on T2 with this
circle as a limit cycle such that ( _�1; _�2) = �1(A;B)
along the cycle as described in Section 2. This �eld
encodes the ideal behavior of the system as though it
were fully actuated. The potential function is

V (�1; �2) = cos(2�[A�2 �B�1]) : (9)

and the �eld is

R(�1; �2)
T = �1

�
A

B

�
� �2rV (�1; �2); (10)

the two dimensional instantiation of (6) and (7). Here
�2 is an adjustable gain which controls the rate of con-
vergence to the limit cycle. The lines A�2 = B�1 and
A�2 = B�1 +

1
2
are equilibrium orbits. The �rst is

unstable, the second is stable.

3.1 Juggling

Consider the system wherein a paddle with position p

controls a single ball with position b to bounce, repeat-
edly, to a prespeci�ed apex. We suppose the paddle al-
ways strikes the ball at p = b = 0 and instantaneously
changes its velocity according to the rule

_bnew = ��_b+ (1 + �) _p (11)

where � is the coe�cient of restitution in a simple ball
and paddle collision model. We suppose that the ve-
locity of the paddle is unchanged by collisions. Evi-
dently, a paddle velocity of _p = (� � 1)=(� + 1)_b will

set _bnew = �_b. Now de�ne � = 1
2
_b2+ bg to be the total

energy of the system. By conservation of energy, _� = 0
between collisions. Set �

� to be the desired energy
(corresponding to a desired apex). De�ne a reference
trajectory for the paddle to follow by � = cb where

c =
�� 1

�+ 1
+ �(� � �

�)

is constant between collisions. � is called a mirror law

because it de�nes a distorted \mirror" of the ball's tra-
jectory. As the ball goes up the paddle goes down and
vice versa. � is a gain that adjusts how aggressively the
controller minimizes the energy error. The analysis of
this system in [5] proceeds, roughly, as follows. A \re-
turn map", mapping the energy just before a collision
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Figure 4: Models considered in this paper: (a) two balls juggled on a piston; (b) two Raibert style hoppers, hopping out of

phase; (c) two legged spring loaded inverted pendulum (SLIP) model of a biped.

to the energy just before the next collision, is derived.
It is shown that the discrete, real valued dynamic sys-
tem that results is globally asymptotically stable by
showing that the map is unimodal [10] with parameter
� adjusting the period of the map.

3.1.1 Phase Regulation of Two Balls

To control two balls to bounce on the paddle so that
one hits exactly when the other is at its highest point
as in Figure 4(a), we will use the reference �eld (10).
This represents a point of departure from earlier work
on juggling two balls where a phase error term was
combined with two mirror laws somewhat informally.

We construct a mirror law for each system separately
and then combine the laws into a single mirror law us-
ing an \attention function". First de�ne the phase of a
ball according to the discussion in Section 2.1. Suppose
a ball rebounds from a collision with the paddle with
velocity _b0. By integrating the dynamics �b = �g and
noting that collisions occur when b = 0, we obtain the
time since the last impact and the time between im-
pacts, a computationally e�ective instance of (1) and
(2), as

t
� =

_b0 � _b

g
and s = t

� + t
+ =

2_b0

g
(12)

respectively. The change of coordinates h : (R+�R)�
(0; 0)! S

1 �R+ from ball coordinates to phase coor-
dinates is given by h(b; _b) = (�; _�) where, following the
recipe (3), we take

� =
t
�

s
=

_b0 � _b

2_b0
and _� =

g

2_b0
: (13)

In this manner, for a two ball system with ball posi-
tions b1 and b2, we obtain two phases �1 and �2. Notice
that �i 2 [0; 1] and that _�i is constant between colli-
sions between ball i and the paddle as established in
Section 2.1. The velocity _�i is reset instantaneously
upon collisions, corresponding to the update rule (11).

In the rest of this section we will take advantage of
the fact that the 
ow G

t = H � F t � H�1, described
in Section 2 and instantiated here, has the very simple
form (y1; _y1; y2; _y2) 7! (y1+ _y1t; _y1; y2+ _y2t; _y2) between
collisions.

We de�ne reference trajectories �1 and �2 based on
the mirror law idea. Given any pair (�1; �2) we de�ne
a lookahead function C1 : [0; 1]2 ! [0; 1]2 for ball one
which gives the phase of ball two at the next ball one
collision. Thus,

C1(�1; �2) =
_�2
_�1
(1� �1) + �2:

We desire that after this collision, _�1;new = u1 = R1 �
C1(�1; �2) (i.e. the control input ui follows R). Since
_�1;new = �g=p2�1;new and �1;new = 1

2
_b21;new (since

b1 = 0 at the collision), we have, using (11),

_�1;new =
�g

��_b1 + (1 + �)c1 _b1
= R1 �C1(�1; �2) (14)

where c1 is the coe�cient in the mirror law trajectory
�1 = c1b1. Solving for c1 and using the fact that at
b1 = 0, _b1 =

p
2�1, gives

c1 =
1

(1 + �)
p
2�1

�
�

p
2�1 �

g

R1 �C1(�1; �2)

�
: (15)

A similar expression for c2 can be obtained in terms
of R2 � C2. This gives us a mirror law for each ball.
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However, we have only one paddle so we need an at-
tention function s : [0; 1]2! [0; 1] and a new reference
trajectory composed of �1 and �2:

� = s�1 + (1� s)�2:

Such a function is fairly easy to de�ne for speci�c in-
stances of A and B. A more complete treatment of
attention functions can be found in [18].

We have simulated this system and have found it to
work as expected. Figures 5(a) and (b) show a run
of the system with A : B = 1 : 1 and Figures 5(c)
and (d) show a run of the system with A :B = 2 : 1.
In both cases the paddle regulates the phases to very
near the limit cycle within two or three hits of the balls.
After presenting two more examples of phase regulated
systems, we give an analysis of this controller for the
1 :1 case in Section 4.

3.2 Synchronized Hoppers

In this section we examine a model of a bouncing point
mass reminiscent of Raibert's hopper [27]. A single,
vertical hopping leg is modeled by a mass m = 1 at-
tached to a massless spring leg. The hybrid dynam-
ics has three discrete modes: 
ight (the leg is not
touching the ground), compression (the leg has landed
and is compressing) and decompression (the mass has
reached its lowest point and is being pushed upward).
These latter modes each have the dynamics of a lin-
ear, damped spring. Flight mode is entered again once
the leg has reached its full extension. The equations of
motion, borrowed and altered somewhat from [20], are
as follows:

�x =

8<
:

�g
�!2(1 + �

2)x� 2!� _x
�!22(1 + �

2
2)x� 2!2�2 _x

if x > 0 
ight
if x < 0 ^ _x < 0 compression
if x < 0 ^ _x > 0 decompression

(16)

where ! and � are parameters which determine the
spring sti�ness !2(1 + �

2) and damping 2!�. During
decompression, w2 , !� and �2 , �=� . We de�ne � ,
the thrust, by � , �=(1 + x

2
b) where xb is the lowest

point reached by the mass the last time the decom-
pression mode was entered and � is a gain which de-
termines the energy of the leg (and which we will use
as a control input in the next section). Notice that the

damping during decompression, 2!2�2 = 2!�, is the
same as during compression. The spring sti�ness dur-
ing decompression is !22(1 + �

2
2) = !

2(�2 + �
2) and is

thus proportional to the magnitude of the thrust. The
trajectory in the position/velocity plane of a simula-
tion of this system is shown in Figure 6 (a). That this
is a stable system follows from an argument similar to
that made in [20] wherein similar systems are shown
to have global asymptotic stability. Thus, a leg cannot
be controlled to a speci�ed apex height in one bounce
as could the balls in Section 3.1.

To obtain a de�nition of phase for the leg, we change
coordinates to real canonical form in the compression
and decompression modes. This is demonstrated in
[20]. We arrive at systems ( _Ec;

_�c) = (�2!�Ec;�!)
and ( _Ed;

_�d) = (�2!�Ed;�!� ) for compression and
decompression respectively. Note that the changes in
the second coordinates of these systems are constant.
They can therefore be used as phase variables. In com-
pression, for example, _�c = ! and �c varies between
�c;max and 0. Thus,

�c = !t = �c;max

t

tc
(17)

where tc is the duration of the compression mode. This
expression is a scalar multiple of the general phase def-
inition described in Section 2.1. However, to control
two physically unconnected legs to hop in a synchro-
nized manner as in Figure 4(b), our present construc-
tive approach requires constant phase velocity through-
out each cycle of a hop as in Figure 6(b). We must
transform three piecewise linear phases so that each
has the same rate of change, as assumed in the dis-
cussion of Section 2.1. We begin with the phases dur-
ing compression and decompression, �c and �d and the
phase during 
ight, �f ,

_x0�x

2 _x0
.

The construction of a suitable phase de�nition from
�d, �c and �f is in two steps. First, apply a�ne trans-
formations so that the decompression phase varies from
0 to 1=3, the 
ight phase from 1=3 to 2=3 and the com-
pression phase from 2=3 to 1. This gives a piecewise
linear map from interval of time connecting the time of
one lowest point to the time of the next. Next, smooth

this map so that each segment has the same slope.

First, note that �d varies between 0 and �d;min, �f
varies between 0 and 1 and �c varies between �c;max
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Figure 5: (a) The positions of the two balls and the paddle vs. time for A :B = 1:1 starting from a randomly chosen initial

condition. (b) The phase plot �1(t) vs. �2(t) for the same run. Note the limit cycle where �1 = �2 +
1

2
. (c) and (d) show

the same information for A :B = 1:2.

and 0. Thus,

~�d , � �d
3�d;min

; ~�f ,
�f

3 + 1
3

and ~�c , � �c
3�c;max

+ 1
(18)

is the �rst transformation.

Second, think of each of these phases as a linear

homogeneous transformation Pd : [0; t1] ! [0; 1=3],
Pf : [t1; t2] ! [1=3; 2=3] and Pc : [t2; t3] ! [2=3; 1]
where t1, t2 and t3 are the durations of the lifto�,
touchdown and bottom modes, respectively. We de-
sire the phase to increase from 0 to 1 linearly as time
increases from 0 to t3. The following, �nal de�nition
of phase for the hopping leg system, has this property:

� ,

8<
:

HP
�1
d

(~�d; 1) if x < 0 ^ _x > 0

HP
�1
f (~�f ; 1) if x > 0

HP
�1
c (~�c; 1) if x < 0 ^ _x < 0 :

(19)

Here H is the transformation (x; 1) 7! (x=t3; 1). This
results in a phase de�nition for a single leg that is
equivalent to t=(t1 + t2 + t3) as in (3). Figure 6 (b)

illustrates how � changes with the position of the mass
in simulation.

For a system with two physically unconnected legs
modeled by (16) with states (x1; _x1) and (x2; _x2), let
�1 and �2 be the phases of the legs. Since each leg ac-
tuates itself, there is no need for an attention function.
Once again, we wish to control the legs so that they
are hopping to a prespeci�ed height and so that they
are out of phase: one leg is at its lowest point when

the other is at its highest. We use a reference �eld R

with A :B = 1:1.

Recall that the thrust, �i, supplied by a leg is con-
stant through the decompression phase. The gain for
each thrust, �i, controls the phase velocity. A larger
thrust gives a smaller phase velocity (because the leg
goes higher and takes longer to return to its lowest
point). Thus, we simply reset the thrust gains, �i to
be 1=Ri(�1; �2) whenever �i = 0, i = 1; 2.

Figures 7(a) and (b) show simulations of the system
with A :B = 1 :1. In all runs with various reasonable
values of the parameters the legs regulate their phases
to very near the limit cycle within two or three stance
modes.
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Figure 6: (a) A plot of the velocity vs. the position of a simulated one legged hopper emphasizing the stable limit cycle. (b)

A plot of the position and phase of the hopper vs. time. Between minimal points of the hop, phase velocity is constant.
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Figure 7: (a) The positions of the leg's centers of mass versus time for A :B = 1:1 starting from a randomly chosen initial

condition. (b) The phase plot �1(t) vs. �2(t) for the same run. Note the limit cycle where �1 = �2 +
1

2
.

3.3 Two Legged SLIP

One obvious shortcoming of the synchronized hopping
model of walking is that the two legs are physically
unconnected. In this section we examine the Spring

Loaded Inverted Pendulum (SLIP) model [35] of a hop-
ping leg which we have modi�ed to have two legs as

shown in Figure 4(c). The SLIP model has a single
point mass (which we assume to be 1 in this paper) in
the plane and a massless, spring loaded leg. When it
is not touching the ground, its dynamics are ballistic.
When the toe of the leg is touching the ground, the
spring of the leg exerts force on the mass along the di-
rection of the leg. Our slightly di�erent model consists
of a mass with two rotating, massless legs which we call
the roadrunner. In an alternating gait, the roadrunner
uses one leg to hop and then the other. When a leg
is touching the ground, it is in stance mode { which
again consists of compression and thrust phases. Be-
tween hops, a leg must swing around the mass to ready
itself for the next hop. This is called the swing phase.
The task is to construct a controller for the legs that

realizes this gait.

This example is di�erent from our previous exam-
ples in that we start with a speci�cation of the ag-
gregate behavior of the system and decompose it into
controllers for the individual subsystems. In the jug-
gling and hopping examples, the phase regulated sys-
tems are themselves cyclic. For example, in the 1 : 1
case, the aggregate phase of a phase regulated system
at equilibrium is

�agg(�1; �2) =

�
1
2
(�1 + �2 � 1

2
) if �1 < �2

1
2
(�1 + �2 +

1
2
) otherwise :

(20)

In the juggling example, �agg is a measurement of the
phase of the paddle. In this example, �agg will be
a measurement of the phase of the underlying SLIP
model which the legs will then \service" according to
the pseudo-inverse of �agg:

�
y

agg(�) = (�; �+
1

2
) (mod 1) : (21)

That is, the phases of the legs are functions of the
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phase of the underlying SLIP model. It remains to
de�ne phase for the SLIP model.

As shown in Figure 4(c) the system is described by
variables x; y; �1; and �2 where (x; y) is the position of
the body and �1 and �2 are the angles of the legs. When
in stance mode, the position of the body will also be
described by the distance r from the body to the toe
(given by (xtoe; y)) and the angle � of the leg touching
the ground. When a leg is compressing, _r < 0, the sti�-
ness of the spring is k1 and when it is decompressing,
_r > 0, the sti�ness is k2. The spring model we will use
has potential

U (r) =
k

2

�
1

r2
� 1

l2

�

where l is the natural length of the leg and k is the
current spring sti�ness. The dynamics of the system
can be derived from the Hamiltonian as in [35] for the
cases with or without gravity in stance. We consider
only the case without gravity. We have during 
ight:

�
�x
�y

�
=

�
0
�g

�
and

�
_�1
_�2

�
=

�
u1

u2

�

where g is the force of gravity and u1 and u2 are veloc-
ity inputs the legs. During stance, suppose that leg 1
is touching the ground and leg 2 is not so that � = �1.
Then we have

�
�r
��

�
=

�
r _�2 � 1

m
rU (r)

�2 _r _�=r

�
and

�
��1
_�2

�
=

�
��
u2

�

where u2 is a control input. The equations for when
the legs are reversed are similar. We do not consider
the case where both legs are touching the ground or
when the mass hits the ground { situations we would
like to avoid. In [33], the control of the SLIP model is
discussed. We do not repeat this discussion here, but
simply assume that upon lifto� that �td, k1 and k2 are
given by the controller.

The phase of the virtual leg will once again be com-
posed of the phases of 
ight, compression and decom-
pression. In the rest of the section, variables sub-
scripted with l represent the state at lifto� and those
subscripted with td represent that state a touchdown.
As in the previous example, the phase is obtained from
a piecewise linear transformation on the phases dur-
ing the various modes. We use the results from [35]

wherein the systems are integrated to obtain the du-
rations of the 
ight, compression and decompression
modes, tf , tc and td respectively. For a given state w
of the leg, equation (2) de�nes t�(w) to be the time
since the last lift o�. Then the phase is

� =
t
�

tf + tc + td
:

Notice that the phase varies between 0 and 1. Since
each leg will service every other stance mode, we could
de�ne the phase of the SLIP model so that it completes
two cycles between 0 and 1 instead of one cycle so that
(21) makes sense in the present context. We neglect
this detail here.

Now de�ne the position of the legs during their swing
phases as a function of the phase. Let �top be an angle
near the middle of the swing phase, such as �. We give
each leg a discrete state si de�ned by

si =

8<
:

0 if �l < �i < �top

1 if �top < �i < �td

2 otherwise (leg is touching the ground) :
(22)

Thus, a leg is characterized by a sequence such as
h0; 1; 2; 0; 1;2:::i. We de�ne reference maps (functions
of phase, which is in turn a function of the state of the
body) �ref;0 and �ref;1 as functions of the leg phase
which give the ideal trajectory of a leg during each of
the discrete states 1 and 2. �ref;0 varies between �l and

�top as � varies from 0 to 1 so that _�ref;0 is equal to _�
at lifto�. �ref;1 varies from �top to �td as � varies from
0 to its value at touchdown. These may be smoothed
in various ways to minimize, for example, the velocity

of the toe relative to the ground at touchdown. There
is no reference phase during stance because when a leg
is in stance it is not actuated. If the discrete states
of the legs are initially di�erent, they will alternately
service the stance mode of the robot.

4 Analysis of the Phase Regulation Al-

gorithm

We have presented three examples of phase regulation
that di�er in several important respects. In the jug-
gling controller, we are assured that the reference �eld
can be followed closely because of the deadbeat na-
ture of the ball control. That is, within the limits of
the actuator, we can achieve any desired ball energy by
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striking it with the paddle using (11). Therefore, to an-
alyze the stability of the control method, we need only
consider the system in terms of the phase states and
velocities. We do so in this section. With the synchro-
nized hopping example, we do not have deadbeat leg
control, but only asymptotic stability. Thus, to ana-
lyze the stability of the hoppers, we would need to take
in to account the rate of convergence of a single leg to
the reference phase velocity dictated by the reference
�eld controller. We have not yet performed this anal-
ysis. However, because of the fast rate of convergence
of the single leg controller in practice, the analysis in
this section is likely appropriate. The two legged SLIP
controller, in a sense, needs no further analysis. If we
assume that the legs can follow the reference trajectory
accurately, the model is the same as the original SLIP
model [35].

4.1 Analysis

Consider the phase regulated system (�1; �2; _�1; _�2) 2
T
2�R2 where _�i is constant except for discrete jumps

made when �i = 0. These jumps are governed by the
reference �eld (10). That is, when �i = 0, _�i be-
comes R(�1; �2). Notice that when A : B = 1 : 1,
then R(0; �2) = R(�1; 0). To simplify notation in this
section, we rede�ne R : S1 ! R to be the reference
�eld restricted to �1 = 0. Therefore, with A :B = 1:1,
R(�) = �1 � �2 sin(2��).

To analyze the dynamics of this system, we consider
the Poincar�e sections �1 and �2 of T2� R2 given by
�1 = 0 and �2 = 0 respectively. We suppose that

adjustments to the phase velocities alternate between
the two phases (i.e. the system is near the limiting
behavior). We construct the return map from �1 into
�1 as follows. Start with a point w 2 �1, integrate the
system forward to obtain a point in �2, then integrate
again to get a point in f(w) 2 �1.

A point in �1 has the form w = (0; �2; _�1; _�2). This
maps to the point w0 = (C1; 0;R(�2); _�2) 2 �2 where
C1 is the phase of the �rst system when the trajectory
of the total system �rst intersects �2. w

0 in turn maps
to the point f(w) = (0; C2;R(�1);R(C1)) where C2 is
the phase of the second system when the trajectory
next intersects �1. The phases C1 and C2, which can
be obtained via the point-slope formula for a line (in

the �1; �2 plane), are given by

C1 =
R(�2)

_�2
(1��2) and C2 =

R(C1)

R(�2)
(1�C1) : (23)

Let (x; y; z) = (�2; _�1; _�2). Then, expanding f(w), we
obtain a discrete, real valued map on �2 given by

xk+1 =

R

�
R(xk)

zk
(1 � xk)

�

R(xk)

�
1� R(xk)

zk
(1� xk)

�

yk+1 = R(xk)

zk+1 = R

�
R(xk)
zk

(1 � xk)

�
:

(24)
Since the x and z advance functions are not functions
of y, we can treat y as an output of this system. Thus,
analytically, it will su�ce to treat (24) as an iterated
map of the the variables (x; z) 2 S

1 � R+ given by
F (xk; zk) = (xk+1; zk+1). We have the following �xed
point conditions:

Proposition 4.1 F (x; z) = (x; z) if and only if

R(x) = R(1� x) = z.

We omit the proof, which is straightforward algebra
(note that the values of x are always taken modulo 1
since x 2 S

1). For the reference �eld we are using, we
have:

Corollary 4.1 If R(�) = �1 � �2 sin(2��), then the

only �xed points of F are (1=2; �1) and (0; �1).

We wish to show that the �rst �xed point, (1=2; �1),
is stable, since it corresponds to the situation where
the two subsystems are out of phase and at the desired
velocity. To do this, we examine the Jacobian. Suppose
that the �xed point condition we desire is F (1=2; v) =
(1=2; v) where v is the desired phase velocity. Then

J( 1
2
;�1)

F =

�
1
2v2

�
m

2
� 1
�
m � m

v
+ 1 1

2v
� m

4v2
1
v

�
m

2
� 1
�
m �m

2v

�
:

(25)
Here, m = R0(1=2) is the slope of R at 1=2. F is stable
at (1=2; v) if the eigenvalues of the Jacobian lie within
the unit circle. Values for m and v which guarantee
this are not di�cult to �nd. For example,

Proposition 4.2 If m = 2v � 2 then the eigenvalues

of J( 1
2
;�1)

F are 0 and 2
v2
�1 which implies that (1=2; v)

is a stable �xed point of F whenever v > 1.
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Once again, the proof is just a calculation: simplify
(25) using m = 2v � 2 and compute the eigenvalues.
With the reference �eld we are using, m = 2��1. Thus,
for a given value of v, we set R(�) = v � m

2�
sin(2��).

In practice, it is not di�cult to �nd other parameters
which make F stable. For a given v, we �rst choose
m to be quite small and increase it slowly until the
controller is aggressive, yet still stable.

5 Conclusion

In this paper we have taken the �rst steps toward a for-
mal treatment of phase regulation for underactuated
environments that must be repeatedly and intermit-
tently contacted by an actuated robot. We have in-
troduced a variant of the two-juggle controller [5, 30]
and, by re-writing the system in phase coordinates, ex-
hibited su�cient conditions for local asymptotic sta-
bility of a 1:1 mode-locked rhythm. The obvious next
step concerns the extent of the domain of attraction.
Here, there is a natural hybrid structure | the order
of "contact events" (i.e., the sequence of balls hit) |
whose desired sequences might be seen as a pattern to
be regulated against disturbances. Moreover, there is
a "forbidden" set in phase space | where both balls
must be hit at the same time | that must be shown
to be a repeller. We have also suggested the manner
in which this 1:1 "juggling" framework carries over to
simple problems in legged locomotion. Because the ef-
fective input enters through an additional dynamical
lag in such problems, our present su�cient conditions
for asymptotic stability will need to be modi�ed in or-
der to address them. We have not dealt at all with the
problem of regulating more general A:B mode-locking,
but we believe that similar methods can be used to

achieve such behaviors.

Although the applications focus of this paper is lim-
ited to locomotion systems, we are intrigued by the
prevalence of phase regulation problems in more ab-
stract settings such as factory automation [19, 17] and
will seek to apply these ideas in that context as well.
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