
4-1

Chapter 4 Gait Generation in Hexapod

Robots and Local Modeling Techniques

4.1 Introduction

In the preceding Chapter the design and construction of an autonomous hexapod

robot called ELMA, was detailed. This robot uses the LonWorks® distributed

control system to connect a number of leg controllers together along with a head,

or sensing, node. The simple Central Pattern Generator (CPG), briefly explained,

demonstrated that the robot was stable and had sufficient battery life to function

for a useable period of time before recharging became necessary. Furthermore,

the tests using a CPG demonstrate clearly that a low cost fieldbus can be used for

co-ordinated applications such as walking robots. It can be inferred from the

experimental results on bandwidth usage that the network could support up to

three times the number of controllers currently present with minimal degradation

in performance. These extra controllers do not have to be leg nodes, for instance

WALTER incorporates an infrared remote control tail and this could be used

within ELMA (WENN94). The addition of these devices would reduce battery

life. However, on an architectural level, the addition of devices using this

distributed control system is simplified.

This Chapter goes on to explore several software architectures that have been

tested on the robot. As such, it forms an extended case study on the

implementation of distributed control schemes on mobile robots when applied to

networks of simple processors. Whilst the robot is quite sophisticated for its size

and weight it is lacking some sensors that would provide useful feedback to the

control algorithms. In particular joint angle sensors on the legs are missing since

the servo units operate in an open loop fashion and do not provide position

4-2

information. One way round this is to connect directly into the servomotors’

positioning circuitry as has been done with Genghis, ANGL89, which uses the

same servomechanisms as ELMA. This has not, as yet, been attempted on ELMA

and so a different approach has been used so that development and verification of

the control algorithms could continue. This approach entails the development of

functional blocks that reproduce missing dynamic behaviour. These blocks are

inserted immediately before the joint controllers in the various architectures.

They also are shown to form part of the performance model of a device that, as

mentioned in Chapter 2, goes to make up the full Local Object Model for the leg.

Once an algorithm has been developed for the robot, it then becomes necessary to

monitor its behaviour. This entails examining many values within the robot over

a period of time. Initial tests with ELMA were carried out using a custom written

development tool that could represent a specific subset of network parameters.

Whilst this was useful for this limited application substantial changes in network

architecture required modifications to the program and demonstrated the need for

a more flexible visualisation tool. The limited number of nodes on ELMA forms

a system that is easy to visualise however with complex installations the task of

observing and interacting the whole system becomes difficult. In large plants the

wealth of information can be difficult to visualise and much time is spent

developing graphical representations of the system that ease data assimilation for

the user. Referring back to the LOM concept a compact extension to this model is

shown that allows graphical encapsulation of the device state. Additionally the

remaining models in the Local Object Model are explored briefly.

There is a wide variety of different mobile robot controllers. The existing range

can be divided into two main types, namely those that are completely pre-

programmed and those that in some way learn behaviours, KELL97, ARKI98.

Turning attention to the first case, there is a range of different types within this

classification ranging from hard-wired controllers that operate without regard to

4-3

external influences (TODD85), to simple reactive systems that offer a

deterministic response to a given machine state and input domain, BROO86,

MATA92b, FERR94. In the second learning case considerable development is

underway coinciding with interest in Artificial Intelligence (AI); the interested

reader is directed to material such as LUGE89 for a general introduction to AI. It

is not the intention of this thesis to propose radically new structures for the

control of autonomous walking robots using either of these methods. Instead,

some existing control architectures have been used to verify the behaviour of the

fieldbus network, in conjunction with a novel method for end effector (or ‘feet’)

trajectory planning that does not rely on pre-programmed or reactive behaviour.

In addition, Section 4.3 and Section 4.4, investigate the use of behavioural blocks

to mimic incomplete hardware information (due to a lack of sensors) and at this

point, the Performance Model of the LOM is introduced.

4.2 Central Pattern Generators

The most fundamental level software used by ELMA is based on a Central

Pattern Generator (CPG). In fact the earliest walking gait control programs were

also based upon CPGs since computational power was limited and there was

more interest in verifying the hexapod structure rather than advanced behavioural

control models, MCGH66, SONG89. The CPG can be likened to the specialised

animal neural structures that produce sequencing information for the legs as

described by Lewis et al. in LEWI93. There is still conjecture as to where

precisely simple animals (such as cockroaches) produce the firing signals for

their motor neurones with some researchers advocating central brain based

generators and others moving the control generation to the segment close to the

leg, HILL67. Robot hexapods have successfully been used to test the various

hypotheses in a machine setting. For example, Chiel et al. (CHIE92) has

successfully demonstrated hexapod control using both distributed and centralised

4-4

pattern generation, albeit in the overall context of a reactive controller. It is

worthwhile to note that the investigation into insect locomotion has so often been

carried out on robots since they provide a real world problem set which is not

completely trivial yet not too complicated to prevent rapid development,

LEWI93.

Within a distributed control system such as a fieldbus there are a number of

architectures that can be implemented that use a non-reactive central sequencer

for leg positioning and gait control, these are covered in the following sections.

4.2.1 Centralised Leg Positioning

In this architecture, a brain node has a table of leg positions. Each entry in the

table corresponds to the desired position of each leg within the overall sequence

of the gait. As the brain indexes through the table, at each point the new values

are output via the network to the leg nodes. In this way the leg nodes perform no

localised processing or scheduling other than signal conditioning and translation

of the arriving signals. This extremely simple arrangement with each leg

effectively operating in open loop is useful for verifying that a particular gait

pattern (or sequence of steps) sums up to a viable and stable pattern for walking.

As stated in Chapter 3, the nodes of ELMA are configured such that software can

be downloaded to them over the fieldbus. Despite the versatility of this it still

takes some time (a few seconds to several minutes depending on the complexity

of the program) to modify and download new programs. Therefore, initial tests

were performed with a centralised leg positioning scheme since only one node

needed modifying. This was used to verify the static stability of the robot in

various positions and to calculate the leg extrema positions.

4-5

Since each leg node only performs signal-conditioning functions, there is minimal

computational load on them. Equally the central brain only has to traverse a

position table so it has little more to do than output new leg positions; something

the network handles transparently. If range information provided by the ultrasonic

sensors described in Chapter 3 is fed into the controller then the computational

load on the brain rises since it must decide upon appropriate behaviours, modify

gaits to take avoiding action, and update the leg positions.

Resistance to perturbations is low since the leg nodes are incapable of operating

without the brain. Failure of the brain node or network connections to it leads to

complete incapacity of the hexapod.

4.2.2 Centralised Sequencing

This control architecture is a simple advance on the previous one. The individual

state tables are moved out onto the legs, or ‘offloaded’, (WENN94). The brain

node outputs a sequence count that is used by each node to index into its own

local state table. As mentioned in Chapter 3, Section 3.6, each leg needs to add a

phase shift to the index count in order for the possible gait sequences (ripple,

pair or tripod) to operate correctly. If this were not done, all the legs would be in

the same part of the sequence at the same time resulting in them adducting

simultaneously and causing the robot to fall to the ground. The phase shift is

generated by naming each of the leg nodes and then using this number to adjust

the indexer.

Allowing the nodes to self identify using configuration information permits the

program code on each of the nodes to remain identical thus allowing rapid code

development. In addition, since the leg nodes could theoretically be swapped for

one another, they can be said to be interoperable, as described in Section 2.4.6,

at the most basic level. It is useful to note that the polarising of a node according

4-6

to its physical position does not prevent the nodes basic functionality. In other

words, the leg would operate in isolation without this information. Only when it

is installed in a network does it become necessary to provide this data. The

program function that performs translations based upon each legs location can be

considered part of the node’s Performance Model. The veracity of this statement

is due to the fact that the Performance Model provides operational behaviour in

the absence of specific information. In this case, without the polarising function a

different program for each leg would be required with appropriate phasing

predefined.

4.2.3 Distributed Positioning with Centralised Scheduling

The final non-reactive structure considered is created by modifying the previous

algorithm so that it no longer outputs a discrete index. The output value is instead

treated as a heartbeat signal. Individual leg nodes have their own state table, as

before, along with a localised indexer into each table. Whilst this is only a

simple modification to 4.2.2 it provides the basic functionality upon which the

following reactive controller is based.

4.3 Reactive Gait Control

Reactive controllers use sensory stimulus and response reactions to produce leg

motion and gait co-ordination, FERR95. As described by Arkin, ARKI98, these

systems have the following properties:

• Low-level motor reflex responses form the basic behaviour by combining

sensor and actuator units at a primitive level.

• Abstracted representational knowledge is not required to generate a

response. This is advantageous in hazardous or unknown environments where

4-7

time consuming abstraction and sensory interpretation might delay robot-

preserving tasks.

• Animal behavioural models are often used as the basis of these controllers.

As mentioned previously robots provide observable platforms for testing

theories on the behaviour of animals. Equally, animal behaviours provide

good models for developing efficient control systems, BEER92, CRUS94 and

WEID93.

• Reactive systems are inherently modular from a software design perspective.

Since they are based upon simple behavioural blocks, software can be built

up in a series of layers without discarding older blocks.

The last point is of particular use when designing software for use in a

distributed control system since small functional blocks can be validated on the

robot hardware without need for simulation. Moreover, functional units can be

included that allow for the generation of sensory information given partial sensor

loss or due to a lack of available sensors.

4-8

The reactive gait control used on ELMA is based upon state machines. Other

forms of reactive control do exist that are based upon neuroscience and ethology

backgrounds. One such example is Beer’s Periplaneta Computatrix, which

claims to implement most of the high and low-order motor and goal seeking

behaviours of the common cockroach using an evolved neural network,

BEER931. It is not the intention of this work to investigate these other avenues

since they invariably place heavy demands upon the processors and are

consequently unsuitable for real time operation within an autonomous mobile

robot that uses fieldbuses for control.

4.3.1 Subsumption Architecture

Rodney Brooks proposed a behavioural scheme called the subsumption

architecture, BROO86. In this reactive scheme, behaviour is built by adding

layers of control on top of existing simpler layers. This is different to the more

traditional method of task decomposition where linear sequences of operations

are performed on the sensed data finally generating motor drive signals. Whilst

the robot is processing the data and arriving at the final drive signals it is

effectively blind, KELL97. With a subsumption based architecture the lowest

levels of control have the highest priority, see Figure 4-1.

1 Although this example exhibits all of the gaits discussed by WILS66 it is interesting to note

it is still not a complete simulation since the cockroach has an additional fleeing response that

entails raising the hind pair of legs, resting its thorax on the ground and only moving forward

under the control of the two forward pairs of legs, HILL67. This results in a faster cycle rate

since only four legs need to cycle in sequence.

4-9

Figure 4-1 Task Decomposition

For a hexapod, the most basic level of functionality is to stand and this forms the

bottom layer of the subsumption architecture. On top of this, the control structures

necessary for walking are added. These modify the standing behaviour and cause

the legs to cycle through a series of motions resulting in the robot walking. All

the time the walking behaviour is operating ELMA still performs the necessary

operations to prevent it falling over. As can be seen in Figure 4-1 additional

layers can be added to enhance the overall behaviour. At the time of writing, the

Avoid Objects layer has also been added. As has been stated ELMA uses a

modified state machine called an augmented finite state machine to control

walking.

4.3.2 Augmented Finite State Machine

The augmented finite state machine (AFSM) uses a regular finite state machine

with additional registers, clocks and combinatorial circuits to yield a robust

layered control system, BROO89. Additional AFSMs are added to form extra

behavioural layers on the robot. In addition, the modular approach inherent in

this reactive control system allows for neat encapsulation of the different parts of

the control system at the leg node level. As the concept of a Local Object Model

is extended, the functional model can be used to hold the AFSM for missing or

incomplete parts of the robot structure. As was stated in Chapter 3 this permits

4-10

the creation of software blocks that mimic the continuous motion of the servos

although they actually operate in a closed loop fashion and do not provide

positional feedback. Additional blocks can be added that simulate the value of a

ground contact sensor. Whilst this is unused for walking it is useful for tests that

require introducing lesions to the robot structure and then monitoring behaviour.

Figure 4-2 AFSM as Applied to ELMA Hexapod

Shown in Figure 4-2 is the AFSM model for one leg of the ELMA hexapod. The

operation of this controller behaves exactly like the one in Genghis with certain

additions to cater for the hardware specifics of ELMA and the LonWorks®

network. It operates in the following manner:

1. The alpha pos unit drives the alpha angle servo controlling retraction and

protraction. The beta pos unit drives the beta angle servo controlling

abduction and adduction. At power up and without any other intervention,

the servos are driven so that the robot is standing with its legs centralised.

From the perspective of the leg node (and network) the servomechanisms

operate in a closed loop fashion and so an additional routine takes the

command input and drives the servo slowly to the final position providing

4-11

emulated continuous motion. Whilst this is occurring the current

interpolated position is output as a network variable.

2. The leg down machine is driven by another simulation unit within the

performance model that monitors a pseudo ground contact signal. At any

time the leg is not on the ground it generates a signal to the beta pos unit to

set the leg down. The performance model of the ground sensor uses alpha

pos and beta pos data to determine whether the leg would in fact be on the

ground at that part of the cycle. Furthermore, the ground contact signal is

provided as a network input value so that it can be driven externally from

the node to induce lesions in the controller.

3. An alpha balance machine is added to the brain node that monitors the

alpha pos value of each of the legs. These values are summed and

normalised such that central positions have zero effect, forward positioned

legs have a positive influence and those positioned towards the rear have a

negative influence. The alpha balance machine operates at 25Hz

continually generating new values to adjust the position of each leg so that

the robot remains in static equilibrium. The interconnection between the

brain and six leg nodes requires the addition of twelve network variables

each of which is potentially updated at the 25Hz rate.

4. Each leg has an alpha advance machine added to it. Whenever a leg is not

in contact with the ground (as dictated by the current value of the beta pos

machine) it drives the leg forward and suppresses the signal coming from

the alpha balance machine. Since the alpha balance signal is suppressed

the leg moves ballistically forward and at the same time the other five legs

are commanded to move back slightly by the alpha balance machine to

compensate for the new centre of gravity. This basic effect allows the

robot to advance its position.

4-12

5. Next an up leg trigger is added to each leg. This machine monitors the

beta pos of the leg and when it is down and a trigger signal is received it

suppresses signals from the leg down machine and directs the leg to

adduct.

6. The trigger source is provided by a single walk machine in the brain node

that executes a set of predefined sequences amounting to the various

hexapod gaits.

With these basic AFSMs in the leg and brain nodes, the robot is able to move

forward. In the original control system of Genghis, additional state machines

were added that provided directional control, pitch stabilisation and an infrared

source following behaviour. In ELMA these additional behaviours were not

added by using additional state machines. Instead directional code was added by

using a pre-set gait for turning and then selecting it when the obstacle detecting

ultrasonic system directed.

The system implemented on ELMA verifies the applicability of the augmented

state machine subsumption architecture for hexapod control. In particular it has

proven to be a suitable candidate for implementation on the Neuron processor

based nodes. The interconnection between nodes is easily handled by network

variables. The layered approach to the control system with network variables at

each nodal point (i.e. each connection between state machines) allows for easy

expansion and reconnection of functional blocks at a level external to the node.

This is consistent with the desires stated in Chapter 2, Section 2.4.6 whereby

control system design and expansion has evolved to a state of just interconnecting

functional blocks at a system level. Moreover, since the source of the connection

signals can be external or internal to the node, additional computational

complexity, not necessarily located on the node, can be added at a later date.

4-13

The next section goes on to cover the final version of software that has been

tested on ELMA. This consists of a learning algorithm that is based on a set of

rules and goes on to generate a path for the end effectors (or feet).

4.4 Leg Path Generation by Reinforcement Learning

As stated by Arkin, ARKI98, reinforcement learning is widely used in robotic

systems for adapting the behaviour of a robot. It is numeric, inductive and

continuous. The basic premise is that by applying a reward immediately after the

occurrence of a response increases the probability of it reoccurring. Conversely

providing punishment after an incorrect response decreases its probability,

THOR11. Sutton and Barto provide an excellent introduction to the subject in

SUTT98.

To create the required reward and penalty a component is required that evaluates

the resultant response based upon current state, target and input condition, this is

known as a critic. Maes and Brooks (MAES90) have applied this form of

learning to the subsumption architecture already on Genghis. The Genghis critic

in this case received exteroceptive data from two ground contact sensors added

to the robot’s belly and a trailing wheel attached to the back. In this case, the task

was to learn to walk forward.

Rather than adding additional sensors the critic used on ELMA relies on a rule

set that varies depending upon which phase of the gait the leg is in. As such, it

implements a Q-learning function as described by Watkins and Dayan, WATK92.

As can be seen in Figure 4-3 two critic functions are required depending on

whether the leg is retracting or protracting. Each has its own rule set but both

operate to find an optimal path between the end-points during each phase of a

step.

4-14

Figure 4-3 Reinforcement Function Spaces

Referring to Figure 4-3, the workspace envelope for the foot of a given leg is

divided into a uniform grid of tiles, SUTT98. A uniform mapping was chosen

since there was no specific need for irregularly sized tiles and it provided a

direct mapping onto the servo control values. Starting at the lower left corner of

the tiling, the target is set as the lower right corner for protraction. For

retraction, the starting point and target are obviously reversed. For each tile

within the workspace there are eight possible directions the leg can move. These

correspond to the four orthogonal directions through each side of the tile and

another set of orthogonal directions at 45° to the first set through each of the

corners. The reinforcement rules are as follows:

Retraction:

• Moving rearwards (with respect to the body) is rewarded.

4-15

• Moving down is rewarded, and since the workspace is bounded, moves off

the bottom of the grid are neither rewarded nor penalised.

• A move in any other direction is penalised.

Protraction:

• If the foot is in the left most column only vertical moves upwards are

rewarded. Moves to the right (front of the robot) are penalised by a small

amount. Any other moves are penalised by a large value.

• If the foot is at the right most column vertical moves down are rewarded.

Further moves to the right are neither penalised nor rewarded. All other

moves are penalised.

• If the foot is in any other vertical column, moves to the right and up are

rewarded and all other moves are penalised.

Each leg implements its own set of workspaces. The drive signal forcing the leg

to advance a step derives from a CPG in the brain node. At each step a new

direction is chosen for the foot based on a weighted roulette wheel approach

where previously chosen successful choices are given a higher probability of

reoccurring, MITC94. After the move is executed the result is evaluated and a

reward or penalty is applied to the chosen direction in the previous cell. This

process continues until all the legs have arrived at their respective destinations

for this part of the gait. The two end effector spaces are then swapped and the

process repeated.

The reward and penalty values for both functions were identical and were chosen

by evaluating the performance of the algorithm over a number of runs. It was

found that too high a value could result in the leg sticking in a corner or at an

edge point. Conversely, too low a value would cause the leg to take a long

period to settle. Consequently, over a number of trials, a reward value set at 0.12

of the normalised probability range and a penalty value of 0.08 was found to

4-16

offer a suitably short convergence time and good resolution. To analyse the

performance of the algorithm and to determine the time required to settle the

following approach was used:

• Each tile within the tiling is assigned a visit count starting at zero.

• When the tile corresponding to the current foot position is entered, the visit

count for that square is incremented.

• The learning sequence is executed a number of times and at discrete points

within the cycle (after 1 step, 5 steps, 10 steps etc) the visit counts for the

entire tiling are recorded.

The visit count matrices were plotted as a three dimensional surface with the

base of the surface corresponding to the grid of tiles (i.e. the grids seen in Figure

4-3) and the height corresponding to the visit counts at that moment within the

learning sequence.

Shown in Figure 4-4 and Figure 4-5 are the surface plots for a sequence of 1000

steps. This corresponds to approximately 25 minutes of walking time. After one

step, the irregular surface indicates that the tiles are visited on a random basis

due to the equal probability of moving in any direction from a given tile. After

some five steps, the learning algorithm has started to effect the end effector

position favouring moves along the ground for retraction and high ‘horseshoe

shaped’ moves for protraction. After 10 steps, the final form of the learnt end

effector trajectory is forming and after 50 steps, there is little wandering outside

the path prescribed by the rules. It is useful to note that the learning algorithm

favours a diagonal path from the lower left corner to the upper right corner when

protracting. This is due to the rule set rewarding equally right and upwards

moves whilst operating in the central columns and so initially biasing the

trajectory.

4-17

0 1 2 3 4 5 6 7
0

3

60

2

4

6

8

1 0

1 2

N
um

be
r o

f H
its

X Y

Protract After 1 Step

0123456
7

0 1 2 3 4 5 6 7

0

2

4

6

8

1 0

1 2

1 4

N
um

be
r o

f H
its

X Y

Retract Af ter 1 Step

0 1 2 3 4
5 6

7
0

3

6
0

5

1 0

15

2 0

2 5

3 0

N
um

be
r o

f H
its

X Y

Protract After 2 Steps

01234567

0 1 2 3 4 5 6 7

0
2
4
6
8

10
12

14

1 6

N
um

be
r o

f H
its

X Y

Retract Af ter 2 Steps

0 1 2 3 4
5 6

70
1

2
3 4 5

6 7

0

1 0

2 0

30

4 0

5 0

6 0

N
um

be
r o

f H
its

X Y

Protract After 5 Steps

01234
56

7

0 1 2 3 4 5 6 7

0

5

10

1 5

2 0

N
um

be
r o

f H
its

X Y

Retract Af ter 5 Steps

0 1 2 3 4 5
6

7 0
1

2
3

4 5
6 7

0

1 0

20

30

4 0

50

6 0

N
um

be
r o

f H
its

X Y

Protract Af ter 10 Steps

012345
67

0 1 2 3 4 5 6 7

0

5

10

15

2 0

25

N
um

be
r o

f H
its

X
Y

Retract Af ter 10 Steps

Figure 4-4 Traversal Count for Steps 1-10

4-18

0 1 2 3 4 5 6 7 0
1

2
3

4 5
6 7

0

20

4 0

60

8 0

100

N
um

be
r o

f H
its

X
Y

Protract After 20 Steps

0
1

2
3

4
5

6
7

0 1
2

3
4

5
6

7

0

5

10

15

2 0

2 5

3 0

35

N
um

be
r o

f H
its

X
Y

Retract Af ter 20 Steps

0 1 2 3 4 5 6 7 0
1 2

3 4 5 6 7

0

50

100

150

N
um

be
r

of
 H

its

X Y

Protract Af ter 50 Steps

0

3

6

0

2

4

6

0

20

40

6 0

80

N
um

be
r o

f H
its

X
Y

Retract After 50 Steps

0

3

6

0

3

6

0

50

100

150

200

N
um

be
r o

f H
its

X Y

Protract After 100 Steps

0

3

6

0

2

4

6

0

50

1 0 0

150

N
um

be
r o

f H
its

X
Y

Retract Af ter 100 Steps

0

3

6

0

3

6

0

500

1000

1500

N
um

be
r o

f H
its

X Y

Prot ract Af ter 1000 Steps
0

3

6

0 1 2 3 4 5 6 7

0
2 0 0
4 0 0
6 0 0

8 0 0
1000

1 2 0 0

N
um

be
r o

f H
its

X
Y

Retract Af ter 1000 Steps

Figure 4-5 Traversal Count for Steps 20-1000

4-19

Cycle Times

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Step Number

T
im

e
(s

)

Figure 4-6 Average Leg Cycle Times Over Five Test Runs

To determine the speed with which the algorithm converges, the time taken to

perform each complete step (as defined previously) was recorded. This was then

plotted against the step number as shown in Figure 4-6. The optimal time for the

chosen paths is 1.55ms; this is defined by the step interval pattern generator in

the brain node which operates at 18Hz. By analysing the graph, it can be shown

that the cycle time standard deviation is 0.96 after four steps and it has reduced

to 0.097 after 50 steps. Qualitative analysis of the hexapod when operating under

this software architecture shows that it has settled down to a stable pattern of co-

ordinated leg movement after approximately 10-15 minutes of operation. Whilst

this time corresponds to over 400 steps this lengthy period was due to dynamic

instabilities in the robot when one or more legs took longer to settle consequently

increasing the load on the remaining supporting legs. The increased loading

4-20

caused vibration that was, initially and incorrectly, attributed to algorithm

instability.

For real-time evaluation of the properties of the learning algorithm a number of

network variables were made available that provided access to the learning

parameters. A tiling of 8x8 with eight possible directions per tile leads to 512

discrete values. However, the tiles at the edge of the grid do not store parameters

that would take the leg out of bounds. Equally, the corners omit those values

representing moves off the adjacent edges. The total minus the edge and corner

adjustments still yields some 420 interconnection probabilities for just one

phase. The two phases, retract and protract, also have the visit count value

associated with each tile so the total amount of data is 968 discrete values. This

amount of information cannot readily be presented to the network in its native

form (the Neuron processor has a limit of 63 network variables). Instead an

indexing method was used whereby values for specific tiles could be requested

and then read from one network variable. Furthermore, whilst the robot was

learning the most recently updated value was also provided from the same

variable.

4.5 Comparison with Existing Controllers

At the end of Chapter 3 experimental results were shown for the bandwidth usage

of the robot whilst under the control of a simple state machine controller. The

bandwidth usage for the single step gait is shown graphically in Figure 3-15

whilst that for the tripod gait is shown in Figure 3-16. Using this data as a

performance baseline, the controllers shown in Section 4.3.1 and 4.3.2 are

compared. When considering the controllers used in other published hexapod

material, such as BROO86, FERR95, MAES90 and WEID94, it is apparent that

there is very little quantitative data available on control system performance.

4-21

This is primarily due to the differing backgrounds of the research teams (i.e.

computer science, psychology, biology or ethology) and the different tasks for

which the robots were built. Despite the lack of a comprehensive set of

performance figures, it is possible to ascertain some common factors either by

examination of the published material or by extrapolation from video material2.

Considering the figures 3-15 and 3-16 it can be seen that the average packet rate

for the single gait is 42 packets per second whilst that for the tripod gait is some

80 packets per second. These numbers translate to bandwidth usage’s of 7.4% &

15.1% respectively. Whilst under the control of the simple state machine both

figures show characteristic increases in bandwidth usage around the time that

new servo positions are sent to the leg controllers. The relative performance of

the two controllers explored in Sections 4.3 and 4.4 can be tested against this

data.

4.5.1 Performance using AFSM

Controllers based upon an augmented finite state machine have been used on a

number of different hexapods, FERR95. The one used with the distributed control

system on ELMA was written especially to test the capabilities of the

LonWorks® network. Equivalent data to that obtained from the centralised

controller in Chapter 3 is shown in Figure 4-7. It can be seen that the bandwidth

usage during the retraction and protraction phases of each step averages 3.1%,

approximately half that of the centralised controller. Furthermore, the worst case

2 For instance, there is a published minimum leg cycle time for MIT’s Genghis robot and this

can be verified by comparing it with a video sequence that can be found on the World Wide

Web.

4-22

usage only rises to 6.3% during the abduction and adduction phases when high

velocity moves (implying many more network updates) occur.

Figure 4-7 AFSM Bandwidth Usage

Brooks states, in BROO89, that the AFSM controller used within Genghis has

both the single step gait and tripod gait programmed into its sequencer. Brooks

goes on to state that both gaits complete a full cycle every 2.4 seconds. In the

case of the tripod gait simultaneous lift triggers are sent to triples of legs every

1.2 seconds whilst for the single step gait a leg trigger is sent to a different leg

every 0.4 seconds.

4-23

Considering the step time shown in Figure 4-7 it can be seen that the single step

gait used on ELMA does not compare too favourably with the Genghis one since

it has a cycle time of 9.8 seconds. This is primarily due to the slow response

time of the sequencer, which also has to perform the inherently slow task of

interpreting sensor data from the ultrasonic eyes. However, the 2.9-second cycle

time for the tripod gait compares much more favourably with that of Genghis.

4.5.2 Performance using Leg Path Generation

Shown in Figure 4-8 are the bandwidth usage figures from ELMA when under the

control of the learning algorithm. It can be seen that the usage is significantly

higher than that for the reactive (AFSM) controller. This logically follows from

the need to propagate many more network variable values between the legs and

to the centralised balance controller.

4-24

Figure 4-8 Reinforcement Learning Bandwidth Usage

Comparison of this type of learning controller with other published material is

difficult due to the differing control strategies. For instance, a Genetic Algorithm

based approach (as seen in the Stiquito robot of Parker et al, PARK97) will

typically yield data that is only suitable for comparison with other GA based

solutions.

4-25

However, Kirchner has implemented a comparable controller on the Sir Arthur

hexapod, KIRC97. Here a Q-Learning function was used to learn complex

behaviours at both the leg trajectory level (as in ELMA), the leg sequencing level

(or gait generation) and finally at the goal achieving level. The results from the

leg trajectory level of Kirchner’s implementation show comparable results to that

obtained from ELMA and shown in Figure 4-6. Shown in Figure 4-9 are the

cycle times against step number within the learning cycle. It can be seen to have a

similar characteristic curve to that of Figure 4-6. The settling time for the ELMA

is marginally better than that for Sir Arthur, taking only 50 steps compared to 80

steps for the latter.

Figure 4-9 Q-Learning for the Sir Arthur Hexapod (reproduced from

KIRC97)

4-26

The ELMA robot discussed in the section is one example of a distributed control

system with many identical and complex nodes. The whole concept of such

networks is however much broader and many application areas exist. In the next

Section another class of such network is considered whereby many distributed

controls are used within the built environment. Like the ELMA robot, these nodes

need managing and visualising and at this point it is also convenient to explore

the Local Object Modelling concept used to aid this task.

4.6 Local Object Models

The problem with gathering internal state data from a node using the method

employed on ELMA is that a general purpose monitoring tool, such as Echelon’s

LonMaker™ (ECHE98b), or IEC’s ICELAN-G™ (IEC98) have predefined

methods for displaying network data that are not easily adapted to such

application specific demands. The solution to this problem adopted by the OLE

for Process Control organisation (OPC98) is to provide device specific controls.

These allow a suitable network monitoring tool to activate device specific

objects (or ‘Plug-Ins’ in the Echelon LNS system) that are written by the supplier

of the device. These objects are instantiated at program run-time and display the

device’s data in a suitable format. However, the availability of both this device

specific software and network management tools to support it is problematic and,

in the authors opinion, will remain so for the foreseeable future.

In Chapter 2, Section 2.5, the Local Object Model (LOM) was introduced. The

LOM is a distributed communication structure that contains several classes of

model that can be implemented across nodes in a network, FOST98c. By

designing nodes to handle these models, this allows a user to access a variety of

network services at a local level. These services range from simple interaction

with the control devices at the user’s location to sophisticated network

4-27

management and access methods. This Section goes on to explore the specifics of

the LOM and it’s various sub-classes of models. In particular the Localisation

Modal class is shown as a useful extension to any network device that allows

easy visualisation of its physical parameters. By implementing a subset or all of

the LOM models, modular components can be created that allow representation

and interaction with the large amount of information in a distributed control

system. This has been demonstrated, in the first case, using the ELMA robot. The

LOM technique was not initially applied to the hexapod having instead been

developed to support various networked facilities in the built environment.

Therefore, it is constructive to consider its background before examining the

extensions to the model that aid visualisation of systems such as ELMA.

4.6.1 Background

From very meagre beginnings, the use of electronic systems within the built

environment has reached the point where market acceptance is widespread and

they are becoming all pervasive (FERR95). Today’s modern home would not be

complete without its ensemble of computers, VCRs, televisions, telephones,

heating, security, and light controllers. Whilst, at the time of writing, these

devices are not normally connected, the time when they will migrate to one

common household network of devices is fast approaching, GROV95. Energy

suppliers are also investigating ‘smart homes’ that will use fieldbus networks to

connect assorted devices providing monitoring and demand side metering

facilities. Indeed domestic appliances are already available that connect to

energy producers and carry out a negotiation for the most economical electricity,

INTE99. Energy suppliers see the potential for vast savings from being able to

accurately forecast loads, KIER97.

Networked control systems within a building are a solution to the problem of

interconnecting all the disparate devices and systems thus aiding installers and

4-28

suppliers. However, for the end user these same networks can offer considerable

advantages. The cost of running individual homes is reduced, energy efficiency is

increased and a whole range of new possibilities is created for the control of

items around the environment. In particular, this technology has been identified as

particularly suitable as a base for developing technologies to support

independent living for elderly and disabled users, COOP96. The Department of

Cybernetics has been involved in distributed systems research for a number of

years and one of the early projects led to the precursor to the Local Object

Modelling technique.

4.6.2 HS-ADEPT

Supported by the European Commission Telematics Initiative for Disabled and

Elderly people (TIDE), the Home Systems – Access of Disabled and Elderly

People to this Technology (HS-ADEPT) was aimed at developing networked

technologies to aid disabled and elderly people. There are a number of existing

smart home systems already in existence, such as the LonWorks® based TIPI

(LAPO95), but they are not directly aimed at TIDE’s target users.

At a systems level a distributed control system installed within a building

operates on the environment that contains it. The HS-ADEPT project was aimed

at giving its users the ability to interact with networked control devices in their

locale. From both the control network and system installers point of view there is

normally minimal or no need for localisation of any device. However, to enable

localised control for a user situated within the plant information about local

objects is required. To support this a concept called the Local Device Model

(LDM) was developed as described in FERR95. The LDM holds local

information about the control facilities available from a limited number of nodes

in the immediate local area. For the HS-ADEPT project, the LDM was

4-29

implemented as a specialised node within the Home Systems network known as

the User Interface Feature Controller (UIFC).

Remote control devices

RS 232 Link

IR Link

EHS

TP

Transc

eiver

Home System Network

Local Device Model

Light 1
Light 2
Socket 1
Door 1
…..

Light 1

Light 2

Socket 1

Door 1

User Interface Feature Controller

Figure 4-10 HS-ADEPT UIFC Block Diagram

As shown in Figure 4-10, the UIFC exists as a custom node within a network of

Home System based nodes. The devices within the Home System network are

typically connected to simple devices such as light switches or door openers.

The UIFC is taught (by using a special configuration mode) which devices are in

its local area. Because of the strong typing and simple objects that exist within

the Home System specification (EHSA92) this gives the UIFC sufficient

information to interact with its learnt devices.

When operating normally a user is given a remote control device that

communicates with the UIFC over an infrared link. This remote control handset

allows a particular local device to be selected after which a list of actions

4-30

pertinent to that device is displayed. The user can then select the appropriate

action and observe the result. Additionally messages can be sent down to the

handset giving the user useful feedback. The issue of designing man-machine

interfaces is a large area, PREE90. The complexity increases when special

considerations such as disabled or elderly users need to be taken into account as

discussed by PETR98.

A variety of different remote control devices were tested with the UIFC ranging

from simple single push button handsets on to sophisticated Apple Newton

PDAs. As a related undergraduate project Hammond, HAMM96, designed an

augmented reality system overlaying information from the UIFC onto the users

view. A user could select highlighted objects and control them via the UIFC.

This system forms a very basic example of the work developed by the author in

Chapters 5 and 6. The information presented to the user was restricted to

overlaying hot spots on controllable features. There was no synchronisation

between real world devices and their related virtual features within the view.

The HS-ADEPT UIFC functions on a basic level gathering and presenting

information about local nodes. Unfortunately, this user interface requires the

addition of an extra node to the environment. Moreover, the LDM it contains is

restricted to relatively simple devices. Whilst the LDM concept is valid, it

suffers from being somewhat inflexible and unsuitable for further expansion.

Within HS-ADEPT the nodes local to the UIFC do not contain modelling

information themselves. Instead, the UIFC has to be taught about its local devices

and generate the control models for itself; this restricts the flexibility of this

control paradigm. The basic LDM concept has been greatly expanded in a new

project; covered in the next section.

4-31

4.6.3 ARIADNE

Again funded by an European Commission TIDE grant, ‘Access, Information and

Navigation Support in the Labyrinth of Large Buildings’ (project no. DE3201)

seeks to support disabled and elderly users gain access to large buildings.

Named after the Greek Princess, Ariadne, who helped Theseus navigate the maze

of the Minotaur, ARIADNE supports a range of navigation and information

services for its users.

The technical aspects of the project can be seen in FOST98d. However, in

summary, ARIADNE is based around installing a network of connected nodes

around a building. This may mean retrofitting to an existing building system of

lights, HVAC and security or installing from fresh. Nodes within the environment

are connected together both physically and logically. Agents sent around the

network are able to perform a variety of searching and navigation functions such

that users can obtain information about their location, other object’s locations,

navigational information and perform control actions on connected devices.

Unlike the HS-ADEPT UIFC design, local device models are now stored on the

devices and so the enhanced LDM used by ARIADNE has been renamed ‘Local

Object Model’ to distinguish it. The LOM has been broken down into a number

of different types that can be implemented across various devices, see Figure

4-11, and these are detailed below. It should be noted that not all model types

would be implemented on a specific node. In particular the full range has only be

implemented on the Access Node designed by the author and used within the

Ariadne system.

Shown in Figure 4-11 is a conceptual diagram of the LOM. The following

sections go on to explore the various classes within the LOM, and how they can

be used to represent and interact with a fieldbus.

4-32

Figure 4-11 Local Object Model (LOM) example

4.6.4 Performance Model

In the first part of this Chapter a method of encapsulating functions to simulate

incomplete data or process states called the Performance Model was introduced.

The idea of using a Performance Model can be readily extended to cater for the

various dynamic properties of a system. For example, one aspect of such a model

might be a Kalman Filter Algorithm that generates process state estimates for the

node in the advent of partial nodal or network failure; Grewal and Andrews

provide a good explanation of Kalman Filtering in GREW97. Durrant-Whyte et

al. have developed a Distributed Kalman Filter that is particularly suitable for

networked implementation (DURR90), although it places a high load on the

network bandwidth due to the amount of state information that needs transmitting.

Glover et al. (GLOV98) have developed Sensor Validation techniques on

Neuron Processor based nodes where the validation and calibration of sensors

4-33

and actuators are external to the actual process loop and could be conveniently

encapsulated within the Performance Model. It is not within the scope of this

work to examine all of the possible software structures that can be placed within

the performance model.

4.6.5 Control Object Model

The Control Object Model is the set of functional blocks presented at the

application layer to the system installer. In the HS-ADEPT project these control

models are constructed within the UIFC based on variable type information3

obtained from the physically adjacent devices in the network. Consequently, they

have only a logical association with the devices to which they refer.

For the ARIADNE project based on the LonWorks® system, these models are

encapsulated within the devices themselves. The LonMark™ Organisation

defines an assortment of control object types that allow for interoperability

between devices and user interfaces. Shown in Figure 4-12 is a typical control

object model for a node. The objects within the model can be accessed via the

Node Object. Depending on the node, various sub-objects are then contained

within the Control Model. Configuration of the objects within the model may

require many items of data. Normally these are set by configuration network

variables. However, the node limit of 63 network variables may pose a problem

if a lot of parameters are required. Consequently, a file transfer mechanism exists

that allows the mapping of node memory to a virtual disk space that can then

3 A variable within a computer program has a type which describes how much storage it takes

and how the storage is delimited. For instance, the ‘C’ line int I; defines a variable I of type

integer. Amalgamations of existing types form structures and their type is their name. The

interested reader is directed to any programming reference manual for a fuller explanation.

4-34

contain the configuration data. It also may be the case that communication

between nodes requires block data transfers and so the file transfer mechanism is

also used in this case, PHIL97. This is done in small packet slices of 32 bytes so

that the network, already optimised for small control packets, is not swamped by

large messages.

Node Object

Data File Transfer

Open Loop
Sensor Object

Closed Loop
Sensor Object

Open Loop
Actuator Object

Closed Loop
Actuator Object

Controller Object

Configuration Properties

Device
Documentation

In
te

ro
pe

ra
bl

e
In

te
rf

ac
e

char file_info[16]
unsigned size[4]
unsigned long type

234 bytes

Descriptor

Data

Banked Memory

Local
Object
Model

File Transfer Protocol
Data Structure

Figure 4-12 Control Object Model using LonMark™ Interoperable

Architecture

The later work contained in this thesis relies on it being possible to transfer and

store relatively large, for a node, amounts of data (~20Kb), to support graphical

and behavioural items. The file transfer mechanism is ideally suited for this

application since it is already heavily specified by the LonMark™ organisation

and should be supported in some form on most commercially available nodes,

PHIL97, LONM97.

4-35

4.6.6 Localisation Model

The Localisation Model represents the physical environment around the node.

For nodes in the built environment this would typically be some part of the

building related to the node, for other nodes it may be a feature near the device

defining its position in plant relative terms. The localisation models can exist in

many forms depending upon the target audience for the data.

For example, the TMR MOBINET programme is a collaborative effort

researching methods of supporting mobile robots within hospitals and other

health care environments. Since the robots envisaged by this project operate

predominantly within a 2-dimensional workspace, height information is seldom

needed. Consequently, floor plans or other flat maps may be sufficient to help

guide the robot, OHAR98. It is useful to note that the localisation model

provided to a robot need not be a map suitable for human interpretation. Instead,

abstract data such as magnetic anomalies or light-meter readings can be used to

distinguish orientation and positional information for the robot.

For a human user of the ARIADNE system the localisation model takes the form

of a speech message describing the location. The Access nodes designed by the

author for ARIADNE respond to appropriate user requests by playing the

message so that they may orientate themselves to the environment.

Finally, the model may take the form a fully features 3-dimensional model of the

surroundings, or part of the plant, around the node. When a user is presented with

data in this form a variety of sophisticated interaction options become available.

These are covered in Chapters 5 and 6.

4-36

4.6.7 Static Feature Model

The Static Feature Model contains features that are located close to the device,

but are not electrically connected to it. Whilst they cannot be monitored and

controlled, by being including in the description they can be located through the

network. An example might be a telephone within a room that is near a room light

controller. Each static feature is given a globally unique identifier within the

environment.

Whilst the static feature is not directly controlled or monitored by the node it can

still exist within the node’s LOM. This allows for completeness in the

representational aspects of the system and allows interconnection between the

various classes of object. For instance, the door adjacent to a node can have a

static feature associated with it and an entry within the node’s localisation

model. This allows for complete description of the environment in a compact and

regular manner.

4.6.8 Dynamic Feature Model

Nodes within a network move very infrequently. However, it may be that objects

that move around the environment need monitoring and so this model allows

references to these to be stored. This allows the location and tracking of

moveable resources such as people, equipment and robots.

For the ARIADNE system, users and equipment are provided with contactless ID

tags that are monitored by microwave reader units placed around the

environment. Originally designed for motorway tolling applications, the reader

units are connected to the network by custom nodes designed by the author giving

them a network presence. Subsequently, each is associated with a primary Access

node in the environment that stores a list of the current tags within its domain,

FOST98a.

4-37

Objects within a node’s Dynamic Feature Model can be located via the network

using searching agents, FOST97a. The agents used by ARIADNE present a useful

method for accessing and obtaining information from a control network. The

whole area of intelligent agents within computer networks is a rapidly growing

research area as described by Wooldridge in WOOL94. Unfortunately, their

implementation within a control network is limited by the inability to pass code

between nodes (which languages such as JAVA permit). However, even limited

data storing agents offer a novel alternative for ‘data harvesting’ on a fieldbus

system provided suitable search functions are implemented on each node.

4.6.9 Adjacency Model

The Adjacency Model contains a list of nodes that are adjacent to the host in the

environment. It stores a record of physical connectivity between devices and

includes a measure of the difficulty in translocating between the host node and the

target.

Primarily used within the ARIADNE project, the Adjacency Model supplies the

connectivity information required to allow searching agents to ascertain optimal

paths between nodes. Shown in Figure 4-13 is the Adjacency Model for the

Distributed Systems Research Group laboratory. An Access node in the centre of

the lab contains five Adjacency models pointing to connecting nodes in the

surrounding area. This allows a user to request navigational information and then

be given a suggested direction leading to their eventual goal.

4-38

Figure 4-13 Adjacency Model for a Laboratory

4.7 Local Modeling Techniques on ELMA

Having covered the various features of the full Local Object Model this section

goes on to describe how it can be used to aid the programming and visualisation

of the ELMA robot.

From Sections 4.3 and 4.4, it can be seen that even the simple distributed control

system used in ELMA can generate a large amount of information. For example,

the subsumption architecture implementation generates over 80 pieces of data at

20Hz that are directly related to walking (servo positions, state machine values

and so on), without even considering the network related parameters. It can be

appreciated that a large plant will potentially have much more data.

4-39

4.7.1 ELMA Performance Models

Whilst designing the software for ELMA it has been stated that incomplete sensor

information was emulated using functional blocks. It was also stated that these

blocks could be said to form part of the node’s performance model. This idea can

be extended by adding additional performance models to completely emulate the

state of the device. If this is done then real-time data can be fed into the

performance model from the network at the same time as a simulation unit

calculates new output values for the leg node. The question then arises, why is

this useful?

It follows that devices written to be interoperable in this fashion permit their

inputs, outputs and internal connections between functional blocks to be

interconnected with external devices. Consequently, operation in the case of

partial failure of a block (perhaps due to a sensor failing) can be emulated on a

different processor. Moreover, complete emulation of the failed device can be

performed by an additional replacement node. Obviously for this functional level

redundancy to occur the program code within the emulation blocks must operate

at the same level (i.e. processor instruction code level) as the code on the node.

Considering Figure 4-14, the node contains the same program code as before

which implements the subsumption architecture. Above this are a number of

functional blocks that are implemented on the node. They operate in conjunction

with the node level code to implement missing or incomplete functionality in the

robot. Equally, they can be replaced by functional blocks lying outside the node

itself. In themselves, these blocks form part of the node’s performance model.

However, to complete it an additional block is added that models the behaviour

of the leg node using the remaining information from the node and data from the

middle level blocks.

4-40

Figure 4-14 Leg Performance Model Decomposition

The complete device performance model on its own is an abstract quantity that

can only usefully be duplicated on an equivalent Neuron processor based node.

However, there is no requirement for the highest level model to be written in

code compatible with the Neuron processor. Instead, the performance model can

contain program code written for a completely different target processor. This

may be some PC based program module or even a JAVA applet. Execution of the

performance model on another host allows for software emulation of the device.

If the host is then connected to the fieldbus via a suitable interface card then it

can duplicate the actions of the node in real-time providing monitoring and

control options. Obviously there are considerable constraints associated with

storing program code designed for other hosts on a node due to its limited

memory size. However, this can be overcome by storing a virtual reference to

the performance model on the node and locating the actual model on the network

server. This concept of abstracting performance models and virtual referencing

is fully explored in the Damocles software covered in Chapter 6.

4-41

4.7.2 ELMA Localisation Model

The other LOM class implemented on ELMA is the Localisation Model. From

Section 4.6.6 this model deals with storing a description of the physical area

around the node. For the hexapod only two types of model are required. The head

node deals with storing a description of the head and body of the robot. The leg

nodes store a representation of the leg structure. For this application, the models

were stored in a 3D representational format created using 3D Studio Max from

Autodesk, AUTO96. The exact nature of this modelling format is covered in

more detail in Chapter 6. For reference, the two types of model are shown in

Figure 4-15, with the ELMA chassis on the left, consisting of head, body and

eight supporting brackets for the legs (only four visible) and the leg node itself on

the right.

Figure 4-15 ELMA Localisation Models

A suitably written visualisation program can access the localisation model stored

on each of the nodes using the file transfer mechanism previously described.

Having obtained the model data the displayed images can be manipulated to

display concurrent data from the robot as described in the next section.

4-42

4.7.3 Monitoring ELMA

During the course of this research, various programs were used to monitor and

control the hexapod. The limitations posed by some of the earlier programs led to

the generation of more sophisticated applications to facilitate easy operation. The

desire to provide intuitive user interfaces to complex distributed systems is a

natural one and many researchers are currently investigating this area. For

example, there has been considerable research in recent times on advanced

control room technology for power supply companies. Nakatani et al. (NAKA97)

have developed a sophisticated tool that aids power-network operations

managers to diagnose and interact with national electricity distribution grids.

These interfaces show increased complexity and yet demand rapid responses

from the user and so they must be made easier to use, LEAT95.

The basic network monitoring tools provided by LonWorks®, and most other

fieldbus systems, are limited to pure textual representations of network variable

values using a browser. These values are updated periodically and can be

modified resulting in an update to the node’s value. The numbers displayed are

interpreted by the browser and scaled to the appropriate value using the typing

information implicit in the network variable. For instance switch values of type

SNVT_switch are scaled and displayed as a numeric pair describing the switch

level and its corresponding binary state (see Section 2.4.5 for an explanation of

SNVTs). However, this presents a problem when a user-defined variable not

covered by a standard type is used. The data is presented as a pure binary field,

which has to be interpreted manually. This basic type of monitoring tool is shown

in Figure 4-16.A.

Data presented in this manner has a number of disadvantages. The abstract fields

of user defined data are not easily understood. Update intervals are frequently

too slow to catch rapidly changing events. Moreover, high frequency data is

4-43

extremely difficult to analyse when presented in a textual form. Relationships

between the multivariate fields are also hard to see.

For these reasons a more sophisticated control program was developed, this can

be seen in Figure 4-16.B. Values from specific network variables that require

monitoring are presented on the display adjacent to a pictogram of their

respective leg. In general terms, this type of control program is typical of most

fieldbus user interfaces, examples can be seen in IEC98 and ECHE98b. For the

ELMA specific control program shown the network variables made available by

the middle level functional blocks of the performance model can be monitored

and altered.

The final evolution of a user interface developed for the hexapod was to allow

extraction of the full performance and localisation model of each leg, this can be

seen in Figure 4-16.C. The preceding software control program (Figure 4-16.B),

only allowed a specific set of network variables to be monitored. Whilst these

variables are part of the node’s Control Object Model they are not obtained by

examining it. Instead, since the monitoring program is custom written and will

only ever communicate with a robot network, they are specified at the time the

program is written. However, in the final case the node’s full performance

model, and consequently the functional blocks that compose it, is downloaded to

an application viewer. The viewing program then instantiates appropriate objects

(C++ or JAVA based constructs) which automatically configure themselves to

display appropriate information from the robot.

The example shown in Figure 4-16.C is obtained by taking the head node

localisation model (previously shown in Figure 4-15) and combining it with the

localisation model from a particular leg node. The body of the robot stays static

at all times. However, the leg node localisation model is drawn at a position

based upon the current value of the leg’s output network variables. This

4-44

manipulation of the graphical localisation model is performed by the related

performance model executing on the PC based host. Additionally, a grid of cells

can be seen that correspond to the visit counts generated when using the

reinforcement learning algorithm from Section 4.4.

Figure 4-16 Progression of Visualisation Programs

It can be seen from this example of a sophisticated fieldbus monitoring program

that a number of interaction and visualisation methods are possible. The

generation of dynamic user interfaces by extracting modelling information from

the node itself in this way is believed to be unique. Chapters 5 and 6 go on to

study the implications of this and to explain in detail the operation of the viewing

program that allows this software to function. Considering the custom written

4-45

loader, for a simple network of nodes a dedicated user interface is simple to

write and normally offers adequate performance. However, when the user must

interact with a large distributed control system then efficient methods of

visualisation and interaction become necessary. These needs are addressed by

the Damocles software in Chapter 6. During the course of this research it became

apparent that for large networks where the user is surrounded by many nodes a

novel interaction method was needed that permitted simple examination and

control of the networked nodes. For this reason, augmented reality was selected

as a suitable candidate for the implementation of an immersive virtual control

system; this is described in the next Chapter.

4.8 Conclusions

In this Chapter, a variety of different software architectures have been examined.

These have all been implemented on the ELMA hexapod. The chosen

architectures represent a structured and methodical approach to the construction

of distributed control software. In particular they show that complex and

sophisticated software can be implemented on relatively low performance

hardware when that hardware offers certain intrinsic networked capabilities.

In Chapter 1 two statements regarding the implementation of distributed control

systems were made. That is, low performance yet cost effective systems are often

overlooked by academia when implementing control architectures. Secondly,

complex control algorithms are often ignored by industry because it is perceived

that they cannot be implemented on the chosen processors. The implementation of

a subsumption architecture and reinforcement learning on a network of Neuron

processors demonstrate that both of these statements can be negated when

carefully constructed software is used.

4-46

Both the Reactive (AFSM) controller and the Q-Learning leg trajectory

controller have been compared to the more simplistic centralised control scheme

presented in Chapter 3. Experimental data indicates that localised, distributed,

processing can be used to reduce network bandwidth usage with minimal effect

on software complexity. Furthermore, comparison with other published material

indicates that these solutions are not significantly worse than any other and in

some cases (for instance end effector Q-Learning) offer better performance.

The success of the ELMA hexapod, in terms of reliability and demonstrability,

show that LonWorks® is a viable platform for developing sophisticated

multiprocessor based robotic systems.

It has been shown that a performance model composed of a number of functional

blocks can be used to aid the design, development and testing of this robot

system. Furthermore, the performance model has been shown useful in the

visualisation of the robot where it is used to group software blocks into readily

observable units. These units offer the user custom interfaces specific to the

device in question giving him relevant data in the most appropriate format.

The Performance Model is part of a much greater whole called the Local Object

Model. This concept, comprised of a number of different classes, is useful when

maintaining, monitoring and interacting with distributed control systems. For the

monitoring of ELMA the localisation model has been used to store graphical data

corresponding to the body and legs of the robot. In this case, the performance

model operates upon the localisation model to provide a dynamic display of leg

orientation and related data. The software binding these items together is

examined in the next two Chapters.

With the installation of a large scale distributed control system in the Department

of Cybernetics it became apparent that the ideas developed on ELMA could be

4-47

enhanced to cater for environments where the user is enveloped by the control

system. In this case, many disparate nodes are placed around the environment.

The user requires the ability to operate with either a subset of devices in his

locale or all of the devices of a certain type. Since many nodes in the built

environment are not observable (being built into ceiling spaces and so on) then a

visualisation tool must be able to display spatial context relevant information. In

other words, a node or virtual representation of it should appear in the users

workspace at a position consistent with its world location to aid recognition and

interaction.

In the next Chapter the development of an augmented reality based visualisation

tool is shown. In particular a number of hardware and software related issues are

identified as governing the performance of such a system and these are

addressed. Based upon this background Chapter 6 goes on to detail the operation

of a fully immersive interaction tool for use with distributed control systems.

This same tool has been used as the viewer application mentioned in Section

4.7.3 thus demonstrating its applicability to a wide range of monitoring and

control tasks on fieldbus systems.

4-48

CHAPTER 4 GAIT GENERATION IN HEXAPOD ROBOTS AND LOCAL MODELING

TECHNIQUES...4-1

4.1 INTRODUCTION...4-1

4.2 CENTRAL PATTERN GENERATORS..4-3

4.2.1 Centralised Leg Positioning ..4-4

4.2.2 Centralised Sequencing..4-5

4.2.3 Distributed Positioning with Centralised Scheduling ...4-6

4.3 REACTIVE GAIT CONTROL ...4-6

4.3.1 Subsumption Architecture ..4-8

4.3.2 Augmented Finite State Machine...4-9

4.4 LEG PATH GENERATION BY REINFORCEMENT LEARNING... 4-13

4.5 COMPARISON WITH EXISTING CONTROLLERS.. 4-20

4.5.1 Performance using AFSM.. 4-21

4.5.2 Performance using Leg Path Generation.. 4-23

4.6 LOCAL OBJECT MODELS ... 4-26

4.6.1 Background.. 4-27

4.6.2 HS-ADEPT.. 4-28

4.6.3 ARIADNE.. 4-31

4.6.4 Performance Model .. 4-32

4.6.5 Control Object Model... 4-33

4.6.6 Localisation Model... 4-35

4.6.7 Static Feature Model.. 4-36

4.6.8 Dynamic Feature Model .. 4-36

4.6.9 Adjacency Model... 4-37

4.7 LOCAL MODELING TECHNIQUES ON ELMA... 4-38

4.7.1 ELMA Performance Models... 4-39

4.7.2 ELMA Localisation Model ... 4-41

4.7.3 Monitoring ELMA ... 4-42

4.8 CONCLUSIONS ... 4-45

