
Walking in Unstructured Natural Environments

Josep M. Porta and Enric Celaya

Institut de Rob�otica i Inform�atica Industrial (UPC-CSIC)

Gran Capit�a 2-4, 08034, Barcelona, SPAIN

Abstract

In this paper we present a complete

behavior-based controller that allows a six

legged robot to walk in unstructured environ-

ments. The task of walking on rough terrain

is decomposed in two subtasks: terrain adapta-

tion and movement generation. The �rst one

maintains the stability of the robot while the

second is in charge of the advance movement.

We present solutions to each of these two tasks

and show how they can be integrated into a

single controller so that further improvements

can be made on each of them without modify-

ing the other. The results of a series of eval-

uation test performed on a real robot are pre-

sented.

1 Introduction

One of the main objectives in the �eld of

mobile robots is that of building systems able

to operate in natural environments, which

usually are dynamic, unstructured, and (too

often) hazardous, making this objective really

hard to achieve.

Legged robots are a special case of mo-

bile robots. Their control involves more as-

pects than that of wheeled robots. While in a

wheeled robot just two parameters (speed and

direction) are enough to command the robot

(and usually these parameters can be directly

translated to motor orders), to reach an equiv-

alent functionality with a legged robot we have

to take into account aspects such as leg coor-

dination, gait generation, turning strategies,

etc. As a counterpart, legged robots are much

better suited for traversing highly unstruc-

tured rough terrain, where obstacles of any

size can appear at every step. This kind of

terrain should be considered as the natural

habitat of a legged robot.

The task of walking on rough terrain has

two components: a static and a dynamic one.

The �rst can be de�ned as follows:

Given the current position of the

robot, adopt a posture as stable as

possible.

The dynamic component is in charge of the

advance movement of the robot and can be

thought as:

Issue the appropriate sequence of

leg movements so that the robot ad-

vances with the desired speed and di-

rection.

We call these two components the Ter-

rain Adaptation and the Movement Genera-

tion problems, respectively. To build a com-

plete controller for a legged robot, both prob-

lems have to be solved. The common approach

is to develop a movement generation module



and enlarge it to include some aspects of ter-

rain adaptation [2], [6]. In [5] we proposed

to use the inverse approximation: solving the

terrain adaptation problem �rst and then in-

clude aspects of movement generation, and we

argued that this approach lends to simpler and

more robust controllers.

Nevertheless, there is no need, in principle,

to impose the primacy of one problem over

the other. Both problems can be solved sep-

arately, provided the resulting solutions can

be properly integrated at the end. In the

next sections we present our solutions to these

two problems and the way in which they can

be integrated so that they can work together

with a good performance. The level of per-

formance achieved with the proposed control

structure is illustrated with quantitative re-

sults obtained from tests performed on a real

robot.

2 Work Frame

2.1 The Robot

As a testbed for our experiments we have

used Genghis II, a commercially available six-

legged robot. Its body is about 35 cm length,

legs measure 10 cm and when they are com-

pletely vertical the body is 8 cm separated

from the ground. The maximum lift posi-

tion of a leg maintaining the body horizontal

is 13 cm (the leg is completely raised while

the other legs are vertical). Each leg is pro-

vided with two motors, one for advance (the �

motor) and one for lift movements (the � mo-

tor). A force sensor is provided for each motor.

Other sensors of the robot are, two whiskers,

a belly contact sensor, four infrared emitter-

receiver sensors, �ve passive pyro sensors, and

one inclinometer in the advance direction of

the robot.

For more details on Genghis hardware you

can see [8].

2.2 The Software Architecture and the
Programming Language

In rough terrain, a legged robot must react

quickly to unforeseen problems and it is di�-

cult to construct and maintain an exact model

of the environment since it does not present

regularities and tends to be dynamic. These

characteristics discourage the use of symbolic

architectures to program legged robots.

The behavior-based approach seems to be

more useful for this task. It does not require

the construction of an environment model. It

is based on reactive modules that operate in

parallel providing quick responses to the ter-

rain features detected by the robot. For this

reason we use the subsumption architecture [4]

(a behavior-based architecture) to implement

our controller. The basic ingredients of this

architecture are:

1. Controllers are composed of processes

(called behaviors) that work in parallel

and that can share information through

message passing.

2. Precedence between behaviors is achieved

with message suppression and inhibition.

3. The task is decomposed in layers. The

philosophy behind subsumption is that

the activity of lower layers should con-

tribute to the workings of the higher ones.

This provides a methodology to build and

test controllers incrementally.

Brooks designed a special language [3]

(called Behavior Language, BL) to implement

subsumption-based controllers. Programs for

Genghis' BL compiler are developed on a per-

sonal computer and transferred to the robot's

memory (of 32 Kb) for its execution. This

imposes a short limit to the size of the pro-

gram that controls the robot. So we decided to



translate the execution to a personal computer

and communicate sensor readings from the

robot and commands to the motors through

serial line. This supposes the lost of autonomy

of the robot and the slow down of reactivity

due to serial line delays, but as a counterpart,

we can use all the personal computer resources

(a �le system, a large main memory, a oating

point unit and pre-existing software).

We have developed a compiler [11] to gen-

erate executable code for the personal com-

puter. In this compiler, the basic structure

of BL has been maintained, but a number of

features have been improved and some restric-

tions have been removed:

� While in BL there are just two levels of

priority for messages, in our language the

programmer can use up to 256 levels of

priority, so he can avoid arti�cial con-

structions to get a similar e�ect [5].

� In BL the inhibition of messages can only

a�ect output messages and in our lan-

guage it can a�ect both outputs and in-

puts.

� Behaviors can be grouped into modules

so that its activation can be controlled as

a whole.

� There is the possibility to share memory

between behaviors since the modules can

include variable declarations.

� The user can de�ne its own data types

(as in other behavior based languages [7])

and functions.

� In BL messages can only contain simple

bytes and in our language they can con-

tain any data type.

� In our language, the suppress/inhibit

time is variable while in BL it was pre-

�xed.

With our programming language one can

program following the subsumption architec-

ture principles but one can also choose to use

other philosophies since the language does not

restrict the programmer in this aspect. It is

the programmer responsibility to use a coher-

ent programming style.

3 The Terrain Adaptation prob-

lem

The purpose of terrain adaptation is to

adopt a stable stance in any surface. This

is accomplished by including mechanisms to

keep legs in contact with the ground, the body

in an appropriate position with respect to the

local surface, and the vertical projection of the

center of mass well centered with respect to

the supporting legs. All these tasks can be

seen as environment driven tasks, so we have

implemented them with reexes. A reex is

a simple and pre-programmed process that is

executed every time a speci�c sensorial pat-

tern is detected.

According to its sensorial inputs we have

three kinds of terrain adaptation reexes:

� Leg reexes: They involve individual legs

and respond to the signals of their own

local sensors.

� Proprioceptive reexes: They respond to

the posture adopted by legs at any time.

� Body reexes: They react to perceptual

conditions related with the body as a

whole.

3.1 Leg reexes

These reexes are in charge of the primary

terrain adaptation mechanism that consists in

trying to keep all legs in contact with the

ground. Each leg has three reexes:



� The Land reex: Whenever a foot is un-

loaded (indicating that it has lost contact

with ground) the leg is moved down un-

til a new contact with the ground is de-

tected.

� The Search reex: If a leg can not reach

the ground with a descending movement,

it steps forward and backward in order to

�nd a support point in the surrounding

area.

� The Skip reex: If a leg collides with an

obstacle while moving horizontally, then

the leg is retracted and the movement is

re-issued but at a higher position with the

hope of placing the food over the obstacle.

All these reexes have been observed in in-

sects [9], [10]. The combination of these re-

exes results in a good likelihood that all legs

�nd a supporting surface, increasing the sta-

bility.

3.2 Proprioceptive reexes

If we let the leg reexes work without con-

trol then the robot can evolve towards inap-

propriate postures (or con�guration of leg po-

sitions with respect to the body). The pur-

pose of the proprioceptive reexes is to re-

strict the posture according to several crite-

ria. These criteria are controlled by speci�c

reexes that we call balances and that we de-

scribe next. For those aspects of the posture

controlled by the lift motors we consider three

balances (that we call � balances):

1. Height balance.

The average lift position of legs should

be maintained such that legs stay verti-

cal enough to avoid body contact with

ground and to reduce the energy ex-

pended by motors against gravity, but not

too much to improve stability and to al-

low force readings to be measured in the

lift motors.

2. Roll balance.

The average lift position of legs on the

right side of the robot should be balanced

with the average lift position of legs on

the left side to avoid a lateral (roll) de-

compensation of the robot.

3. Pitch balance.

The average lift position of the anterior

legs of the robot should be balanced with

the average lift position of the posterior

legs to avoid a longitudinal (pitch) asym-

metry of the robot.

For those aspects of the posture controlled

by the advance motors we consider two bal-

ances (called � balances):

1. Advance balance.

The average advance position of legs

should be maintained so that the robot's

center of mass is centered with respect to

the body.

2. Yaw balance.

The average advance position of legs on

the right side of the robot should be bal-

anced with the average advance position

of legs on the left side to maintain the

orientation (yaw) of the body.

When the posture does not ful�ll one of

these criteria, then the corresponding balance

issues a simultaneous movement of all legs,

that we call gesture, to correct the situation.

A gesture can be seen as a higher level form

of motor control, in which legs are not moved

individually but in a coordinated way.

The six advance and the six lift positions

of legs de�ne two six-dimensional spaces of



111

1

1

1

1

1

1

1

1

-1

-1

-1 -1 -1

0 0

0 0

1

-1

1 1

1 1

1

-1

1
-1

1

-1

-2 -2 -2
2

Figure 1: Default posture and a the six or-

thogonal basic � gestures. The corresponding

gestures applied to the lift motors constitute

the basic � gestures.

postures, and their movements de�ne corre-

sponding six-dimensional spaces of gestures.

A convenient orthogonal basis for the space of

� gestures is shown in Fig. 1. The same basis

can be applied to the space of � gestures. We

call these basis the � and � basic gestures, re-

spectively. An arbitrary leg displacement can

be obtained by a unique combination of the

six basic � gestures for the lift motors and the

six basic � gestures for the advance motors.

Height, roll, and pitch balances are corrected

by means of the �rst, second and third ba-

sic � gestures, respectively, while the advance

and yaw balances are corrected by means of

the �rst and second basic � gestures. Since

the basic gestures are orthogonal, each bal-

ance is only a�ected by its associated gesture,

and corrections to di�erent balances can be

made independently.

Note that while the �rst three basic � ges-

tures control the body's height and attitude,

the last three ones change the shape of the

supporting surface de�ned by feet. To allow

the accommodation of feet to arbitrary ground

shapes, we should not impose further restric-

tions involving the last three basic � gestures.

Similarly, while the �rst two basic � gestures

control the body's advance and orientation,

the e�ect of the remaining four basic � ges-

tures is a slip of feet on ground with no net

motion of the body. This is the reason why

we do not introduce more balance reexes.

The action of each balance is only triggered

when its deviation reaches a given threshold.

In order to perform smooth movements, each

balance tries to reach its target value incre-

mentally, making successive small corrections

according to its associated gesture.

The posture control is a second priority

adaptation task, so it only works on those legs

that are not executing any leg reex.

The use of balances is a powerful though

simple way to coordinate leg movements and



C.M

C.M

Figure 2: A wrong position in a slope area

(top) and the same situation corrected (bot-

tom).

to provide cooperation between them. For in-

stance,when a leg is raised, the height balance

lowers the other legs lifting the body, and the

pitch and roll balances elevate the body by

the side of the raised leg helping it to reach

a higher position. When a leg moves forward

the rest of legs are moved backward (by the

advance balance) helping the �rst to advance

further. In this way the mechanical limits of

the working area of each leg are overcome by

the inter-leg cooperation.

3.2.1 Body reexes

These reexes adjust the position and atti-

tude of the body by modifying the default

values aimed at by the balances according to

several environment features detected by sen-

sors situated in di�erent parts of the robot's

body.They are:

� The Slope adaptation reex: When the

robot is on a slope area (detected by the

inclinometer) it moves all the legs back-

ward (in a ascendant slope) or forward

(in a descendant one) to keep the projec-

tion of the center of mass better centered

in the support polygon de�ned by legs in

contact with the ground (see Fig. 2).

� The Height and pitch modi�cation reex:

If the belly contact sensor of the robot de-

tects an obstacle, then the average height

and pitch aimed at by the corresponding

balances are modi�ed to avoid the con-

tact.

� The Descendent step adaptation reex: If

a front or rear leg can not �nd a sup-

porting surface, then the robot lowers its

body on the side of the problematic leg

approaching it to the ground.

4 Movement Generation prob-

lem

This problem is usually formulated as a task

without external sensorial feedback. This sup-

poses to assume that the robot moves in the

simplest of the environments: at terrain.

A legged robot moves forwards when it

steps some legs while the rest of legs (sup-

porting legs) move synchronously backwards

(in the leg retraction movement). So a legged-

robot controller must decide which legs have

to step and the consequent retraction velocity

of the supporting legs (slow velocities would

be ine�cient and too fast ones would move

some legs to its mechanical limit making them

to be dragged).



0

2

5

4

3

1

Time

Step

0

2

5

4

3

1

0 1

2

4

3

5

TOP
VIEW

Figure 3: The two extreme members of the

metachronal family of gaits: Slow gait (top)

and Tripod gait (bottom).

Deciding which legs have to step is not an

easy task. Studies of insects' gaits can be used

as inspiration. In [13] we can �nd a descrip-

tion of insects' gaits on smooth horizontal sur-

faces. These gaits are the metachronal gaits

that have been shown to be the most stable

cyclic gaits [12]. For a six legged robot, one of

the members of this family is the tripod gait

(in which three legs are stepping while the oth-

ers are supporting the body) that is the fastest

statically stable gait (see Fig. 3).

But the gait selection is not the only compo-

nent of the movement generation task. It also

includes speed and advance direction control.

These two aspects can inuence both the gait

selection and the movements of each individ-

ual leg.

From this overview of the movement gen-

eration problem we can conclude that a con-

troller for a legged robot should include mech-

anisms for the gait generation, for adjusting

the retraction movement of the supporting

legs according to the current gait, for regulat-

ing the advance speed, and for changing the

advance direction. Next we describe how we

have solved them in our controller.

4.1 Gait Generation mechanism

The gait generation mechanism should pro-

vide stability and coordination between legs:

� Stability: Performing a step a leg should

not put the robot in a unstable posture.

In the case of our robot, not having neigh-

bor legs raised at the same time (Fig. 4) is

a su�cient condition to maintain a stable

posture. To ful�ll this condition we have

to:

{ Avoid rising a leg if one of its neigh-

bors is already on the air. This req-

uisite is satis�ed by means of a rule

that only allows a leg to step if its



two neighbors are on the ground. If

we assume that our robot walks on

at terrain, we can use the lift posi-

tion of the leg to determine whether

a leg is on the ground or not.

{ Avoid stepping two neighbor legs

simultaneously: This requirement

is implemented with a token pass-

ing protocol between neighbor legs.

Once a leg has stepped passes a to-

ken to each of its two neighbors.

Only those legs that have the both

tokens coming from its two neigh-

bors are allowed to step. There is

one token shared between each cou-

ple of neighbor legs and it is not the

case that two neighbor legs have the

token at the same time. This avoids

simultaneous steps. Initially the to-

kens are set as shown in Fig. 5.

� Coordination: The sequence of steps

should involve all legs uniformly. A min-

imal condition to achieve coordination is

that a leg should not step again if its

neighbors have not stepped. This con-

dition is assured by the previously de-

scribed token passing protocol.

The step movement consists in raising the

leg, moving it forward to a predetermined po-

sition and moving it down to the ground po-

sition.

It is remarkable that our gait generation

mechanism is completely local since the de-

cision of making a leg to step depends only on

the state of the two neighbor legs and not on

a global evaluation of all leg states. This com-

pletely local mechanism contrasts with other

existing gait generators [2], [6]. In our con-

troller there is no restriction between the two

middle legs (as it exist in other gait generation

mechanisms [1]) so they can step together as

it is observed in some insects [10].

0 1

2 3

4 5

Figure 4: Neighbor relation between legs used

for the token passing and the support relation

between legs.

0 1

2 3

4 5

1 0

1

0

0

1
0

1
0

1
0

1

Figure 5: Initial token distribution with 1

meaning that the leg has the corresponding to-

ken. With this distribution the only leg enabled

to step is number 4.

This gait generation mechanism produces

the tripod gait, but other gaits inside the

metachronal family can be obtained by intro-

ducing a delay between the satisfaction of all

conditions to execute a step with the rear legs

and the actual step execution. For instance,

with a delay of three times the time to per-

form a step, the emerging gait is the slow gait

(see Fig. 3).

4.2 Leg retraction

The retraction velocity of the legs has to

be automatically adapted to the current gait.



Brooks (in [2]) uses a simple mechanism that

produces that e�ect so we adopt it. This

mechanism is completely equivalent to the ad-

vance balance described in section 3.2 except

that its action has to be limited to those legs

that are not stepping.

4.3 Speed and Direction control

There are, at least, three ways to control

the advance speed of our robot:

1. Decrementing the step length of all the

legs.

2. Changing the time between consecutive

steps.

3. Changing the gait. This is easy to do just

by adjusting one parameter (the step de-

lay between rear legs).

The �rst two ways to control the advance

speed are independent of the gait generation

mechanism so they are applicable even if we

change it.

To make the robot turn it is necessary to

set di�erent advance speed to each side of the

robot. The last two mentioned methods to

change the speed a�ect both sides of the robot

because the token passing protocol extends

their e�ects to all legs, but the �rst method

can be independently applied for each leg. If

we set di�erent step lengths in both sides of

the robot, then a di�erence in the average ad-

vance position of the right legs with respect to

the left ones will appear. To correct this dif-

ference we use the Yaw balance (introduced in

section 3.2). This balance, when compensat-

ing the di�erence, makes the robot turn. The

largest the di�erence between the step lengths

of both sides of the robot, the strongest the

turn e�ect is. When the two sides use oppo-

site step lengths then the robot turns in place.

These control strategies are useful if we

want to continuously modify the advance

speed and direction of the robot, but they

are inappropriate when we want to brusquely

change them. Our gait generation mechanism,

however, gives us the chance of inverting the

advance speed: if we ip the tokens assigned

to all legs at the same time that we invert their

step length then the robot will immediately

undo the last executed steps. It also permits

to start a turn-in-place movement just ipping

the tokens shared between legs of one side of

the robot while changing their step length.

5 Integration process

Once we have solved each one of the two

problems posed in the introduction we have

to join the partial solutions to get a controller

that solves our primary objective: walking on

rough terrain. The process of combining the

two solutions that we have presented can be

seen as enlarging the terrain adaptation mod-

ule with a dynamic component that continu-

ously changes the position at which the robot

is trying to adapt. Conversely, it can be seen

as expanding the movement generation mod-

ule with the capacity to operate in any envi-

ronment (not just in at terrain).

When we join the two presented controllers

we detect some interactions that must be

solved:

� There are two Advance and Yaw bal-

ances: As we have explained in section

4.2, the advance an yaw balances appear

in both controllers. When they are work-

ing together we have to disconnect one of

them to avoid duplication.

� There are two di�erent behaviors that try

to descend a leg to the ground: the Land

reex and the descending movement of

the step behavior. We remove the second

and keep the former because it does not



suppose that the ground is in a pre-�xed

position.

� There are two kinds of logical sensors for

ground detection. Ones are based on the

force readings of the lift motors and the

other are based on the current lift posi-

tion of the leg. Since in irregular terrain

the ground can be at any height, the sec-

ond logical sensors must be disconnected

and the modules that received theirs sig-

nals should receive information from the

other sensors. This change alters the in-

puts to the gait generation mechanism

(but not the mechanism itself) and ex-

tends the inhibition on the leg retraction

(now it a�ects to all legs that are not in

contact with the ground and not just to

those legs that are stepping).

� There are some behaviors that can try to

move a leg simultaneously. For instance,

the step behavior of a leg can be triggered

at the same time that a leg reex is con-

trolling that leg. We have to establish a

priority system between them. We choose

to assign the higher priority to the step

behavior because it is not sensible to keep

on looking for a supporting surface (that

is the job of the leg reexes) if a leg is in

conditions to step (and look for this sur-

face on a more advanced position). With

this decision we have three levels of prior-

ity: the step behavior is the most priori-

tary movement and the leg reexes have

more priority than the balances. This

three level priority system was di�cult to

construct in Brooks BL [5] but its easy to

implement in our new language [11].

After all these modi�cations some parame-

ters must be tuned. For instance, the thresh-

olds allowed by the balances and the size of

their correction movements have to be ad-

justed to produce smooth walking motion.

With a good design of the terrain adapta-

tion and the movement generation modules,

these are minor changes that can be limited

to some parameter modi�cations or message

suppressing and these constructions are really

easy to implement within the subsumption ar-

chitecture.

We are free to enlarge the set of reexes in

the terrain adaptation module extending the

capabilities of our robot to tackle with new ob-

stacles in a completely transparent way for the

movement generation module. Conversely, we

can change the movement generation module

(including new strategies to choose the gait,

to turn, . . . ) without changing any reex of

the terrain adaptation module.

Once the whole controller is working, we can

enlarge its capabilities. We have implemented

some behaviors that are not useful when one of

the two modules is working alone but that can

improve the global performance when they are

working together:

� A Steps anticipation behavior: When

Genghis detects a step with its front

whiskers, it raises its body on the side of

the detected obstacle to facilitate climb-

ing on it.

� AWall avoidance behavior: Contact with

the front whiskers slightly decrements the

step length of legs on the opposite side

of the robot. In this way, a prolongated

contact that reveals the presence of an

untraversable step, makes the robot turn

to avoid it. If the contact is detected with

both whiskers then the robot will move

backwards.

� A Cli� avoidance behavior: If a front leg

(in the advance direction of the robot) is

unable to �nd a supporting surface af-

ter looking for it for a while, then the

robot can assume that it is in front of a



cli�. Then it can use the direction control

strategies to avoid falling down.

6 Results

In the next sections we give some data that

can serve as an evaluation of the terrain adap-

tation module, the movement generation one

and the whole controller.

6.1 Terrain Adaptation evaluation

We have confronted our robot to some iso-

lated obstacles as a controlled test to measure

its capacity to adapt to general terrain con-

ditions. All robot's legs can be individually

placed over an obstacle up to 8 cm and the

robot is able to compensate for it maintain

ground contact with all legs. Front and rear

legs can �nd a supporting surface in 8 cm deep

holes, while the middle legs can adapt to holes

of 3 cm.

6.2 Movement Generation evaluation

The movement generation module de-

scribed in section 4 can make Genghis advance

at a top speed of 6.6 cm/s, which is really fast

taking into account the robot's body length.

This top speed is achieved using tripod gait.

If we use slow gait, then the speed reduces to

the third part (2.2 cm/s). These speeds are

the same when the robot walks backwards.

The robot can make a 360 degrees turn-in-

place in approximately 20 seconds.

6.3 Global evaluation

When we join the two modules as described

in section 5 then the resulting gait is not as

perfect as the gait generated by the movement

generation module alone. This is due to the

imperfect force sensors of the robot. For in-

stance, Fig. 6 shows the resulting gait when

the robot walks on at terrain. The average

4

2

0

5

3

1

Time

Figure 6: A typical gait when walking on at

terrain. The shadowed areas indicate when the

corresponding leg is stepping.

number of legs that are stepping simultane-

ously and can be used as a quantitative mea-

sure of how far is the resulting gait from the

tripod one. Using a perfect tripod gait this

value should be 3 and with our controller, it

is around 2.2.

The top speed of the global controller is

about 3 cm/s. The reduction of the speed

(compared with that of the movement gener-

ation module working alone) is due to an in-

crease of the time to execute each step caused

for the use by the Land reex as a part of the

step movement. The increment of the step

time increases the time between consecutive

steps and this reduces the speed (as we have

explained in section 4.3).

If we confront the robot with an environ-

ment with small obstacles (up to 1.5 cm) then

the average speed is slightly reduced to 2.5

cm/s. The same experiment repeated with 5

cm obstacles shows that the speed is reduced

to 1.75 cm/s and that the average number of

legs that steps simultaneously becomes 1.8.

As we can see the gait generation mecha-

nism adapts to the terrain conditions increas-

ing the stability by reducing the number of

legs that step simultaneously. Nevertheless,

even with large obstacles the resulting gait is

e�cient and the resulting advance speed is ac-

ceptable.

The robot is able to climb steps and to de-



scent cli�s up to 8 cm. With some parameter

modi�cation this value could be increased but

this would be at the cost of making less e�-

cient other aspects of the task.

7 Conclusions and Future Work

We have presented a complete behavior-

based controller for a six-legged robot that

allows it to walk on irregular terrain and ne-

gotiate insurmountable obstacles as walls or

cli�s. The main point of our work is the way in

which the two components of the task of walk-

ing on rough terrain (the terrain adaptation

and the movement generation) are separately

solved an exibly integrated. The resulting

controller is both robust (it shows a good per-

formance in several environment with really

large obstacles) and extensible (either the ter-

rain adaptation module or the movement gen-

eration one can be extended without a�ecting

the other module).

As a future work, it seem reasonable to add

a module to our controller that uses the simple

mechanisms to modify the advance direction

of the robot to drive it following a speci�c tar-

get.

Another task that seems interesting is to

use learning techniques to �nd the set of pa-

rameters that characterize each motor of the

robot. This will permit to develop better logi-

cal contact sensors based on the force readings

of the motors and will improve the global per-

formance of the controller. Additionally, self-

adaptation mechanisms can be incorporated

to the controller to change its behavior making

it more suited for climbing steps or for walk-

ing on at surfaces according to the terrain

conditions or to the mission requirements.

Acknowledgments

This work has been partially supported by

a grant from the Comissionat per a Universi-

tats i Recerca de la Generalitat the Catalunya

to the �rst author and by the Comisi�on Inter-

ministerial de Ciencia y Tecnolog��a (CICYT),

under the project "Subsymbolic techniques for

constraint satisfaction, vision and robotics"

(TAP93-0451). We also thank the assistance

received from the HEROS EC HCM Network

members to the development of this work.

References

[1] Beer R. D., Chiel H. J., Quinn R. D.,

Larsson P. (1992): \A Distributed Neural

Network Architecture for Hexapod Robot

Locomotion", Neural Computation, No.

4, pp. 356{365.

[2] Brooks, R.A. (1989): \A Robot that

Walks; Emergent Behaviors from a Care-

fully Evolved Network", Neural Compu-

tation, No. 1, pp. 253-262.

[3] Brooks, R.A. (1990): \The Behavior Lan-

guage; User's Guide", MIT A.I. Memo

1227.

[4] Brooks, R. A. (1991): \Intelligence

without representation", Arti�cial Intel-

ligence, 47, pp. 139-159

[5] Celaya, E. and Porta, J.M. (1995):

\Force-Based Control of a Six-Legged

Robot on Abrupt Terrain Using the

Subsumption Architecture", Proc. of the

7th. Int. Conf. on Advanced Robotics

(ICAR'95), September 1995, pp. 413-419.

[6] Ferrell C. (1993): \Robust agent con-

trol of an autonomous robot with many

sensors and actuators". Technical Report

1443, MIT AI Lab

[7] Gat, E. (1991): \ALFA: A Language

for Programming Reactive Robotic Con-

trol Systems", In Proceedings of the



1991 IEEE International Conference on

Robotics and Automation, Sacramento,

California, pp. 1116-1120

[8] I. S. Robotics (1994): \The Genghis II

Legged Robot Manual" February, 1994,

v1.5.1

[9] Espenschied K. S., Quinn R. D., Beer

R. D., Chiel H. J. (1996): \Biologically

based distributed control and local re-

exes improve rough terrain locomotion

in a hexapod robot" In Robotics and Au-

tonomous Systems, 18, pp. 59-64

[10] Pearson, K. G., Franklin, R. (1984):

\Characteristics of Leg Movements and

Patterns of Coordination in Locusts

Walking on Rough Terrain", Int. Jour-

nal of Robotics Research, Vol. 3, No. 2,

pp. 101-112

[11] Porta, J.M. and Celaya, E. (1996): \The

Behavior Language for IBM PC: User's

guide", IRI Tech. Report., September-96

[12] Song S. M., Waldron K. J. (1987) \An

analytical approach for Gait Study and

its application on Wave Gait", Int. Jour-

nal of Robotics Research, Vol. 6, No. 2,

pp. 60-71

[13] Wilson, D. M. (1966): \Insect Walking",

Annual Rev. of Entomology,11, pp. 103-

122


