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1 Introduction

In recent years, there has been increasing interest in legged locomotion, primarily due to the realization
that wheeled locomotion has inherent limitations on unstructured environments. The use of legs, adopted
by many animals and insects who need to locomote over a wide range of di�erent terrain conditions, seems
to be the most natural and e�ective solution to the problem. In this context, we believe that the analysis
and understanding of the principles behind legged locomotion, followed by experimental veri�cation of
the results is essential.

1.1 Inspiration from Studies of Animals

Biologists have been studying animals and insects for a long time in an attempt to understand the
mechanisms, both mechanical and neural, with which animals perform their behavioral repertoire. In
the realm of locomotion, we now know that there are certain principles exploited by animals of very
di�erent sizes and morphologies. The alternating tripod gait among many di�erent hexapedal insects,
for example, is an instance.
There are more striking analogies that have been identi�ed, however. Biologists have found that the

center of mass behavior of running animals can be described by a spring mass system, whose parameters
depend on size and morphology but whose structure always stays the same. Recently, Robert J. Full
observed the same principle in insects as well, including cockroaches and millipedes.
Our inspiration for analyzing and building a hexapod platform mainly comes from these observation,

as well as the structural properties of a six legged platform. The alternating tripod gait allows static
balance, statically stable walk, dynamical running and possibly leaping. This is a range of behaviors
which no single robot has been able to demonstrate before, but almost all six legged animals can perform.
Moreover, insects in particular are able to maintain these modes of behavior over extremely irregular
\fractal" terrain, without any apparent change in the character of the behavior. Even a simple measure
as the large number of di�erent species which adopted six legged locomotion supports our view that this
is a natural direction to follow in understanding locomotion.

1.2 Contributions of this Report

This report attempts to give a detailed account of the design and modeling e�orts for a spatial compliant
hexapod robotic platform. Section 2 introduces the concept of hybrid dynamical systems, which will be
the basis for our hexapod model. Section 3 then describes the simpli�ed hexapod model that we will use
in our analysis and design studies. The hybrid dynamical system simulation tool that we have built for
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this project, SimSect, is described in Section 4, followed by a summary of the simulation results that we
have obtained in Section 5.

2 Hybrid Dynamical Systems

A large number of dynamical systems that we are interested in analyzing, including the hexapod model
that we present in this report, cannot be represented with a single dynamical 
ow. They are hybrid
dynamical systems, which are mixtures of discrete and continuously varying events. This section describes
a formal de�nition of hybrid dynamical systems, and is mostly quoted from the formalism described in
[1], with some minor modi�cations.

We assume that the problem domain is decomposed into the form

V =
[
�2I

V�

where I is a �nite index set and V� is an open, connected subset of Rn. Each element in this
union is called a chart. Each chart has associated with it a vector �eld, f� : V��R!Rn.
Notice that the charts are not required to be disjoint. Moreover, on the intersection set
V�
T
V� , continuity, or even agreement of the vector �elds are not required for �; � 2 I.

For each � 2 I, the chart V� must enclose a patch, an open subset U� satisfying U� � V�.
The boundary of U� is assumed piecewise smooth and is referred to as the patch boundary.
Together, the collection of charts and patches is called an atlas.

For each � 2 I there is a �nite set of boundary functions, h�;i : V� ! R, i 2 J
bf
� , and real

numbers called target values, C�;i, for i 2 J bf
� that satisfy the condition: For x 2 V� where

� 2 I , we require

x 2 U� if and only if h�;i(x)�C�;i > 0 for all i 2 J bf
� .

Thus, a patch is to be considered the domain on which a collection of smooth functions
are positive. The boundary of a patch is assumed to lie within the set:

[
i2J bf

�

h�1
�;i

(fC�;ig) for � 2 I :

Conceptually, the evolution of the system is viewed as a sequence of trajectory segments
where the endpoint of one segment is connected to the initial point of the next by a transfor-
mation. It follows that time may be divided into contiguous periods, called epochs, separated
by instances where transition functions are applied at times referred to as events. The tran-
sition functions are maps which send a point on the boundary of one patch to a point in
another (not necessarily di�erent) patch in the atlas.

Within this framework, an orbit in the 
ow of a hybrid dynamical system which begins at
a time t0 and terminates at tf may be completely described. A trajectory, hence, is a curve 

: [t0; tf ]! V�I together with an increasing sequence of real numbers t0 < t1 < � � � < tm = tf
that satis�es three properties:

� Each time interval (ti; ti+1) corresponds to an epoch and there exists a designated � so

that 
(t) lies entirely in U��f�g for all t 2 (ti; ti+1).

� For t 2 [ti; ti+1) and the unique � speci�ed above, t ! �1 (
(t)) is an integral curve of
the vector �eld f�.

� lim
t!t

�

i+1

�1 (
(t)) = y exists, y 2 S� and T�(y) = lim
t!t

+

i+1


(t).
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3 The Compliant Hexapod Model

3.1 The System Structure

Figure 1 shows the basic structure of the hexapod model. The system consists of a rigid body with
six degrees of freedom, whose position and orientation are described by rb and Rb, respectively. Two
coordinate frames, B and W are de�ned, the former attached to the hexapod body and the latter is an
inertial frame where the dynamics are formulated.
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Figure 1: The compliant hexapod model.

The legs are attached to the rigid body, at �xed attachment points ai in the body frame. Each leg
has complete spherical freedom and is assumed to be massless except under certain circumstances where
very small toe masses are also incorporated. Note that (rb; Rb), vi and fi are related through a simple
coordinate transformation (see Section 3.9).
Associated with each leg, there is a radial and a torsional spring on the � direction, as well as torque

control on the � degree of freedom. These springs and the hip actuation result in forces and torques
being applied to the rigid body. In Section 3.2, we derive these forces and torques for a single generalized
leg, leading to the formulation of the system dynamics in Section 3.4.

3.2 Analysis of a Single Leg

There are several methods that one can use in formulating the dynamics of a mechanical system. The
most commonly exercised method is the Euler-Lagrange formulation. However, a simple formulation of
the system described in the previous section is not possible in that framework, as a result of the actuation
being in a di�erent coordinate system. The choice of the generalized coordinates as the leg states results
in a redundant parameterization of the system, which has only six degrees of freedom imposed by the
rigid body.
The solution we adopt is to use the rigid body dynamics under force and torque actuation. Section

3.4 details the equations of motion for this formulation. In this section, we formulate the contribution of
each leg to the total force and torque to completely specify the rigid body dynamics.
The contribution from each individual leg is independent of the others. Consequently, it will suÆce

to analyze a generic leg parametrized by its attachment and touchdown points (see Figure 2). The force
and torque balance on the massless leg result in the following equalities.
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Coordinate Frames
W inertial world frame
B body frame

States
rb body position
Rb body orientation
_rb translational velocity of body
wb angular velocity of body

Leg states and parameters
ai leg attachment point in B
fi toe position in W

vi := [�i; �i; �i]
T current leg state in spherical body coordinates

vi := [vxi
; vyi ; vzi ]

T current leg state in Cartesian body coordinates
legi stance 
ag for leg i

�td leg length at touchdown
�lo leg length at lifto�

Forces and Torques
Fri radial leg spring force
��i leg bending torque in �i direction
��i

leg hip torque in �i direction

System Parameters
M0 body inertia matrix in body coordinates
M body inertia matrix in world coordinates
mb body mass

Controller Parameters
tc Period of rotation for a single leg
�s Slice of leg sweep for the slow phase

Actuator Model
Kw Motor speed constant
K� Motor torque constant
iai

Motor armature current
vai

Motor armature voltage
kg Motor gear ratio
wsi Motor shaft speed
�si Motor shaft torque

Table 1: Notation used throughout the report
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Figure 2: Analysis of a single leg in the plane de�ned by the leg and the z-axis of B.

F1 = F4 = Fri

F2 = F5 =
��i
�i

F3 = F4 =
��i

�i cos �i
�1 = ��i
�2 = ��i tan �i

�3 = ��i

The rigid hexapod body experiences the opposite of the force and torque on the leg at the attachment
point. Projecting these vectors back to B, we can write

Fi =

2
4 � sin �i � cos �i 0
� cos �i sin�i sin �i sin�i � cos�i
cos �i cos�i � sin �i cos�i � sin�i

3
5
2
4 Fri

��i=�i
��i=(�i cos �i)

3
5

�i =

2
4 ���i

��i tan �i sin�i + ��i cos�i
���i tan �i cos�i + ��i sin�i

3
5+ ai � Fi

which are the force and torque contributions of a single leg to the system dynamics. Note that the leg
itself, speci�cally the small mass at the toe, experiences the opposite of this force.

3.3 Total Force and Torque on the Body

The cumulative e�ect of all the legs on the body is simply the sum of the individual contributions,
together with the gravitational force. Expressed in W, the force and torque vectors are given by
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FT =

2
4 0

0
�mbg

3
5+Rb

6X
i=1

legiFi (1)

�T = Rb

6X
i=1

legi�i (2)

where we de�ne

legi :=

�
0 leg i is in 
ight
1 leg i is in stance

3.4 Rigid Body Dynamics

The dynamics of a rigid body under external force and torque actuation is governed by the following
equations [2].

�rb =
FT

mb

M _wb = �J(wb)Mwb + �T
_Rb = J(wb)Rb

where we have

J(
�
wx wy wz

�T
) :=

2
4 0 �wz wy

wz 0 �wx

�wy wx 0

3
5

M := RbM0R
�1
b

3.5 Putting it All Together : Hybrid Hexapod

This section describes the remaining components of the compliant hexapod model, which are essential
to complete the de�nition of the hybrid system structure.

� Charts

Our formulation of the compliant hexapod model has 26 = 64 charts corresponding to all possible
combinations of discrete leg states, each in 
ight or in stance. Each of those charts have di�erent
dynamics, parametrized by the leg state 
ags legi. Note that the dependence of Equations (1) and
(2) on the leg 
ags is suÆcient to incorporate the discrete leg states into the system dynamics.

� Boundary Functions

These functions are used to identify transitions between di�erent charts. The hexapod model has
several boundary functions for each chart, corresponding to touchdown and lifto� conditions for
each leg. These conditions are mostly extensions to their counterparts in the spring-loaded inverted
pendulum model(SLIP) [4].

In every chart, there are two boundary functions associated with each stance leg, corresponding
to two di�erent lifto� conditions. First is the leg length reaching the radial spring rest extension,
at which point, it is assumed to be restricted from extending further and hence lifts o�. The
corresponding boundary function is h�;l1 := ��i with target value C�;l1 = ��0i .

6



The second lifto� condition involves the vertical component of the force that the small toe mass
experiences (see Section 3.2). For a leg in stance, this force must remain negative. The leg lifts
o� when it changes sign. Consequently, the boundary function h�;l2 := �FTi;x with target value 0,
de�nes the second lifto� transition.

If a leg is in 
ight, however, there is only one touchdown boundary function associated with it.
For all types of terrains, it is given by the z coordinate of its toe, fiz . The associated target value
depends on the terrain and is the terrain height under the toe.

There is, however, an exception to the touchdown condition. There are cases when the condition
that the normal component of the force exerted on the toe must be negative, might not hold at
touchdown. This is an artifact of the plastic collision of the toe with the ground, combined with
the very small toe mass that governs the 
ight behavior of the legs. We address this problem,
by skipping the touchdown transition when the normal force to the toe is positive upon touching
the ground. Note that the positive normal force on the toe makes sure that the foot does not go
underground, but continues upwards.

� Transition Functions

Whenever a touchdown or lifto� event is detected, an appropriate transition function is applied to
the current state of the system. These transition functions always modify parts of the state space
related to the particular leg which initiated the event.

Even though there are a very large number of possible transitions between charts in the hexapod
model, they can be represented easily by considering transitions of each leg separately. In that case,
there are only two possible transition types (although there might be several of them occurring
simultaneously), the lifto� and touchdown transitions.

The lifto� transition does not involve any coordinate changes or modi�cations to the system state.
Consequently, the lifto� transition function is the identity map.

At touchdown, on the other hand, two things happen. First, the toe mass loses all of its energy in
a plastic collision with the ground. Second, the z coordinate of the toe is set to be slightly above
the ground (1e-5) , mainly for numerical stability of the oncoming transitions for the same leg.
The resulting transition function has many e�ects on both the resulting trajectory for the hexapod
body as well as the leg behavior. A more detailed account of the leg dynamics is presented in the
next section.

3.6 Leg Dynamics

The state space for the hexapod model consists of the position and the orientation of the body , as well
as the position of each toe in the world frame. In the preceding sections, we described the dynamical

ow concerning the dynamics of the rigid body. This section presents the leg dynamics, which are of
considerable importance in the system behavior due to the hybrid nature of the system, even though the
body dynamics are not a�ected by the leg motions in 
ight.
The two main leg phases incorporate di�erent dynamical 
ows for the toe positions of each leg. The

simplest case is the leg in 
ight, where the small toe mass experiences the opposite of the forces computed
in Section 3.2. Each toe mass then becomes a second order dynamical system with the computed external
force input, in the frame W.

�fi = �RbFi

For the legs in stance, we incorporate a simple coulomb friction model. In this phase, we project the toe
force vector onto the tangent plane to the terrain at the touchdown point. The resulting force is then
used to drive a �rst order dynamical system for the toe motion, also incorporating coulomb friction. This
simple scheme approximates \sliding" of the toe, also constraining its motion to lie in the terrain surface
until lifto�.
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This model yields the following leg dynamics

_fi =

(
0 k Ft k� K k Fn k
Ft(kFtk�KkFnk)

kFtk
k Ft k> K k Fn k

where Ft is the projection of RbFi on the tangent plane to the terrain surface at the toe position and Fn
is the remaining normal component.

3.7 Actuator Model

The compliant hexapod model incorporates a very simple actuator model of the hip torque controls.
Actuation at each hip is through a brushed DC motor with no electrical dynamics. Consequently, this
model component does not have any impact on the mechanical operation of the hexapod. The principal
reasons for its implementation are to model the electrical properties of the actuation, including the motor
voltage and current, the power consumption of the overall system, as well as the torque limitations of
hip actuation.
The simplest component of the model is the torque limits imposed by the torque-speed curves of DC

motors. Figure 3 is an example for an o�-the-shelf DC motor. These torque limits are imposed on the
PD control torques as necessary.
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Figure 3: Torque-speed curve for the Maxon RE118751 20W DC motor.

The next component is the modeling of the electrical operation of the DC actuator. The dynamics of
the hexapod are formulated as a function of external hip torques. This is based on the assumption that
the DC motors operate in torque mode, and instantly provide the desired torque subject to the torque
limits, without any electrical dynamics. The leg torque commands of the locomotion controller and the
leg rotation speeds can then be converted to DC motor terminal voltages and armature currents for each
leg.

iai = �si=K�

vai = iaira +Kwwsi

wsi
:= w�i

=kg

�si := ��i=kg
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3.8 Battery Model

In addition to the actuator model described in Section 3.7, we also incorporate a simple battery discharge
model in the hexapod model. The combined use of these components provide an estimate of battery life
under di�erent operating regimes and controllers.
The discharge characteristics of o�-the-shelf small batteries are in general given by plots of discharge

time vs constant discharge current. Figure 4 is an example of such a discharge curve for a lead-acid 12V
battery..
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Figure 4: Battery discharge curve for the Yuasa NP2.6-12 battery.

In our model, however, the current drawn from the battery is not constant. Hence, it is not possible
to directly use the discharge curve for estimating battery life for hexapod operation. Moreover, the fact
that the armature voltage is also a function of time and not the constant nominal voltage of the battery
imposes other problems. Finally, the fact that there are six legs, each drawing di�erent currents at
di�erent voltages further complicates the model.
Luckily, each of these problems can be addressed in simple and conservative ways to obtain a worst-

case estimate of battery life. For this purpose, we �rst consider a single motor drawing a variable current
under constant voltage. We then extend this scheme to handle variable armature voltages assuming a
PWM DC motor operation. Finally, we consider the case with multiple motors and their combined load
on the battery.
For a certain value of the discharge current, we can use the data of Figure 4 to compute an approxi-

mation to the instantaneous percent discharge of the battery with the following formula

dC(t)

dt
= � 1

f(ia(t))

where C(t) is the percent \energy" left in the battery, and f(i) is the battery discharge curve in functional
form. Consequently, an estimate for the battery life is given by the solution to the following equation.

tZ
0

1

f(ia(�))
d� = 1 (3)

Our model assumes the control of the DC motor is achieved through a PWM servo drive, e�ectively
obtaining a time varying armature voltage from a constant voltage battery. We model this scheme by
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observing that the PWM duty factor should be approximately proportional to the armature voltage we
get from the actuator model of Section 3.7. The following modi�cation to (3) incorporates this factor.

tZ
0

va(�)

vnomf(i(�))
d� = 1

Finally, we adopt a conservative approach to combine the e�ects of six di�erent actuators on the
battery drain. First of all, we need to combine the currents drawn by each of the actuators to obtain the
total current waveform on the battery terminals. The output stages of PWM servo ampli�ers have full
H-bridges to support bidirectional motor operation from a single power supply. Consequently, the total
current drawn from the battery is given by

iT (t) =

6X
i=1

jiai(t)j

The worst case in terms of the voltage scaling occurs when the PWM output of all the motor drives are
turned on at the same time. Consequently, a conservative estimate of its e�ect can be incorporated by
taking the maximum duty factor of all the motors and scaling the instantaneous battery drain accordingly.
All these modi�cation result in the following �nal form of the battery lifetime equation

tZ
0

max
1�i�6

(vai(�))

vnomf(
6P

i=1

iai(�))

d� = 1

3.9 Relevant Coordinate Transformations

� Positional leg states in the body frame

vi = [vxi ; vyi ; vzi ]
T = R�1

b
(fi � rb)� ai

vi = [�i; �i; �i]
T =

2
664

arctan(xi=
q
y2
i
+ z2

i
)

arctan 2(yi;�zi)q
x2
i
+ y2

i
+ z2

i

3
775

� Leg velocities in the body frame

_vi = [ _vxi ; _vyi ; _vzi ]
T = R�1

b

�
_fi � _rb � _Rb(vi + ai)

�

_vi = [ _�i; _�i; _�i]
T =

2
4 (D +Avzi)=(

p
CF )

(�vzi _vyi + vyi _vzi)=C

E=
p
F

3
5

� Leg accelerations in the body frame

�vi = [ �vxi ; �vyi ; �vzi ]
T = R�1

b

�
�fi � �rb � �Rb(vi + ai)� 2 _Rb

_vi

�
�vi = [��i; ��i; ��i]

T

=

2
64

�2vxi (Avzi+D)2+(C+v2xi
)(3B2vxi

�2BC _vxi+C
2 �vxi�Cvxi ( _vyi

2+ _vzi
2+vyi �vyi+vzi �vzi ))

C3=2(C+v2xi
)2

2B(vzi _vyi � vyi _vzi)� C(vzi �vyi � vyi �vzi)=C
2

�(4E2 + 4F ( _vxi
2 + _vyi

2 + _vzi
2 + vxi �vxi + vyi �vyi + vzi �vzi))=(4F

3=2)

3
75
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where

A := vzi _vxi � vxi _vzi
B := vyi _vyi + vzi _vzi

C := v2yi + v2zi

D := v2yi _vxi � vxivyi _vyi
E := vxi _vxi + vyi _vyi + vzi _vzi

F := v2xi + v2yi + v2zi

and

�rb =
FT

mb

_wb = M�1(�J(wb)Mwb + �T )

_Rb = J(wb)Rb

�Rb = J( _wb)Rb + J(wb) _Rb

� Toe coordinates in the world frame

vi =

2
4 �i sin �i

�i cos �i sin�i
��i cos �i cos�i

3
5

fi = Rb (vi + ai) + rb

4 SimSect: A General Purpose Hybrid Dynamics Simulation Envi-

ronment

The hexapod model described in Section 3.1 evolved in parallel with SimSect, a general purpose hybrid
dynamical system simulation software we have developed for analyzing the model. In this section, we
describe the simulation environment, along with implementation details and description of usage.

4.1 The System Architecture

SimSect incorporates an approach widely used in simulation software, separating the integration engine
from the dynamical system de�nition making it much easier to de�ne and integrate di�erent 
ows without
the need to modify and of the integration procedures.
De�ning a dynamical system model consists of providing the hybrid components described in Section

2. The software interface for these de�nitions closely mirrors the structure of the hybrid DsTool [1],
where the model de�nition provides individual functions for the following tasks

� Initialize the partition structure, the initial state and the initial chart.

� De�ne the properties of a particular chart, and the boundary functions that will be used.

� Compute the vector �eld for the individual charts.

� Compute boundary functions, identi�ed by a certain index that the chart initialization determines
for the current chart.

� Perform chart transitions by computing the next system state and chart.
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� Validate a chart by checking whether a given trajectory point lies in the chart.

� Compute an auxiliary function, mainly used for data collection purposes.

� Compute the homogeneous transformations for visualization of the system trajectory using Ge-
omview (see Section 4.3).

These tasks, once implemented in appropriate functions, are then used by the integration engine to
compute the system trajectory 
ow.

4.2 The Integration Engine

4.2.1 The Iterator Approach

Most numerical algorithms make heavy use of some form of iteration, where a particular procedure is
repetitively applied to update certain values, until a predetermined condition is satis�ed. Numerical
integration of dynamical systems is no exception.
In many levels, SimSect makes use of an abstract iterator concept, under which many of the components

in the system are de�ned. An iterator consists of an initialization procedure, an iterating function which
also checks for the termination condition and a wrap-up procedure invoked after the termination of the
iteration.
SimSect implements a hierarchy of several iterators building di�erent components of the integration.

The following sections describe various iterators in SimSect detailing their initialization, iteration and
wrap-up procedures.

4.2.2 The Chart Iterator

The chart iterator is the topmost level iterator in the integration. It cycles through successive charts
until the simulation stops.
There is no speci�c initialization for this iterator because the system initialization takes care of all the

state and chart setup.
The iteration procedure consists of integrating the current chart until a chart crossing is detected, in

which case the appropriate transition function is called and the integration continues from the next chart.
It also calls the model function de�ning the chart properties (such as the boundary function indices) at
every iteration. The details of the chart integration are hidden in the iteration on level below, which is
the 
ow iteration.
Currently, there are two termination conditions for this iterator. The �nal time crossing and the

maximum chart count. In the occurrence of either event, chart iteration stops and the integration stops.

4.2.3 The Flow Iterator

Situated below the chart iterator, the 
ow iterator steps through successive time steps in the integration
inside the current chart. The initialization consists of determining the states of every boundary function
in the current chart, determined by the model de�nition.
The main task of the iteration function is to invoke the Runge Kutta iterator to compute the next


ow trajectory point. Several other tasks are also carried out, including

� Validation of the 
ow point to lie in the current chart

� Recording of the current 
ow point in the 
ow data memory for data collection.

� Update of the visualization subsystem state.

The termination condition for this iterator is the detection of a boundary function crossing of the
appropriate type. The wrap-up function, then, invokes the stopping iterator to determine the earliest
exact transition point, triggered by one, or possibly more than one, boundary functions. The iterator
then exits and the chart iterator proceeds with the next chart.
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4.2.4 Stopping Functions and the Stopping Iterator

Central to the de�nition of hybrid systems and the operation of the SimSect hybrid integrator are the
boundary functions and the concept of stopping functions. Boundary functions and their properties are
brie
y explained in Section 2. The stopping functions are a generalized implementation of boundary
functions, very precisely detecting state space triggered events. They are scalar valued functions of the
state associated with a particular target value. SimSect incorporates mechanisms to make sure that the
discrete numerical integration of the dynamical system computes a point at the target value crossing of
these functions, up to a certain numerical precision.
It can easily be seen that the chart transitions, which are target value crossings of the boundary

functions can easily be detected using this scheme. Other possible uses of this mechanism are the
detection of the �nal time point to stop the simulation, periodic measurements of the system state, as
well as measurements from arbitrary sections of the state space. Currently, only the boundary function
and the �nal time crossing stopping functions are implemented.
The stopping functions are also implemented using an iterator. Once the 
ow iterator detects the

target value crossing of one of the boundary functions, it invokes the stopping function iterator, which
then re�nes the last integration time step until the exact crossing point is determined. SimSect utilizes a
midpoint subdivision algorithm to re�ne the time step, using the leftmost data point as the initial point
in evaluating the intermediate trajectory points.
The initialization of the iterator consists of saving the data points to the left and right of the crossing

at the point when it is detected. Some additional bookkeeping is also done at this stage.
The iteration procedure for the stopping function detection is fairly complicated. At each iteration,

the procedure computes the system state at the midpoint between the most recent left and right data
points. Depending on the sign of the stopping function at that state, either the left or the right data point
is replaced by the new state and the iteration proceeds with the next step. One very important detail
to note is that, in computing the midpoint states, the left data point saved in the initialization phase,
which does not change during the iterations is used. When the most recent left data point, updated at
each step is used, it leads to cumulative numerical errors, which lead to failure of the detection in certain
cases. Discontinuities in the stopping functions are typical instances of such instances, even though they
should not occur with a carefully implemented system model.
The iteration terminates upon the detection of the crossing up to a certain numerical precision, or

when the maximum number of stopping iterations is exceeded. The wrap-up procedure computes the
system state at the detected intersection point and exits.

4.2.5 The Runge-Kutta Iterator

The �nal and the lowest level iterator in SimSect is the Runge-Kutta iterator. It implements an adaptive
time step third order Runge-Kutta integration algorithm, where the iteration occurs in the adaptation
of the time step. This iterator is called by both the 
ow and stopping iterators in computing the next
discrete trajectory point and abstracts away the adaptation of the time step and the details of the
Runge-Kutta algorithm.
In this case, no signi�cant initializations take place. The iteration routine then computes the next

data point given the current state and the current time step. Moreover, it suggests a new time step,
based on the magnitude of the change in state and the maximum tolerance parameter of the simulation
system. Please refer to the source code for the details of the algorithm.
The iteration continues until the norm of the change is smaller than the integration tolerance, in which

case it terminates and returns the computed system state, together with the new suggested time step for
the next invocation of the iterator.

4.3 Visualization

SimSect provides a visualization framework through the use of Geomview, a programmable mathematical
visualization tool [3]. Through the interface SimSect provides, the model implementation can perform
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various visualization tasks ranging from displaying three dimensional environments to plotting and ma-
nipulating trajectory data. This section brie
y describes how the interface is designed and can be used
by the model.
The current SimSect implementation only supports the visualization of three dimensional animations

of the simulated system, through a model-supplied function mapping the system state to homogeneous
transformation matrices of the virtual environment. The model programmer needs to supply a OOGL
scene de�nition �le, where the transformation matrices of the relevant objects in the scene are assigned
speci�c names. The simulation initialization invokes Geomview and load this scene de�nition �le before
integration. Then, during integration, the updated homogeneous transformation matrices are computed
at a rate determined by the frame rate setting of the simulation, and update messages are sent to
Geomview. The result is an animation of the dynamical system at the same speed as the integration. The
two components that the model builder needs to provide are the function for computing the homogeneous
transformations and the OOGL scene de�nition �le. Please refer to the example hexapod implementation
for further details.

4.4 SimSect Usage

4.4.1 Invocation

SimSect requires the presence of a con�guration �le, which optionally sets values of various con�guration
parameters as well as the initial conditions of the dynamical system. SimSect accepts only one command
line argument to set the con�g �le, which defaults to SimSect.rc

Usage : SimSect [-c config file]

4.4.2 The Con�guration File

As the �rst step in its initialization, SimSect loads the con�guration �le, which consists of assignments
of string or numerical values to relevant symbols. These symbols correspond to either the names of the
system states, or the system parameters as speci�ed in the model de�nition code, or various con�guration
parameters for the integration engine. The assignment statement takes the form

symbol name = symbol value; # Optional comment �eld.

The semi-colon is mandatory and separates the assignment statements.
Table 4.4.2 describes the SimSect integrator con�guration symbols. The initial state and the parameter

names are determined by the mode de�nition �le, so please refer to the hexapod implementation code
for an example of their use.

4.4.3 Data Output Files

Upon completion of integration, SimSect saves the computed data �le as well as some con�guration
information to a sequence of �les. The names of these �les can be set using the dataBaseName symbol
in the con�guration �le. By default, the data output �les are SimSect.data, SimSect.param and
SimSect.initial, recording the auxiliary variables over time, the model parameters and the initial
system state, respectively. These �les are plain ascii �les each line corresponding to a data point.

5 Behavioral Studies of an Open Loop Locomotion Strategy

In this section, we describe simulation studies of a simple open-loop leg control strategy on the hexa-
pod. These studies are more towards exploring the behavioral capabilities of the platform, rather than
characterizing the performance of this simple controller, which can only o�er limited speed control and
possibly some crude directional control.

14



Chart iteration
finalTime The �nal time for integration
maxChartCount Maximum number of transitions before termination

Runge-Kutta iteration
tolerance Runge-Kutta integration tolerance
maxTimeStep Upper bound for the adaptive time step
minTimeStep Lower bound for the adaptive time step
rkPower Exponent for extending the time step

Stopping iteration
stopPrecision Numerical precision for crossing detection
maxStopIterations Max number of iterations before stopping algorithm gives up

General Con�guration
recordPeriod Time period for trajectory data point recording
measurePeriod Time period for exact time measurement of system state
dataBaseName Base name for the simulation data output �les
useGeomview Flag to turn on/o� the Geomview interface

Table 2: SimSect con�guration symbols and descriptions

5.1 The Open-Loop Clocked Alternating Tripod Controller

Our open-loop control strategy consists of time driven reference signals for each leg, in combination with
PD controllers for motor torque control. The reference signals are designed to generate an alternating
tripod gait, where each tripod goes through two phases of di�erent rotation speeds, corresponding to
periods of time where a tripod is in stance or in 
ight. This scheme results in a two parameter family
of reference signals for the overall locomotion, under the symmetry constraints of the alternating tripod
gait. Figure 5 illustrates an example of such a reference command.
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Figure 5: Example alternating tripod reference trajectories. Each leg in a tripod uses the corresponding
reference. A tripod is de�ned as the front and back legs of one side together with the middle leg of the
opposite side.

The two parameters of the reference commands are the cycle time and the sweep angle. The cycle
time determines the time periodicity of the reference signals and determines the duration of one stride.
This cycle time is equally shared between the stance and 
ight phases of the leg. The di�erence between
the stance and 
ight phases is introduced by the second parameter. The sweep angle determines the
angle span of the stance phase, where the legs are usually much slower and keep the hexapod upright.
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5.2 Flat Terrain

In this simplest mode of operation, the hexapod invariably settles down on a stable forward running
gait at a speed determined by several factors. The upper limit on the locomotion speed is imposed by
the actuator limitations of Section 3.7. Below this limit, simple control of the forward velocity can be
achieved by using the two controller parameters described in the preceding sections. Figure 6 shows the
stable running velocity of the hexapod in response to di�erent controller parameter combinations.
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Figure 6: The average forward velocity as a function of the controller parameters tc and �s.

The regular periodic behavior of the hexapod can be observed in the state space trajectories of the
system. Figure 7 shows such a plot, where the system settles down on a periodic orbit. Although we
do not have any analytical insight on whether the system admits periodic orbits or attractors in phase
space, Figure 7 and similar observations suggest their presence.
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Figure 7: The cyclic behavior of the hexapod running on 
at terrain.

This periodic locomotion is also robust to various initial conditions and disturbances. The system is
able to recover from initial conditions with lateral and fore-aft velocities of up to 1m=s, settling down on
its periodic running pattern. Higher initial velocities cause the hexapod to topple over, which is quite
natural given the small size of the body.
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Another important characteristic of the system is that the periodic behavior of the system is sensitive
to the initial conditions. Figure 8 shows two di�erent runs with di�erent initial conditions. They have
di�erent periodicities, even though the controller parameters are identical in both cases.
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Figure 8: Di�erent periodic forward velocity pro�les resulting from two di�erent initial conditions. (left)
vx0 = �0:6m=s, vy0 = �0:8m=s. (right) vx0 = �0:8m=s, vy0 = 0:2m=s.

5.3 Climbing Slopes

Among di�erent terrain conditions that we explored is a range of slopes with constant elevation. Figure
9 shows the average forward velocity of the hexapod as a function of the terrain slope. Note that due
to the simple open-loop nature of the controller, there is considerable variation in the forward velocity
for di�erent slopes. One interesting detail is the increase in speed for positive slopes. This, however, is
expected because the slope shifts the phase of the actual stance phase relative to the two-stroke open-loop
controller, including more of the fast swing control in stance. This results in faster locomotion.
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Figure 9: The average forward velocity as a function of the terrain slope for tc = 1:0s and �s = �=10.

Another important study with sloped terrain is its e�ect on the battery lifetime. Figure 10 shows the
dependence of the battery lifetime to the terrain slope, computed with the battery model described in
Section 3.8. As expected, the battery lifetime decreases as the slope increases. Note, however, that in an
actual system, downhill slopes would actually charge the battery, increasing the lifetime, although this
e�ect is not implemented in our model. Even this conservative model predicts hexapod operation of up
to 45 minutes with commercially available low-end batteries.

17



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

15

20

25

30

35

40

Terrain Slope

B
at

te
ry

 L
ife

tim
e 

(m
in

s)

Figure 10: Battery lifetime as a function of the terrain slope.

6 Conclusion

In this report, we described our modeling and simulation results for a compliant hexapod robot, inspired
by examples of hexapedal locomotion in insects. Even though our model is complicated enough to make
complete analysis of the system impossible, it is simple enough that we can attempt to understand
certain aspects of its operation. In this context, our simulation results indicate that the static stability
properties of the hexapedal structure persist to some extent in dynamical modes of operation and yield
stable behaviors. Our investigations of the practical feasibility of the platform under actuation and power
limitations also indicate that such a platform can be built with the present technology, having some of
the behavioral capabilities that we would like to implement.
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