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Abstract

Applications of learning to autonomous
agents (simulated or real) have often been
restricted to learning a mapping from per-
ceived state of the world to the next action
to take. Often this is couched in terms of
learning from no previous knowledge. This
general case for real autonomous robots is
very difficult. In any case, when building a
real robot there is usually a lot of a priori
knowledge (e.g., from the engineering that
went into its design) which doesn’t need to
be learned. We describe the behavior-based
approach to autonomous robots, and then ex-
amine four classes of learning problems asso-
ciated with such robots.

1 INTRODUCTION

The purpose of this paper is to suggest some problem
formulations for machine learning that would have rel-
evance to physically instantiated autonomous robots.
The key relevant aspects of such robots are:

• They may have many hundreds of input bits.

• There is no simple mapping between input bits
and the state of the robot and the actual physical
world.

• There are many possible actions (taking some
hundreds of bits to specify) which can be taken
at any given time step.

• Current (and perhaps all) learning algorithms
have very little chance of coping under conditions
of a single global reinforcement signal.

• Certain domain knowledge is readily available,
and can help the learning process.

• As with animals, internal reinforcement signals
are necessary for some types of learning.

• From a methodological point of view it is better to
think about the robot as a system that interacts
with the world already, and learning as a method

of improving its performance. This contrasts with
viewing the robot as a learning machine.

This paper does not pretend to be a comprehensive
survey of the use of machine learning with autonomous
robots. Instead, it is very deliberately limited to the
robots developed within the mobile robot group at the
MIT Artificial Intelligence Lab.

2 AUTONOMOUS ROBOTS

Over recent years a new approach has developed in
Artificial Intelligence for controlling autonomous mo-
bile robots. See [Brooks 91b] for more details but in
essence the following tells the story.

2.1 INTELLIGENCE

Around 1984, a number of people started to worry
about the problem of organizing intelligence. There
was a requirement that intelligence be reactive to dy-
namic aspects of the environment, that a mobile robot
operate on time scales similar to those of animals and
humans, and that intelligence be able to generate ro-
bust behavior in the face of uncertain sensors, an un-
predicted environment, and a changing world. None
of the existing approaches at that time seemed to be
able to satisfy these conditions.

Some of the key realizations about the organization of
intelligence were as follows:

• Most of what people do in their day to day lives
is not problem-solving or planning, but rather it
is routine activity in a relatively benign, but cer-
tainly dynamic, world. Furthermore the represen-
tations an agent uses of objects in the world need
not rely on a semantic correspondence with sym-
bols that the agent possesses, but rather can be
defined through interactions of the agent with the
world. Agents based on these ideas have achieved
interesting performance levels and were built from
combinatorial circuits plus a little timing circuitry
([Agre and Chapman 87], [Agre and Chap-
man 90]).



• An observer can legitimately talk about an agent’s
beliefs and goals, even though the agent need
not manipulate symbolic data structures at run
time. A formal grounding in semantics used for
the agent’s design can be compiled away. Agents
based on these ideas have achieved interesting per-
formance levels and were built from combinato-
rial circuits plus a little timing circuitry ([Rosen-
schein and Kaelbling 86], [Kaelbling and
Rosenschein 90]).

• In order to really test ideas of intelligence it is im-
portant to build complete agents which operate in
dynamic environments using real sensors. Inter-
nal world models which are complete representa-
tions of the external environment, besides being
impossible to obtain, are not at all necessary for
agents to act in a competent manner. Many of the
actions of an agent are quite separable—coherent
intelligence can emerge from subcomponents in-
teracting in the world. Agents based on these
ideas have achieved interesting performance lev-
els and were built from combinatorial circuits plus
a little timing circuitry ([Brooks 86], [Brooks
90b], [Brooks 91a]).

A large number of others have also contributed to the
approach. [Maes 90] is the most representative col-
lection.

2.1.1 The Subsumption Architecture

In the mobile robot lab at the MIT Artificial Intelli-
gence Laboratory we have been using a specific archi-
tecture for programming robots, known as the sub-
sumption architecture. It incorporates many of the
ideas presented above—a number of architectures sim-
ilar in spirit but with varying details are used by
other researchers. The subsumption architecture was
arrived at by continuously refining attempts to pro-
gram a robot to reactively avoid collisions in a people-
populated environment, [Brooks 86]. It has been
generalized so that its purpose is to program intelli-
gent, situated, embodied agents.

Our principles of computation are:

• Computation is organized as an asynchronous net-
work of active computational elements (they are
augmented finite state machines—see [Brooks
89] for details1), with a fixed topology network
of uni-directional connections.

• Messages sent over connections have no implicit
semantics—they are small numbers (typically 8
or 16 bits, but on some robots just 1 bit) and

1For programming convenience we use a higher level ab-
straction known as the Behavior Language, documented in
[Brooks 90c]. It compiles down to a network of machines
as described above.

their meanings are dependent on the dynamics
designed into both the sender and receiver.

• Sensors and actuators are connected to this net-
work, usually through asynchronous two-sided
buffers.

These principles lead to certain consequences. In par-
ticular:

• The system can certainly have state—it is not at
all constrained to be purely reactive.

• Pointers and manipulable data structures are very
hard to implement (since the model is Turing
equivalent it is of course possible, but hardly
within the spirit).

• Any search space must be quite bounded in size,
as search nodes cannot be dynamically created
and destroyed during the search process.

• There is no implicit separation of data and com-
putation, they are both distributed over the same
network of elements.

In all the robots built in the mobile robot lab, the
following principles of organization of intelligence have
been observed:

• There is no central model maintained of the world.
All data is distributed over many computational
elements.

• There is no central locus of control.

• There is no separation into perceptual system,
central system, and actuation system. Pieces of
the network may perform more than one of these
functions. More importantly, there is intimate in-
tertwining of aspects of all three of them.

• The behavioral competence of the system is im-
proved by adding more behavior-specific network
to the existing network. We call this process lay-
ering. This is a simplistic and crude analogy to
evolutionary development. As with evolution, at
every stage of the development the systems are
tested—unlike evolution there is a gentle debug-
ging process available. Each of the layers is a
behavior-producing piece of network in its own
right, although it may implicitly rely on presence
of earlier pieces of network.

• There is no hierarchical arrangement—i.e., there
is no notion of one process calling on another as a
subroutine. Rather the networks are designed so
that needed computations will simply be available
on the appropriate input line when needed. There
is no explicit synchronization between a producer
and a consumer of messages. Message reception
buffers can be overwritten by new messages before
the consumer has looked at the old one. It is
not atypical for a message producer to send 10



messages for every one that is examined by the
receiver.

• The layers, or behaviors, all run in parallel. There
may need to be a conflict resolution mechanism
when different behaviors try to give different ac-
tuator commands.

• The world is often a good communication medium
for processes, or behaviors, within a single robot.

2.2 ROBOTS

We have built over ten robots that are programmed
with the subsumption architecture. See [Brooks 90b]
for a recent overview.

Some of these robots have had learning capabilities.
But they have not followed the reinforcement learning
techniques like Q learning of [Watkins 89], as has
the work, with physical robots, of [Kaelbling 90] and
[Mahadevan and Connell 91].

2.3 Sensors and Action

Real sensors are very noisy. They do not give the
same sort of simple mapping from actual world state
to a clean input vector that we are used to expecting
after using simulated robots.

Simple sensors have characteristics which distort the
mapping from world state to input vector in very dis-
continous and non-intuitive ways.

For instance, infrared proximity sensors are very sen-
sitive to the size of the nearby object and its surface
albedo—thus the paint color will greatly effect the dis-
tance from a wall at which the sensor will fire. But
worse than that, it is quite common for two identi-
cally built sensors to have a sensitivity that varies by
as much as a factor of two.

Simple sonars, used on many robots, respond to obsta-
cles within a thirty degree cone. But there is a fairly
large range of angles over which the sonar beam will
bounce off rather than return to the emitter. Thus
many ordinary looking situations appear as a maze of
mirrors to sonar. Small changes in angle can give very
discontinous range measurements. But worse, different
materials respond differently to sonar (even in versions
with multiple frequencies). In one instance we found
that all the doors on one side of a corridor completely
absorbed the sonar signal so that the doors always ap-
peared open, but of course the robot was unable to go
through them.

Vision is even harder to use on a real robot. Given
the variations in lighting we can not reliably recognize
objects or get good three dimensional descriptions of
the world. These things can be done under very re-
stricted experimental set ups, but not in the context
of a moving autonomous robot. Even simple things

like recognizing the color of the wall in front of a robot
are not doable. Color discrimination, while seemingly
trivial for humans, is actually a complex problem and
an open research question. The naive idea that we per-
ceive colors based directly on the frequency of reflected
light is simply false.

2.3.1 Example of Complexity

As an example of the raw complexity presented by
these robots consider the case of Attila, [Angle and
Brooks 90], a six legged walking robot.

A central processor sends commands and receives in-
puts at 10 Hz to and from a number of peripheral
processors which package and unpackage these com-
munications. The number of input and output bits
from the point of view of the central processor (which
simulates a distributed set of computations) is detailed
below.

Each of Attila’s six legs has three motor actuated de-
grees of freedom. There is also a body pitch motor,
a pan and tilt motor for the head, and two motors
to control an active antenna. Thus there are 23 con-
trollable motors. Each motor can be give new 20 bit
commands (8 position, 4 velocity, 4 force, 2 to select
a gain table, and 2 to cause calibration actions to be
taken) at 10 Hz. Another 14 bits can be sent to var-
ious sensors to switch them on and off, giving a total
of 474 action bits.

The robot has 150 sensors. Not including the vision
sensor these produce roughly 800 bits of sensing infor-
mation at 10 Hz. These sensors include strain guages
on the legs, 1 bit proximity senors, touch sensors, joint
position sensors, antenna strains, range sensors, sur-
face color sensors, and battery voltage monitors.

The vision sensor, a 165×192 pixel CCD camera, pro-
duces 253440 bits at 5 Hz for the vision processor. It
summarizes this into about 128 bits which are deliv-
ered to the main processor at 10 Hz.

Using a standard state space model this robot has a
state space of size 2928 with 2474 possible actions. Note
however, that its perceived state, does not map simply
into the world state, so there is added complexity.

3 LEARNING

The previous problems lead me to be pessimistic about
the possibility of building learning systems which can
operate on realistic robots and make use of a simple
reward system—i.e, the thrust of much recent learning
research seems not too useful.

There are two observations which can lead us to the
sorts of things a robot might be able to learn, however.

First, as a result of engineering and building a robot
we often know quite a lot a priori about how the robot



can interact with the world. It makes sense to use this
knowledge when it is easy to do so, rather than force
the robot to learn it all afresh.

Second, a robot should have a number of internal re-
ward functions built in, rather than relying on a single
external reward function. Animals for instance rely
on satiating hunger to learn certain tasks rather than
using the single bit of reward from death, perhaps due
to starvation but perhaps due to some other cause, as
a learning reward. Likewise it makes sense to have
a robot worry about its battery voltage and learn to
keep that high, besides getting rewards for covering
terrain, finding interesting rocks, or whatever its pri-
mary mission is designed to be.

With these points in mind we suggest the following
as reasonable challenges for things that autonomous
robots in the real world should learn:

1. representations of the world that help in some task
2. aspects of instances of sensors and actuators (this

is sometimes called calibration)
3. the ways in which individual behaviors should in-

teract
4. new behavioral modules

4 EXAMPLES

We now discuss some early exmaples of autonomous
robots learning these classes of things. We restrict our
attention to systems that have been implemented on
real robots within the MIT Mobile Robot lab.

4.1 REPRESENTATIONS

In order to make sense of the vast number of input
bits, an autonomous robot needs to develop internal
representations.

[Mataric 90, 91] introduced active-constructive rep-
resentations to subsumption in a sonar-based robot,
Toto, which wandered around office environments
building a map based on landmarks, and then used
that map to get from one location to another. Her
representations were totally decentralized and non-
manipulable, and there is certainly no central control
which build, maintains, or uses the maps. Rather, the
map itself is an active structure which does the com-
putations necessary for any path planning the robot
needs to do.

Primitive layers of control let Toto wander around fol-
lowing boundaries (such as walls and furniture clutter)
in an indoor environment. A layer which detects land-
marks, such as flat clear walls, corridors, etc., runs
in parallel. It informs the map layer as its detec-
tion certainty exceeds a fixed threshold. The map is
represented as a graph internally. The nodes of the

graph are computational elements (they are identical
little subnetworks of distinct augmented finite state
machines). Free nodes arbitrate and allocate them-
selves, in a purely local fashion, to represent a new
landmark, and set up topological links to physically
neighboring nodes (using a limited capacity switching
network to keep the total virtual ‘wire length’ between
finite state machines to be linear in the map capac-
ity). These nodes keep track of where the robot is
physically, by observing changes in the output of the
landmark detector, and comparing that to predictions
they have made by local message passing, and by refer-
ring to other more primitive (magnetic compass based)
coarse position estimation schemes.

When a higher layer wants the robot to go to some
known landmark, it merely ‘excites’, in some particu-
lar way the particular place in the map that it wants to
go. The excitation (this is an abstraction programmed
into the particular finite state machines used here—it
is not a primitive—as such there could be many dif-
ferent types of excitation co-existing in the map, if
other types of planning are required) is spread through
the map following topological links, estimating total
path link, and arriving at the landmark-that-I’m-at-
now node (a deictic representation) with a recommen-
dation of the direction to travel right now to follow
the shortest path. As the robot moves so to does its
representation of where it is, and at that new node
the arriving excitation tells it where to go next. The
learned map thus bears a similarity to the internal-
ized plans of [Payton 90], but it represented by the
same computational elements that use it—there is no
distinction between data and process. Furthermore
Mataric’s scheme can have multiple simultaneously ac-
tive goals—the robot will simply head towards the
nearest one.

The next step in this work will be to generalize active-
constructive representations to more classes of use.

4.2 CALIBRATION

[Viola 90] demonstrated calibration of a complex
head-eye system modeling the primate vestibulo-
ocular system. The problem is to keep a camera plat-
form steady even as the robot moves about. This lets
the visual processing routines have a better chance of
working.

In this system there is one fast channel between a gy-
roscope and a high performance pan-tilt head holding
the camera, and a slower channel using vision which
produces correction signals for the gyroscope channel.
The task is to learn an open loop transfer function
between the gyroscopes and the motors. The vision
channel provides a feedback signal that is too slow to
servo the camera but can be used to update the esti-
mate of the transfer function. It monitors the images
from the camera and returns independent signals for



horizontal and vertical image slip. In the first case
the possible outputs are none, left, or right, and in the
second case they are none, up, or down.

The same system was used to learn how to accurately
saccade to moving stimuli, where in this case the trans-
fer function was from a desired target for the center of
the fovea to a set of motor commands to ballistically
move the fovea to that location. The error signal in
this case was the relative position of the moving stimu-
lus after the camera movement, again as three possible
outcomes for each of vertical and horizontal.

In both cases the functions to be learned are not shown
to the system, but instead only crude overshoot and
undershoot correction signals are provided. THe func-
tions learned, however, are real valued functions on
one and two dimensional domains.

4.3 INTERACTION

Lastly, [Maes and Brooks 90] programmed an early
six legged robot to learn to walk using the subsump-
tion architecture along with the behavior activation
schemes of [Maes 89]. Independent behaviors on each
leg monitored the activity of other behaviors and cor-
related that, their own activity state, and the results
from a belly switch which provided negative feedback,
as input to a local learning rule which learned under
which conditions it was to operate the behavior. After
about 20 trials per leg, spread over a total of a minute
or two, the robot reliably learns the alternating tripod
gait—it slowly seems to emerge out of initially chaotic
flailing of the legs.

This example is the closest to the machine learning
ideas in reinforcement learning. It was also a very
simple case, where we carefully provided just a few
bits of state information (six). It remains to be seen
how such an approach might scale up.

4.4 NEW BEHAVIORS

This is a difficult area, and we have not seen any
non-trivial new behaviors learned by any existing ap-
proaches. In all cases they have been constrained so
much by the experimenters that there is very little to
learn—the experimenters have solved all the difficult
interaction and coupling problems already.

5 CONCLUSION

There is a rich domain for theoretical learning research
in autonomous mobile robots. At the moment the two
fields are far apart. It will take patience on both sides
to come to a middle ground where the autonomous
robot community is able to articulate the problems
they find interesting, and the theoretical learning com-
munity is able to provide algorithms robust enough to

operate in the complex real world environments pro-
vided by the robots.
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