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The Verilog LanguageThe Verilog Language

! Originally a modeling language for a very efficient
event-driven digital logic simulator

! Later pushed into use as a specification language for
logic synthesis

! Now, one of the two most commonly-used languages
in digital hardware design (VHDL is the other)

! Virtually every chip (FPGA, ASIC, etc.) is designed in
part using one of these two languages

! Combines structural and behavioral modeling styles
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Structural ModelingStructural Modeling

! When Verilog was first developed (1984) most logic
simulators operated on netlists

! Netlist: list of gates and how they’re connected

! A natural representation of a digital logic circuit

! Not the most convenient way to express test benches
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Behavioral ModelingBehavioral Modeling

! A much easier way to write testbenches

! Also good for more abstract models of circuits
• Easier to write
• Simulates faster

! More flexible

! Provides sequencing

! Verilog succeeded in part because it allowed both the
model and the testbench to be described together
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How Verilog Is UsedHow Verilog Is Used

! Virtually every ASIC is designed using either Verilog
or VHDL (a similar language)

! Behavioral modeling with some structural elements

! “Synthesis subset”
• Can be translated using Synopsys’ Design Compiler or

others into a netlist

! Design written in Verilog

! Simulated to death to check functionality

! Synthesized (netlist generated)

! Static timing analysis to check timing
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Two Main Components of VerilogTwo Main Components of Verilog

! Concurrent, event-triggered processes (behavioral)
• Initial and Always blocks
• Imperative code that can perform standard data

manipulation tasks (assignment, if-then, case)
• Processes run until they delay for a period of time or

wait for a triggering event

! Structure (Plumbing)
• Verilog program build from modules with I/O interfaces
• Modules may contain instances of other modules
• Modules contain local signals, etc.
• Module configuration is static and all run concurrently
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Two Main Data TypesTwo Main Data Types

! Nets represent connections between things
• Do not hold their value
• Take their value from a driver such as a gate or other

module
• Cannot be assigned in an initial or always block

! Regs represent data storage
• Behave exactly like memory in a computer
• Hold their value until explicitly assigned in an initial or

always block
• Never connected to something
• Can be used to model latches, flip-flops, etc., but do

not correspond exactly
• Shared variables with all their attendant problems
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Discrete-event SimulationDiscrete-event Simulation

! Basic idea: only do work when something changes

! Centered around an event queue
• Contains events labeled with the simulated time at

which they are to be executed

! Basic simulation paradigm
• Execute every event for the current simulated time
• Doing this changes system state and may schedule

events in the future
• When there are no events left at the current time

instance, advance simulated time soonest event in the
queue
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Four-valued DataFour-valued Data

! Verilog’s nets and registers hold four-valued data

! 0, 1
• Obvious

! Z
• Output of an undriven tri-state driver
• Models case where nothing is setting a wire’s value

! X
• Models when the simulator can’t decide the value
• Initial state of registers
• When a wire is being driven to 0 and 1 simultaneously
• Output of a gate with Z inputs
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Four-valued LogicFour-valued Logic

! Logical operators work on three-valued logic

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Output 0 if one input
is 0

Output X if both
inputs are gibberish
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Structural ModelingStructural Modeling
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Nets and RegistersNets and Registers

! Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers

reg [31:0] dcache[0:63]; // A 32-bit memory
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Modules and InstancesModules and Instances

! Basic structure of a Verilog module:

module mymod(output1, output2, … input1, input2);

output output1;

output [3:0] output2;

input input1;

input [2:0] input2;

…

endmodule

Verilog convention
lists outputs first
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Instantiating a ModuleInstantiating a Module

! Instances of

module mymod(y, a, b);

! look like

mymod mm1(y1, a1, b1); // Connect-by-position

mymod (y2, a1, b1),

   (y3, a2, b2);         // Instance names omitted

mymod mm2(.a(a2), .b(b2), .y(c2));  // Connect-by-name
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Gate-level PrimitivesGate-level Primitives

! Verilog provides the following:

and nand logical AND/NAND

or nor logical OR/NOR

xor xnor logical XOR/XNOR

buf not buffer/inverter

bufif0 notif0 Tristate with low enable

bifif1 notif1 Tristate with high enable
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Delays on Primitive InstancesDelays on Primitive Instances

! Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max
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User-Defined PrimitivesUser-Defined Primitives

! Way to define gates and sequential elements using a
truth table

! Often simulate faster than using expressions,
collections of primitive gates, etc.

! Gives more control over behavior with X inputs

! Most often used for specifying custom gate libraries
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A Carry PrimitiveA Carry Primitive

primitive carry(out, a, b, c);
output out;
input a, b, c;
table
  00? : 0;
  0?0 : 0;
  ?00 : 0;
  11? : 1;
  1?1 : 1;
  ?11 : 1;
endtable
endprimitive

Always have exactly
one output

Truth table may
include don’t-care (?)
entries
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A Sequential PrimitiveA Sequential Primitive

Primitive dff( q, clk, data);
output q; reg q;
input clk, data;
table
// clk data q   new-q
  (01)   0  : ? :    0; // Latch a 0
  (01)   1  : ? :    1; // Latch a 1
  (0x)   1  : 1 :    1; // Hold when d and q both 1
  (0x)   0  : 0 :    0; // Hold when d and q both 0
  (?0)   ?  : ? :    -; // Hold when clk falls
  ?    (??) : ? :    -; // Hold when clk stable
endtable
endprimitive
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Continuous AssignmentContinuous Assignment

! Another way to describe combinational function

! Convenient for logical or datapath specifications

wire [8:0] sum;

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Define bus widths

Continuous
assignment:
permanently sets the
value of sum to be
a+b+carryin

Recomputed when a,
b, or carryin changes
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Behavioral ModelingBehavioral Modeling
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Initial and Always BlocksInitial and Always Blocks

! Basic components for behavioral modeling

initial

  begin

    … imperative statements …

  end

Runs when simulation starts

Terminates when control
reaches the end

Good for providing stimulus

always

  begin

    … imperative statements …

  end

Runs when simulation starts

Restarts when control reaches
the end

Good for modeling/specifying
hardware
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Initial and AlwaysInitial and Always

! Run until they encounter a delay

initial begin
  #10 a = 1; b = 0;
  #10 a = 0; b = 1;
end

! or a wait for an event

always @(posedge clk) q = d;

always begin wait(i); a = 0; wait(~i); a = 1; end
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Procedural AssignmentProcedural Assignment

! Inside an initial or always block:

sum = a + b + cin;

! Just like in C: RHS evaluated and assigned to LHS
before next statement executes

! RHS may contain wires and regs
• Two possible sources for data

! LHS must be a reg
• Primitives or cont. assignment may set wire values
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Imperative StatementsImperative Statements

if (select == 1) y = a;

else y = b;

case (op)

  2’b00: y = a + b;

  2’b01: y = a – b;

  2’b10: y = a ^ b;

  default: y = ‘hxxxx;

endcase
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For LoopsFor Loops

! A increasing sequence of values on an output

reg [3:0] i, output;

for ( i = 0 ; i <= 15 ; i = i + 1 ) begin

  output = i;

  #10;

end
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While LoopsWhile Loops

! A increasing sequence of values on an output

reg [3:0] i, output;

i = 0;

while (I <= 15) begin

  output = i;

  #10 i = i + 1;

end
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Modeling A Flip-Flop With AlwaysModeling A Flip-Flop With Always

! Very basic: an edge-sensitive flip-flop

reg q;

always @(posedge clk)

   q = d;

! q = d assignment runs when clock rises: exactly the
behavior you expect
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Blocking vs. NonblockingBlocking vs. Nonblocking

! Verilog has two types of procedural assignment

! Fundamental problem:
• In a synchronous system, all flip-flops sample

simultaneously
• In Verilog, always @(posedge clk) blocks run in some

undefined sequence
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A Flawed Shift RegisterA Flawed Shift Register

! This doesn’t work as you’d expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

! These run in some order, but you don’t know which
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Non-blocking AssignmentsNon-blocking Assignments

! This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4 <= d3;

Nonblocking rule:

RHS evaluated when
assignment runs

LHS updated only after
all events for the current
instant have run
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Nonblocking Can Behave OddlyNonblocking Can Behave Oddly

! A sequence of nonblocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:

a = b = c = 1

a <= 1;

b <= a;

c <= b;

Nonblocking assignment:

a = 1

b = old value of a

c = old value of b
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Nonblocking Looks Like LatchesNonblocking Looks Like Latches

! RHS of nonblocking taken from latches

! RHS of blocking taken from wires

a = 1;

b = a;

c = b;

a <= 1;

b <= a;

c <= b;

1
a b c“ ”

a

b

c

1

“ ”
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Building Behavioral ModelsBuilding Behavioral Models
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Modeling FSMs BehaviorallyModeling FSMs Behaviorally

! There are many ways to do it:

! Define the next-state logic combinationally and
define the state-holding latches explicitly

! Define the behavior in a single always @(posedge clk)
block

! Variations on these themes
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FSM with Combinational LogicFSM with Combinational Logic

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
 case (state)
    2’b00: begin
       nextState = a ? 2’b00 : 2’b01;
       o = a & b;
    end
    2’b01: begin nextState = 2’b10; o = 0; end
 endcase

Combinational block
must be sensitive to
any change on any of
its inputs

(Implies state-holding
elements otherwise)

Output o is declared
a reg because it is
assigned
procedurally, not
because it holds state
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FSM with Combinational LogicFSM with Combinational Logic

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
  if (reset)
    state <= 2’b00;
  else
    state <= nextState;

Latch implied by
sensitivity to the clock
or reset only
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FSM from Combinational LogicFSM from Combinational Logic

always @(a or b or state)
 case (state)
    2’b00: begin
       nextState = a ? 2’b00 : 2’b01;
       o = a & b;
    end
    2’b01: begin nextState = 2’b10; o = 0; end
 endcase

always @(posedge clk or reset)
  if (reset)
    state <= 2’b00;
  else
    state <= nextState;

This is a Mealy
machine because the
output is directly
affected by any
change on the input
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FSM from a Single Always BlockFSM from a Single Always Block

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
  if (reset) state <= 2’b00;
  else case (state)
    2’b00: begin
       state <= a ? 2’b00 : 2’b01;
       o <= a & b;
    end
    2’b01: begin state <= 2’b10; o <= 0; end
 endcase

Expresses Moore
machine behavior:

Outputs are latched

Inputs only sampled
at clock edges

Nonblocking
assignments used
throughout to ensure
coherency.

RHS refers to values
calculated in previous
clock cycle
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Simulating VerilogSimulating Verilog
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How Are Simulators Used?How Are Simulators Used?

! Testbench generates stimulus and checks response

! Coupled to model of the system

! Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result
checker
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Writing TestbenchesWriting Testbenches

module test;
reg a, b, sel;

mux m(y, a, b, sel);

initial begin
  $monitor($time,, “a = %b b=%b sel=%b y=%b”,
                   a, b, sel, y);
  a = 0; b= 0; sel = 0;
  #10 a = 1;
  #10 sel = 1;
  #10 b = 1;
end

Inputs to device
under test

Device under test

$monitor is a built-in
event driven “printf”

Stimulus generated by
sequence of
assignments and delays
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Simulation BehaviorSimulation Behavior

! Scheduled using an event queue

! Non-preemptive, no priorities

! A process must explicitly request a context switch

! Events at a particular time unordered

! Scheduler runs each event at the current time,
possibly scheduling more as a result
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Two Types of EventsTwo Types of Events

! Evaluation events compute functions of inputs

! Update events change outputs

! Split necessary for delays, nonblocking assignments,
etc.

Evaluation event
reads values of b and
c, adds them, and
schedules an update
eventa <= b + cUpdate event

writes new value
of a and
schedules any
evaluation events
that are sensitive
to a change on a
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Simulation BehaviorSimulation Behavior

! Concurrent processes (initial, always) run until they
stop at one of the following

! #42
• Schedule process to resume 42 time units from now

! wait(cf & of)
• Resume when expression “cf & of” becomes true

! @(a or b or y)
• Resume when a, b, or y changes

! @(posedge clk)
• Resume when clk changes from 0 to 1
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Simulation BehaviorSimulation Behavior

! Infinite loops are possible and the simulator does not
check for them

! This runs forever: no context switch allowed, so
ready can never change

while (~ready)
  count = count + 1;

! Instead, use

wait(ready);
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Simulation BehaviorSimulation Behavior

! Race conditions abound in Verilog

! These can execute in either order: final value of a
undefined:

always @(posedge clk) a = 0;

always @(posedge clk) a = 1;
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Simulation BehaviorSimulation Behavior

! Semantics of the language closely tied to simulator
implementation

! Context switching behavior convenient for simulation,
not always best way to model

! Undefined execution order convenient for
implementing event queue
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Verilog and Logic SynthesisVerilog and Logic Synthesis



Copyright © 2001 Stephen A. Edwards  All rights reserved

Logic SynthesisLogic Synthesis

! Verilog is used in two ways
• Model for discrete-event simulation
• Specification for a logic synthesis system

! Logic synthesis converts a subset of the Verilog
language into an efficient netlist

! One of the major breakthroughs in designing logic
chips in the last 20 years

! Most chips are designed using at least some logic
synthesis
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Logic SynthesisLogic Synthesis

! Takes place in two stages:

! Translation of Verilog (or VHDL) source to a netlist
• Register inference

! Optimization of the resulting netlist to improve speed
and area

• Most critical part of the process
• Algorithms very complicated and beyond the scope of

this class: Take Prof. Nowick’s class for details
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Translating Verilog into GatesTranslating Verilog into Gates

! Parts of the language easy to translate
• Structural descriptions with primitives

! Already a netlist

• Continuous assignment
! Expressions turn into little datapaths

! Behavioral statements the bigger challenge
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What Can Be TranslatedWhat Can Be Translated

! Structural definitions
• Everything

! Behavioral blocks
• Depends on sensitivity list
• Only when they have reasonable interpretation as

combinational logic, edge, or level-sensitive latches
• Blocks sensitive to both edges of the clock, changes

on unrelated signals, changing sensitivity lists, etc.
cannot be synthesized

! User-defined primitives
• Primitives defined with truth tables
• Some sequential UDPs can’t be translated (not latches

or flip-flops)
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What Isn’t TranslatedWhat Isn’t Translated

! Initial blocks
• Used to set up initial state or describe finite testbench

stimuli
• Don’t have obvious hardware component

! Delays
• May be in the Verilog source, but are simply ignored

! A variety of other obscure language features
• In general, things heavily dependent on discrete-

event simulation semantics
• Certain “disable” statements
• Pure events
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Register InferenceRegister Inference

! The main trick

! reg does not always equal latch

! Rule: Combinational if outputs always depend
exclusively on sensitivity list

! Sequential if outputs may also depend on previous
values
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Register InferenceRegister Inference

! Combinational:

reg y;
always @(a or b or sel)
  if (sel) y = a;
  else y = b;

! Sequential:

reg q;
always @(d or clk)
  if (clk) q = d;

Sensitive to changes
on all of the variables
it reads

Y is always assigned

q only assigned when
clk is 1
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Register InferenceRegister Inference

! A common mistake is not completely specifying a
case statement

! This implies a latch:

always @(a or b)

case ({a, b})

  2’b00 : f = 0;

  2’b01 : f = 1;

  2’b10 : f = 1;

endcase

f is not assigned
when {a,b} = 2b’11
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Register InferenceRegister Inference

! The solution is to always have a default case

always @(a or b)

case ({a, b})

  2’b00: f = 0;

  2’b01: f = 1;

  2’b10: f = 1;

  default: f = 0;

endcase

f is always assigned
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Inferring Latches with ResetInferring Latches with Reset

! Latches and Flip-flops often have reset inputs

! Can be synchronous or asynchronous

! Asynchronous positive reset:

always @(posedge clk or posedge reset)

  if (reset)

   q <= 0;

  else q <= d;
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Simulation-synthesis MismatchesSimulation-synthesis Mismatches

! Many possible sources of conflict

! Synthesis ignores delays (e.g., #10), but simulation
behavior can be affected by them

! Simulator models X explicitly, synthesis doesn’t

! Behaviors resulting from shared-variable-like
behavior of regs is not synthesized

• always @(posedge clk) a = 1;
• New value of a may be seen by other @(posedge clk)

statements in simulation, never in synthesis
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Compared to VHDLCompared to VHDL

! Verilog and VHDL are comparable languages

! VHDL has a slightly wider scope
• System-level modeling
• Exposes even more discrete-event machinery

! VHDL is better-behaved
• Fewer sources of nondeterminism (e.g., no shared

variables)

! VHDL is harder to simulate quickly

! VHDL has fewer built-in facilities for hardware
modeling

! VHDL is a much more verbose language
• Most examples don’t fit on slides


