
Copyright © 2001 Stephen A. Edwards  All rights reserved

The Verilog LanguageThe Verilog Language

These slides were developed by

Prof. Stephen A. Edwards

CS dept., Columbia University

these slides are used for

educational purposes only



Copyright © 2001 Stephen A. Edwards  All rights reserved

The Verilog LanguageThe Verilog Language

! Originally a modeling language for a very efficient
event-driven digital logic simulator

! Later pushed into use as a specification language for
logic synthesis

! Now, one of the two most commonly-used languages
in digital hardware design (VHDL is the other)

! Virtually every chip (FPGA, ASIC, etc.) is designed in
part using one of these two languages

! Combines structural and behavioral modeling styles



Copyright © 2001 Stephen A. Edwards  All rights reserved

Structural ModelingStructural Modeling

! When Verilog was first developed (1984) most logic
simulators operated on netlists

! Netlist: list of gates and how they’re connected

! A natural representation of a digital logic circuit

! Not the most convenient way to express test benches



Copyright © 2001 Stephen A. Edwards  All rights reserved

Behavioral ModelingBehavioral Modeling

! A much easier way to write testbenches

! Also good for more abstract models of circuits
• Easier to write
• Simulates faster

! More flexible

! Provides sequencing

! Verilog succeeded in part because it allowed both the
model and the testbench to be described together



Copyright © 2001 Stephen A. Edwards  All rights reserved

How Verilog Is UsedHow Verilog Is Used

! Virtually every ASIC is designed using either Verilog
or VHDL (a similar language)

! Behavioral modeling with some structural elements

! “Synthesis subset”
• Can be translated using Synopsys’ Design Compiler or

others into a netlist

! Design written in Verilog

! Simulated to death to check functionality

! Synthesized (netlist generated)

! Static timing analysis to check timing



Copyright © 2001 Stephen A. Edwards  All rights reserved

Two Main Components of VerilogTwo Main Components of Verilog

! Concurrent, event-triggered processes (behavioral)
• Initial and Always blocks
• Imperative code that can perform standard data

manipulation tasks (assignment, if-then, case)
• Processes run until they delay for a period of time or

wait for a triggering event

! Structure (Plumbing)
• Verilog program build from modules with I/O interfaces
• Modules may contain instances of other modules
• Modules contain local signals, etc.
• Module configuration is static and all run concurrently



Copyright © 2001 Stephen A. Edwards  All rights reserved

Two Main Data TypesTwo Main Data Types

! Nets represent connections between things
• Do not hold their value
• Take their value from a driver such as a gate or other

module
• Cannot be assigned in an initial or always block

! Regs represent data storage
• Behave exactly like memory in a computer
• Hold their value until explicitly assigned in an initial or

always block
• Never connected to something
• Can be used to model latches, flip-flops, etc., but do

not correspond exactly
• Shared variables with all their attendant problems



Copyright © 2001 Stephen A. Edwards  All rights reserved

Discrete-event SimulationDiscrete-event Simulation

! Basic idea: only do work when something changes

! Centered around an event queue
• Contains events labeled with the simulated time at

which they are to be executed

! Basic simulation paradigm
• Execute every event for the current simulated time
• Doing this changes system state and may schedule

events in the future
• When there are no events left at the current time

instance, advance simulated time soonest event in the
queue



Copyright © 2001 Stephen A. Edwards  All rights reserved

Four-valued DataFour-valued Data

! Verilog’s nets and registers hold four-valued data

! 0, 1
• Obvious

! Z
• Output of an undriven tri-state driver
• Models case where nothing is setting a wire’s value

! X
• Models when the simulator can’t decide the value
• Initial state of registers
• When a wire is being driven to 0 and 1 simultaneously
• Output of a gate with Z inputs



Copyright © 2001 Stephen A. Edwards  All rights reserved

Four-valued LogicFour-valued Logic

! Logical operators work on three-valued logic

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Output 0 if one input
is 0

Output X if both
inputs are gibberish



Copyright © 2001 Stephen A. Edwards  All rights reserved

Structural ModelingStructural Modeling



Copyright © 2001 Stephen A. Edwards  All rights reserved

Nets and RegistersNets and Registers

! Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers

reg [31:0] dcache[0:63]; // A 32-bit memory



Copyright © 2001 Stephen A. Edwards  All rights reserved

Modules and InstancesModules and Instances

! Basic structure of a Verilog module:

module mymod(output1, output2, … input1, input2);

output output1;

output [3:0] output2;

input input1;

input [2:0] input2;

…

endmodule

Verilog convention
lists outputs first



Copyright © 2001 Stephen A. Edwards  All rights reserved

Instantiating a ModuleInstantiating a Module

! Instances of

module mymod(y, a, b);

! look like

mymod mm1(y1, a1, b1); // Connect-by-position

mymod (y2, a1, b1),

   (y3, a2, b2);         // Instance names omitted

mymod mm2(.a(a2), .b(b2), .y(c2));  // Connect-by-name



Copyright © 2001 Stephen A. Edwards  All rights reserved

Gate-level PrimitivesGate-level Primitives

! Verilog provides the following:

and nand logical AND/NAND

or nor logical OR/NOR

xor xnor logical XOR/XNOR

buf not buffer/inverter

bufif0 notif0 Tristate with low enable

bifif1 notif1 Tristate with high enable



Copyright © 2001 Stephen A. Edwards  All rights reserved

Delays on Primitive InstancesDelays on Primitive Instances

! Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max



Copyright © 2001 Stephen A. Edwards  All rights reserved

User-Defined PrimitivesUser-Defined Primitives

! Way to define gates and sequential elements using a
truth table

! Often simulate faster than using expressions,
collections of primitive gates, etc.

! Gives more control over behavior with X inputs

! Most often used for specifying custom gate libraries



Copyright © 2001 Stephen A. Edwards  All rights reserved

A Carry PrimitiveA Carry Primitive

primitive carry(out, a, b, c);
output out;
input a, b, c;
table
  00? : 0;
  0?0 : 0;
  ?00 : 0;
  11? : 1;
  1?1 : 1;
  ?11 : 1;
endtable
endprimitive

Always have exactly
one output

Truth table may
include don’t-care (?)
entries



Copyright © 2001 Stephen A. Edwards  All rights reserved

A Sequential PrimitiveA Sequential Primitive

Primitive dff( q, clk, data);
output q; reg q;
input clk, data;
table
// clk data q   new-q
  (01)   0  : ? :    0; // Latch a 0
  (01)   1  : ? :    1; // Latch a 1
  (0x)   1  : 1 :    1; // Hold when d and q both 1
  (0x)   0  : 0 :    0; // Hold when d and q both 0
  (?0)   ?  : ? :    -; // Hold when clk falls
  ?    (??) : ? :    -; // Hold when clk stable
endtable
endprimitive



Copyright © 2001 Stephen A. Edwards  All rights reserved

Continuous AssignmentContinuous Assignment

! Another way to describe combinational function

! Convenient for logical or datapath specifications

wire [8:0] sum;

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Define bus widths

Continuous
assignment:
permanently sets the
value of sum to be
a+b+carryin

Recomputed when a,
b, or carryin changes



Copyright © 2001 Stephen A. Edwards  All rights reserved

Behavioral ModelingBehavioral Modeling



Copyright © 2001 Stephen A. Edwards  All rights reserved

Initial and Always BlocksInitial and Always Blocks

! Basic components for behavioral modeling

initial

  begin

    … imperative statements …

  end

Runs when simulation starts

Terminates when control
reaches the end

Good for providing stimulus

always

  begin

    … imperative statements …

  end

Runs when simulation starts

Restarts when control reaches
the end

Good for modeling/specifying
hardware



Copyright © 2001 Stephen A. Edwards  All rights reserved

Initial and AlwaysInitial and Always

! Run until they encounter a delay

initial begin
  #10 a = 1; b = 0;
  #10 a = 0; b = 1;
end

! or a wait for an event

always @(posedge clk) q = d;

always begin wait(i); a = 0; wait(~i); a = 1; end



Copyright © 2001 Stephen A. Edwards  All rights reserved

Procedural AssignmentProcedural Assignment

! Inside an initial or always block:

sum = a + b + cin;

! Just like in C: RHS evaluated and assigned to LHS
before next statement executes

! RHS may contain wires and regs
• Two possible sources for data

! LHS must be a reg
• Primitives or cont. assignment may set wire values



Copyright © 2001 Stephen A. Edwards  All rights reserved

Imperative StatementsImperative Statements

if (select == 1) y = a;

else y = b;

case (op)

  2’b00: y = a + b;

  2’b01: y = a – b;

  2’b10: y = a ^ b;

  default: y = ‘hxxxx;

endcase



Copyright © 2001 Stephen A. Edwards  All rights reserved

For LoopsFor Loops

! A increasing sequence of values on an output

reg [3:0] i, output;

for ( i = 0 ; i <= 15 ; i = i + 1 ) begin

  output = i;

  #10;

end



Copyright © 2001 Stephen A. Edwards  All rights reserved

While LoopsWhile Loops

! A increasing sequence of values on an output

reg [3:0] i, output;

i = 0;

while (I <= 15) begin

  output = i;

  #10 i = i + 1;

end



Copyright © 2001 Stephen A. Edwards  All rights reserved

Modeling A Flip-Flop With AlwaysModeling A Flip-Flop With Always

! Very basic: an edge-sensitive flip-flop

reg q;

always @(posedge clk)

   q = d;

! q = d assignment runs when clock rises: exactly the
behavior you expect



Copyright © 2001 Stephen A. Edwards  All rights reserved

Blocking vs. NonblockingBlocking vs. Nonblocking

! Verilog has two types of procedural assignment

! Fundamental problem:
• In a synchronous system, all flip-flops sample

simultaneously
• In Verilog, always @(posedge clk) blocks run in some

undefined sequence



Copyright © 2001 Stephen A. Edwards  All rights reserved

A Flawed Shift RegisterA Flawed Shift Register

! This doesn’t work as you’d expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

! These run in some order, but you don’t know which



Copyright © 2001 Stephen A. Edwards  All rights reserved

Non-blocking AssignmentsNon-blocking Assignments

! This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4 <= d3;

Nonblocking rule:

RHS evaluated when
assignment runs

LHS updated only after
all events for the current
instant have run



Copyright © 2001 Stephen A. Edwards  All rights reserved

Nonblocking Can Behave OddlyNonblocking Can Behave Oddly

! A sequence of nonblocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:

a = b = c = 1

a <= 1;

b <= a;

c <= b;

Nonblocking assignment:

a = 1

b = old value of a

c = old value of b



Copyright © 2001 Stephen A. Edwards  All rights reserved

Nonblocking Looks Like LatchesNonblocking Looks Like Latches

! RHS of nonblocking taken from latches

! RHS of blocking taken from wires

a = 1;

b = a;

c = b;

a <= 1;

b <= a;

c <= b;

1
a b c“ ”

a

b

c

1

“ ”



Copyright © 2001 Stephen A. Edwards  All rights reserved

Building Behavioral ModelsBuilding Behavioral Models



Copyright © 2001 Stephen A. Edwards  All rights reserved

Modeling FSMs BehaviorallyModeling FSMs Behaviorally

! There are many ways to do it:

! Define the next-state logic combinationally and
define the state-holding latches explicitly

! Define the behavior in a single always @(posedge clk)
block

! Variations on these themes



Copyright © 2001 Stephen A. Edwards  All rights reserved

FSM with Combinational LogicFSM with Combinational Logic

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
 case (state)
    2’b00: begin
       nextState = a ? 2’b00 : 2’b01;
       o = a & b;
    end
    2’b01: begin nextState = 2’b10; o = 0; end
 endcase

Combinational block
must be sensitive to
any change on any of
its inputs

(Implies state-holding
elements otherwise)

Output o is declared
a reg because it is
assigned
procedurally, not
because it holds state



Copyright © 2001 Stephen A. Edwards  All rights reserved

FSM with Combinational LogicFSM with Combinational Logic

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
  if (reset)
    state <= 2’b00;
  else
    state <= nextState;

Latch implied by
sensitivity to the clock
or reset only



Copyright © 2001 Stephen A. Edwards  All rights reserved

FSM from Combinational LogicFSM from Combinational Logic

always @(a or b or state)
 case (state)
    2’b00: begin
       nextState = a ? 2’b00 : 2’b01;
       o = a & b;
    end
    2’b01: begin nextState = 2’b10; o = 0; end
 endcase

always @(posedge clk or reset)
  if (reset)
    state <= 2’b00;
  else
    state <= nextState;

This is a Mealy
machine because the
output is directly
affected by any
change on the input



Copyright © 2001 Stephen A. Edwards  All rights reserved

FSM from a Single Always BlockFSM from a Single Always Block

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
  if (reset) state <= 2’b00;
  else case (state)
    2’b00: begin
       state <= a ? 2’b00 : 2’b01;
       o <= a & b;
    end
    2’b01: begin state <= 2’b10; o <= 0; end
 endcase

Expresses Moore
machine behavior:

Outputs are latched

Inputs only sampled
at clock edges

Nonblocking
assignments used
throughout to ensure
coherency.

RHS refers to values
calculated in previous
clock cycle



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulating VerilogSimulating Verilog



Copyright © 2001 Stephen A. Edwards  All rights reserved

How Are Simulators Used?How Are Simulators Used?

! Testbench generates stimulus and checks response

! Coupled to model of the system

! Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result
checker



Copyright © 2001 Stephen A. Edwards  All rights reserved

Writing TestbenchesWriting Testbenches

module test;
reg a, b, sel;

mux m(y, a, b, sel);

initial begin
  $monitor($time,, “a = %b b=%b sel=%b y=%b”,
                   a, b, sel, y);
  a = 0; b= 0; sel = 0;
  #10 a = 1;
  #10 sel = 1;
  #10 b = 1;
end

Inputs to device
under test

Device under test

$monitor is a built-in
event driven “printf”

Stimulus generated by
sequence of
assignments and delays



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulation BehaviorSimulation Behavior

! Scheduled using an event queue

! Non-preemptive, no priorities

! A process must explicitly request a context switch

! Events at a particular time unordered

! Scheduler runs each event at the current time,
possibly scheduling more as a result



Copyright © 2001 Stephen A. Edwards  All rights reserved

Two Types of EventsTwo Types of Events

! Evaluation events compute functions of inputs

! Update events change outputs

! Split necessary for delays, nonblocking assignments,
etc.

Evaluation event
reads values of b and
c, adds them, and
schedules an update
eventa <= b + cUpdate event

writes new value
of a and
schedules any
evaluation events
that are sensitive
to a change on a



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulation BehaviorSimulation Behavior

! Concurrent processes (initial, always) run until they
stop at one of the following

! #42
• Schedule process to resume 42 time units from now

! wait(cf & of)
• Resume when expression “cf & of” becomes true

! @(a or b or y)
• Resume when a, b, or y changes

! @(posedge clk)
• Resume when clk changes from 0 to 1



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulation BehaviorSimulation Behavior

! Infinite loops are possible and the simulator does not
check for them

! This runs forever: no context switch allowed, so
ready can never change

while (~ready)
  count = count + 1;

! Instead, use

wait(ready);



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulation BehaviorSimulation Behavior

! Race conditions abound in Verilog

! These can execute in either order: final value of a
undefined:

always @(posedge clk) a = 0;

always @(posedge clk) a = 1;



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulation BehaviorSimulation Behavior

! Semantics of the language closely tied to simulator
implementation

! Context switching behavior convenient for simulation,
not always best way to model

! Undefined execution order convenient for
implementing event queue



Copyright © 2001 Stephen A. Edwards  All rights reserved

Verilog and Logic SynthesisVerilog and Logic Synthesis



Copyright © 2001 Stephen A. Edwards  All rights reserved

Logic SynthesisLogic Synthesis

! Verilog is used in two ways
• Model for discrete-event simulation
• Specification for a logic synthesis system

! Logic synthesis converts a subset of the Verilog
language into an efficient netlist

! One of the major breakthroughs in designing logic
chips in the last 20 years

! Most chips are designed using at least some logic
synthesis



Copyright © 2001 Stephen A. Edwards  All rights reserved

Logic SynthesisLogic Synthesis

! Takes place in two stages:

! Translation of Verilog (or VHDL) source to a netlist
• Register inference

! Optimization of the resulting netlist to improve speed
and area

• Most critical part of the process
• Algorithms very complicated and beyond the scope of

this class: Take Prof. Nowick’s class for details



Copyright © 2001 Stephen A. Edwards  All rights reserved

Translating Verilog into GatesTranslating Verilog into Gates

! Parts of the language easy to translate
• Structural descriptions with primitives

! Already a netlist

• Continuous assignment
! Expressions turn into little datapaths

! Behavioral statements the bigger challenge



Copyright © 2001 Stephen A. Edwards  All rights reserved

What Can Be TranslatedWhat Can Be Translated

! Structural definitions
• Everything

! Behavioral blocks
• Depends on sensitivity list
• Only when they have reasonable interpretation as

combinational logic, edge, or level-sensitive latches
• Blocks sensitive to both edges of the clock, changes

on unrelated signals, changing sensitivity lists, etc.
cannot be synthesized

! User-defined primitives
• Primitives defined with truth tables
• Some sequential UDPs can’t be translated (not latches

or flip-flops)



Copyright © 2001 Stephen A. Edwards  All rights reserved

What Isn’t TranslatedWhat Isn’t Translated

! Initial blocks
• Used to set up initial state or describe finite testbench

stimuli
• Don’t have obvious hardware component

! Delays
• May be in the Verilog source, but are simply ignored

! A variety of other obscure language features
• In general, things heavily dependent on discrete-

event simulation semantics
• Certain “disable” statements
• Pure events



Copyright © 2001 Stephen A. Edwards  All rights reserved

Register InferenceRegister Inference

! The main trick

! reg does not always equal latch

! Rule: Combinational if outputs always depend
exclusively on sensitivity list

! Sequential if outputs may also depend on previous
values



Copyright © 2001 Stephen A. Edwards  All rights reserved

Register InferenceRegister Inference

! Combinational:

reg y;
always @(a or b or sel)
  if (sel) y = a;
  else y = b;

! Sequential:

reg q;
always @(d or clk)
  if (clk) q = d;

Sensitive to changes
on all of the variables
it reads

Y is always assigned

q only assigned when
clk is 1



Copyright © 2001 Stephen A. Edwards  All rights reserved

Register InferenceRegister Inference

! A common mistake is not completely specifying a
case statement

! This implies a latch:

always @(a or b)

case ({a, b})

  2’b00 : f = 0;

  2’b01 : f = 1;

  2’b10 : f = 1;

endcase

f is not assigned
when {a,b} = 2b’11



Copyright © 2001 Stephen A. Edwards  All rights reserved

Register InferenceRegister Inference

! The solution is to always have a default case

always @(a or b)

case ({a, b})

  2’b00: f = 0;

  2’b01: f = 1;

  2’b10: f = 1;

  default: f = 0;

endcase

f is always assigned



Copyright © 2001 Stephen A. Edwards  All rights reserved

Inferring Latches with ResetInferring Latches with Reset

! Latches and Flip-flops often have reset inputs

! Can be synchronous or asynchronous

! Asynchronous positive reset:

always @(posedge clk or posedge reset)

  if (reset)

   q <= 0;

  else q <= d;



Copyright © 2001 Stephen A. Edwards  All rights reserved

Simulation-synthesis MismatchesSimulation-synthesis Mismatches

! Many possible sources of conflict

! Synthesis ignores delays (e.g., #10), but simulation
behavior can be affected by them

! Simulator models X explicitly, synthesis doesn’t

! Behaviors resulting from shared-variable-like
behavior of regs is not synthesized

• always @(posedge clk) a = 1;
• New value of a may be seen by other @(posedge clk)

statements in simulation, never in synthesis



Copyright © 2001 Stephen A. Edwards  All rights reserved

Compared to VHDLCompared to VHDL

! Verilog and VHDL are comparable languages

! VHDL has a slightly wider scope
• System-level modeling
• Exposes even more discrete-event machinery

! VHDL is better-behaved
• Fewer sources of nondeterminism (e.g., no shared

variables)

! VHDL is harder to simulate quickly

! VHDL has fewer built-in facilities for hardware
modeling

! VHDL is a much more verbose language
• Most examples don’t fit on slides


