m ODbjects

m Constants

= Variables

m Types and Type Declarations
s Numbers

m Physical Types

s Enumeration Types

m Subtypes

m Operators

ODbjects, Types,
and Operations

Outline

m Objects
m Object Classes
m Class Types

= Operations on Types of Classes

Objects

= Object: Anything That Has a Name and
Is of a Specified Type

m Four Classes of Objects
— Constants
— Variables
— Signals (discussion deferred to later)
— Files (discussion deferred to later)

Objects

m Classes of Objects Can Be of Different Types

Object Declaration

= Before an Object Can Be Used, It Must Be Declared

m Declarations
— Specify a unique identifier
— Define the type
— May specify initial (default) value

Constants

m Constant Initialized to a Value That
Cannot Change

—If not initialized, called a deferred constant
—May only appear in package declaration

m Constant declaration insures that a Value
has a Type

Constant Syntax

const ant identifier _list : subtype indication |
. = expression | ;

where

identifier_list <= identifier { , ... }

Constant Declaration, e.qg.,

constant Pl : real := 3.1415926535897 ;
constant BUS WDTH : Integer := 32 ;
const ant

| NTENSI TY _DYNAM C RANGE :

real :=16 # FF . F ;

constant START TI ME_M NUTES :
| nteger := 00 ;

Variables

m Variable: an Object Whose Value May be
Changed After Creation

m Initialization Value is Optional.
m If not Initialized the Default for Scalar Types Is:

— The first in the list of an enumeration type

— The lowest In an ascending range

— The highest in a descending range

Variables Syntax

= Only Declare where it can be
Accessed by One Process

var i abl e i1dentifier list :
subtype Indication | : = expression | ;

Variable Declaration, e.g.,

varil able Control Value : real := 3 . 68 ;:

vari able M nTenp, MaxTenp, MeanTenp : real
=0 . 0 :

Variable Declaration, e.g.,

vari abl e I mageW dt h, | nmageHel ght
| Nt eger : = 256 ;

varil abl e D skSi ze, Menlsed, Menieft
| nt eger ;

vari able MBus : bit vector
(31 downto O) ;

Variable Assignment Syntax

s Immediately Overwrites Variable with New
Value

= Unlike the way a Signal Does

= Replacement Operator for Variables
<= Replacement Operator for Signals

| label : | identifier : = expression ;

Variable Assignment, e.g.,
MnTemp := 0 . O ;

| rageW dth := 128 ;

VAl nBus

16 # ffff _ffff ;

Mal nBus x “ FFFF_FFFF * ;

Types

= The Type of a Data Object
— Defines the set of values an object can take on

— Defines operations which can be performed on
object

m Scalar Type
— Consists of a set of single, indivisible values

Types

s Composite Type

= Many Predefined Types

Type Syntax

m [ype Qualification Is Used to Avoid Type
Ambiguity in Overloaded Enumeration
Literals

type name ° (expression)

— Only states type of value

Type Syntax

m Type Conversion Can Be Used to
Perform Mixed Arithmetic

New Type (Value of A d Type)
m €.0.,

real (238)
positive (My_Integer Val ue)
— Rounds to nearest integer

— Changes type of value

Type Declaration Syntax

type identifier is type definition ;
type_definition <=
scalar_type_definition
| composite _type_definition

| access_type definition

| file_type_definition

Type Declaration, e.g.

m ldentical Type Declarations Are Distinct

type MdTermzades is range 0 to 100 ;

type Final Gades Iis range O to 100 ;

Scalar Type Declaration

m Scalar Type
—Number types

—Enumerated list

—Physical quantities

Scalar Type Declaration Syntax

scalar_type definition <=
enumeration_type_definition
| Integer_type definition
| floating_type_definition

| physical _type definition

Predefined Integer Type

m Integer Type

— A range of integer values within a specified
range including the endpoints

m Integer Type Range
—minimumrange (-23%+1)to(+2%-1)

Operations on Integer Types

Highest precedence: o

*

+
Lowest precedence: and

not
mod rem

&
< <= > >=
nand nor XOr

Table 7-1. Operators and precedence.

*Ashenden, VHDL cookbook

Integer Type Definition Syntax

range simple expression (to | downto)
simple_expression

t o : left to right from smallest value to largest

downt o : left to right from largest value to smallest

Integer Type Definition, e.qg.,

type Street Nunbers is range 10107 to
12568 ;

type I magi ngSensors is range 0 to 5 ;
type Celsius is range 100 downto O ;

type PointSpread is range 14 downto O ;

Pre-defined Floating-Point
Type Definition

= Floating-Point Type

— A range of real values within a specified range including
the endpoints

s Real
— Minimum range (-1.0E+38)to (+1.0E+38)
— 6-digits minimum precision
— Corresponds to IEEE 32-bit representation
— Floating-point type

Operations on Floating-
Point Types

m Binary Operators

+ Add
Subtraction

* Multiplication

/ Division

*x Exponentiation

Operations on Floating-Point Types

= Unary Operators
- Negation
+ |dentity
abs Absolute value

Floating-Point Type
Syntax

range simple expression (to | downto)
simple_expression

t o : left to right from smallest value to largest

downt o : left to right from largest value to smallest

Floating-Point Type, e.qg.,

type StreetPosition Is range
101 . 07 to 125 . 68 ;

type I magi ngSensor Sensitivity Is range
O. Oto 5. 0

Floating-Point Type, e.qg.,

type Celsius is range 100.0 downto O . O ;

type PointSpread is range 15.0 downto O . O ;

Physical Type Definition

m Identifier Is the Primary Unit With the Smallest
Unit Represented

m identifier-n Secondary Units Defined in Terms of
Primary Unit

Operations on Physical Types

m Binary Operators
* Multiplication by an integer or float

[Division by an integer or float

» Division by objects of same physical type yields an
Integer

Operations on Physical Types

s Unary Operators
negation

+ Identity

Physical Type Definition Syntax

range simple expression (to | downto)
simple_expression
units
Identifier ;
{ identifier-n = physical_literal ; }
end units [identifier | ;

Operations on Physical Types

= Multiplication or Division of Different Physical
Types Not Allowed

» |T Required,
— Convert to integers
— Perform operation
— Convert result to correct type

Predefined Physical Type, e.q.,

type tine is range I nplenmentation defi ned

uni ts
__»Ts
Identifier ps = 1000 fs ; ns = 1000 ps ;
us = 1000 ns ; nse = 1000 us ;
sec = 1000 n® mn = 60 sec
hr = 60 mn :
Identifier-n/

end units ; [tine |

Simulation Time Resolution Limit

m [he Resolution Limit Determines the Precision to
Which Time Values Are Represented.

m Values of Time Smaller Than the Resolution Limit
Round Down to Zero.

m fs Is the Normal Resolution Limit During Model
Simulation. FEMTOSECOND

Simulation Time Resolution Limit

m Larger Values of Time Can Be Used As a
Secondary Time Resolution Limit
—Units of all physical literals involving time

must not be smaller than the secondary
resolution limit

Physical Type Definition, e.qg.,

type capacitance Is range O to lel2
units

pi cof arad ;

nanof ar ad = 1000 picofarad ;
m cr of ar ad = 1000 nanof arad ;
farad = le6 mcrofarad ;

end units capacitance ;

Physical Type Resolution

m 47 picofarad
m 10. 6 nanof ar ad

m 4.7 picofarad
— rounds DOWN to 4 picofarads since pf is smallest
unit
— can only have integer value of base unit

Enumeration Type Definition

s Enumeration Type
— An ordered set of 1dentifiers or characters

— The 1dentifiers and characters within a single
enumeration type must be unique.

— ldentifiers and characters may be reused In
different enumeration types.

((1dentifier | character literal) { , ... })

Enumeration Type, e.q.,

type Buffer_Drectionis (in, out , tri_state) ;

type FF_Type is
(Toggle , Set Reset , Data , JK) ;

Enumeration Type, e.q.,

type MenoryType is (Read Only |
Wite Only |,

RW) ;

type GateType is (AND, OR, INVERT) ;

Predeftined
Enumeration Types

type severity level is (note , warning ,
error , failure) ;

type Boolean is (false , true) ;

— Used to model abstract conditions

type bit is (" 0", " 1") ;
— Used to model hardware logic levels

Predefined Enumeration Types

type file open_status iIs

(open_ok , status error , nane_error
, hode_error) ;

type character is (NUL , SOH, ...) ;
— All characters in 1SO 8-bit character set

m |[EEE std logic 1164 Accounts for
Electrical Properties

Subtypes

= Subtype
— Values which may be taken on by an object and
— are a subset of some base type, and,
—may Include all values.

Subtypes

m Subtypes Mixed in Expressions
— Computations done in base type

— Assignment fails If result is not within range of
result variable (sub)type

Subtype Syntax

subt ype identifier i1 s subtype i ndication ;

subtype_indication <=
iIdentifier [range sinpl e _expression (
to | downto) sinple expression |

Subtype Cases

= A Subtype May Constrain Values From a Scalar
Type to Be Within a Specified Range

subtype Pin Count is integer range 0 to 400;

subtype Cctal _Digits Is character
range ' 0 ' to ' 7'

Subtype Cases

m A Subtype May Constrain an Otherwise
Unconstrained Array Type by Specifying
Bounds for the Indices

subtype id is string (1 to 20) ;

subtype MyBus is bit_vector (8 downto 0) ;

Predefined Numeric
Subtypes

subtype natural 1s integer range 0 to
hi ghest | nt eger ;

subtype positive Is integer range 1 to
hi ghest | nt eger ;

subtype delay length is tine range O
fs to highest tine ;

Scalar Type Attributes

m Predefined Attributes Associated With Each Type

Type Name ‘ Attribute_Name

All Scalar Type Attributes

T left leftmost value in T
T right rightmost value in T
T low least value in T

T high greatest value in T

T’ascending True if ascending range, else false
T image(x) a string representing x
T value(s) the value In T that Is represented by s

Discrete and Physical Scalar
Type Attributes

T pos(x)
T val(n)
T succ(x)

T pred(x)

T’ leftof(x)
T rightof(x)

position numberof X In T
value In T at position n

value In T at position one greater
than that of x

value In T at position one less
than that of x

value In T at position one to the left of x
value In T at position one to the right of x

Operators

= “Short-Circuit” Operators

—Behavior with binary operators
»Evaluate left operand

» T value of operand determines the value of
expression, set result

»Else evaluate right operand

Operators

— Left operand can be used to prevent right operand from
causing arithmetic error such as divide by zero

— Reduces computation time by eliminating redundant
calculations

m Logic Operators
AND , OR, NAND, NOR

Operators

= Relational Operators
= [= < <= > >=

— Operands must be of the same type
— Yield Boolean results

s Equality, Inequality Operators
= /=
— Operands of any type

Operators

= Concatenation Operator
&
— Operates on one-dimensional arrays to form a new array
= Arithmetic
*
— Operate on integer, floating point and physical types
types.

Operators

s Modulo, Remainder

mod , rem
— Operate only on integer types.
m Absolute Value

abs
— Operates on any numeric type

Operators

s EXponentiation

* K

— Integer or floating point left operand
— Integer right operand required

— Negative right operand requires floating point left
operand

sources

Max Salinas - VI Workshop Revision
Prof. K. J. Hintz

Department of Electrical and Computer Engineering
George Mason University

End of Leture

