
■ Objects

■ Constants

■ Variables

■ Types and Type Declarations

■ Numbers

■ Physical Types

■ Enumeration Types

■ Subtypes

■ Operators

Objects, Types,Objects, Types,
and Operationsand Operations

OutlineOutline
■ Objects

■ Object Classes

■ Class Types

■ Operations on Types of Classes

ObjectsObjects
■ Object: Anything That Has a Name and

Is of a Specified Type

■ Four Classes of Objects
– Constants

– Variables

– Signals (discussion deferred to later)

– Files (discussion deferred to later)

ObjectsObjects
■ Classes of Objects Can Be of Different Types

Object DeclarationObject Declaration
■ Before an Object Can Be Used, It Must Be Declared

■ Declarations
– Specify a unique identifier

– Define the type

– May specify initial (default) value

ConstantsConstants
■ Constant initialized to a Value That

Cannot Change
–If not initialized, called a deferred constant

–May only appear in package declaration

■ Constant declaration insures that a Value
has a Type

Constant SyntaxConstant Syntax

constant identifier_list : subtype_indication [
:= expression] ;

where

identifier_list <= identifier { , ... }

Constant Declaration, Constant Declaration, e.g.,e.g.,
constant PI : real := 3.1415926535897 ;

constant BUS_WIDTH : integer := 32 ;

constant

 INTENSITY_DYNAMIC_RANGE :

real := 16 # FF . F ;

constant START_TIME_MINUTES :
integer := 00 ;

VariablesVariables
■ Variable: an Object Whose Value May be

Changed After Creation

■ Initialization Value is Optional.

■ if not Initialized the Default for Scalar Types is:
– The first in the list of an enumeration type

– The lowest in an ascending range

– The highest in a descending range

Variables SyntaxVariables Syntax
■ Only Declare where it can be

Accessed by One Process

variable identifier_list :

 subtype_indication [:= expression] ;

Variable Declaration, Variable Declaration, e.g.,e.g.,

variable ControlValue : real := 3 . 68 ;

variable MinTemp, MaxTemp, MeanTemp : real
:= 0 . 0 ;

Variable DeclarationVariable Declaration, e.g.,, e.g.,
variable ImageWidth, ImageHeight :

integer := 256 ;

variable DiskSize, MemUsed, MemLeft :
integer ;

variable MBus : bit_vector

(31 downto 0) ;

Variable Assignment SyntaxVariable Assignment Syntax

■ Immediately Overwrites Variable with New
Value

■ Unlike the way a Signal Does

:= Replacement Operator for Variables

<= Replacement Operator for Signals

[label :] identifier := expression ;

Variable Assignment, Variable Assignment, e.g.,e.g.,
MinTemp := 0 . 0 ;

ImageWidth := 128 ;

MainBus : = 16 # ffff_ffff ;

MainBus : = x “ FFFF_FFFF “ ;

TypesTypes
■ The Type of a Data Object

– Defines the set of values an object can take on

– Defines operations which can be performed on
object

■ Scalar Type
– Consists of a set of single, indivisible values

TypesTypes
■ Composite Type

■ Many Predefined Types

Type SyntaxType Syntax
■ Type Qualification Is Used to Avoid Type

Ambiguity in Overloaded Enumeration
Literals

type_name ‘ (expression)

– Only states type of value

Type SyntaxType Syntax
■ Type Conversion Can Be Used to

Perform Mixed Arithmetic

New_Type (Value_of_Old_Type)

■ e.g.,

real (238)

positive (My_Integer_Value)

– Rounds to nearest integer

– Changes type of value

Type Declaration SyntaxType Declaration Syntax

type identifier is type_definition ;

type_definition <=

 scalar_type_definition

 | composite_type_definition

 | access_type_definition

 | file_type_definition

Type DeclarationType Declaration, e.g., e.g.

■ Identical Type Declarations Are Distinct

type MidTermGrades is range 0 to 100 ;

type FinalGrades is range 0 to 100 ;

Scalar Type DeclarationScalar Type Declaration
■ Scalar Type

– Number types

– Enumerated list

– Physical quantities

Scalar Type Declaration SyntaxScalar Type Declaration Syntax

scalar_type_definition <=

 enumeration_type_definition

 | integer_type_definition

 | floating_type_definition

 | physical_type_definition

 Predefined Integer Type Predefined Integer Type

■ Integer Type
– A range of integer values within a specified

range including the endpoints

■ Integer Type Range
– minimum range (- 231 + 1) to (+ 231 - 1)

Operations on Integer TypesOperations on Integer Types

Highest precedence: ** abs not

* / mod rem

+ (sign) – (sign)

+ – &

= /= < <= > >=

Lowest precedence: and or nand nor xor

Table 7-1. Operators and precedence.

*Ashenden, VHDL cookbook

Integer Type Definition SyntaxInteger Type Definition Syntax

range simple_expression (to | downto)

simple_expression

to : left to right from smallest value to largest

downto : left to right from largest value to smallest

Integer Type Definition Integer Type Definition , e.g.,, e.g.,

type StreetNumbers is range 10107 to
12568 ;

type ImagingSensors is range 0 to 5 ;

type Celsius is range 100 downto 0 ;

type PointSpread is range 14 downto 0 ;

Pre-defined Floating-PointPre-defined Floating-Point
Type DefinitionType Definition

■ Floating-Point Type
– A range of real values within a specified range including

the endpoints

■ Real
– Minimum range (-1.0E+38) to (+1.0E+38)

– 6-digits minimum precision

– Corresponds to IEEE 32-bit representation

– Floating-point type

Operations on Floating-Operations on Floating-
Point TypesPoint Types

■ Binary Operators
 + Add

 - Subtraction

 * Multiplication

 / Division

 ** Exponentiation

Operations on Floating-Point TypesOperations on Floating-Point Types

■ Unary Operators
 - Negation

 + Identity

 abs Absolute value

Floating-Point TypeFloating-Point Type
SyntaxSyntax

range simple_expression (to | downto)
simple_expression

to : left to right from smallest value to largest

downto : left to right from largest value to smallest

Floating-Point TypeFloating-Point Type, e.g.,, e.g.,
type StreetPosition is range

101 . 07 to 125 . 68 ;

type ImagingSensorSensitivity is range

0 . 0 to 5 . 0 ;

Floating-Point TypeFloating-Point Type, e.g.,, e.g.,

type Celsius is range 100.0 downto 0 . 0 ;

type PointSpread is range 15.0 downto 0 . 0 ;

Physical Type DefinitionPhysical Type Definition

■ identifier Is the Primary Unit With the Smallest
Unit Represented

■ identifier-n Secondary Units Defined in Terms of
Primary Unit

Operations on Physical TypesOperations on Physical Types

■ Binary Operators

 * Multiplication by an integer or float

 / Division by an integer or float
» Division by objects of same physical type yields an

integer

Operations on Physical TypesOperations on Physical Types

■ Unary Operators

 - negation

 + identity

Physical Type Definition SyntaxPhysical Type Definition Syntax

range simple_expression (to | downto)
simple_expression

 units

identifier ;

 { identifier-n = physical_literal ; }

 end units [identifier] ;

Operations on Physical TypesOperations on Physical Types

■ Multiplication or Division of Different Physical
Types Not Allowed

■ If Required,
– Convert to integers

– Perform operation

– Convert result to correct type

Predefined Physical Type, Predefined Physical Type, e.ge.g.,.,

type time is range implementation defined

units

fs ;

ps = 1000 fs ; ns = 1000 ps ;

us = 1000 ns ; ms = 1000 us ;

sec = 1000 ms ; min = 60 sec ;

hr = 60 min ;

 end units ; [time]

identifier

Identifier-n

Simulation Time Resolution LimitSimulation Time Resolution Limit

■ The Resolution Limit Determines the Precision to
Which Time Values Are Represented.

■ Values of Time Smaller Than the Resolution Limit
Round Down to Zero.

■ fs Is the Normal Resolution Limit During Model
Simulation. FEMTOSECOND

Simulation Time Resolution LimitSimulation Time Resolution Limit

■ Larger Values of Time Can Be Used As a
Secondary Time Resolution Limit
– Units of all physical literals involving time

must not be smaller than the secondary
resolution limit

Physical Type DefinitionPhysical Type Definition, e.g.,, e.g.,
type capacitance is range 0 to 1e12

units

picofarad ;

nanofarad = 1000 picofarad ;

microfarad = 1000 nanofarad ;

farad = 1e6 microfarad ;

end units capacitance ;

Physical Type ResolutionPhysical Type Resolution
■ 47 picofarad

■ 10.6 nanofarad

■ 4.7 picofarad

– rounds DOWN to 4 picofarads since pf is smallest
unit

– can only have integer value of base unit

Enumeration Type DefinitionEnumeration Type Definition

■ Enumeration Type
– An ordered set of identifiers or characters

– The identifiers and characters within a single
enumeration type must be unique.

– Identifiers and characters may be reused in
different enumeration types.

((identifier | character_literal) { , ... })

Enumeration Type, Enumeration Type, e.ge.g.,.,
type Buffer_Direction is (in , out , tri_state) ;

type FF_Type is

(Toggle , Set_Reset , Data , JK) ;

Enumeration Type, Enumeration Type, e.ge.g.,.,
type MemoryType is (Read_Only ,

 Write_Only ,

 RW) ;

type GateType is (AND , OR , INVERT) ;

PredefinedPredefined
Enumeration TypesEnumeration Types

type severity_level is (note , warning ,

 error , failure) ;

type Boolean is (false , true) ;

– Used to model abstract conditions

type bit is (' 0 ', ' 1 ') ;

– Used to model hardware logic levels

Predefined Enumeration TypesPredefined Enumeration Types

type file_open_status is

 (open_ok , status_error , name_error
, mode_error) ;

type character is (NUL , SOH , ...) ;

– All characters in ISO 8-bit character set

■ IEEE std_logic_1164 Accounts for
Electrical Properties

SubtypesSubtypes
■ Subtype

– Values which may be taken on by an object and

– are a subset of some base type, and,

– may include all values.

SubtypesSubtypes
■ Subtypes Mixed in Expressions

– Computations done in base type

– Assignment fails if result is not within range of
result variable (sub)type

Subtype SyntaxSubtype Syntax
subtype identifier is subtype_indication ;

subtype_indication <=

identifier [range simple_expression (
to | downto) simple_expression]

Subtype CasesSubtype Cases
■ A Subtype May Constrain Values From a Scalar

Type to Be Within a Specified Range

subtype Pin_Count is integer range 0 to 400;

subtype Octal_Digits is character

range ' 0 ' to ' 7 ' ;

Subtype CasesSubtype Cases

■ A Subtype May Constrain an Otherwise
Unconstrained Array Type by Specifying
Bounds for the Indices

subtype id is string (1 to 20) ;

subtype MyBus is bit_vector (8 downto 0) ;

 Predefined Numeric Predefined Numeric
SubtypesSubtypes

subtype natural is integer range 0 to
highest_integer ;

subtype positive is integer range 1 to
highest_integer ;

subtype delay_length is time range 0
fs to highest_time ;

Scalar Type AttributesScalar Type Attributes
■ Predefined Attributes Associated With Each Type

Type_Name ‘ Attribute_Name

All Scalar Type AttributesAll Scalar Type Attributes

T’left leftmost value in T

T’right rightmost value in T

T’low least value in T

T’high greatest value in T

T’ascending True if ascending range, else false

T’image(x) a string representing x

T’value(s) the value in T that is represented by s

Discrete and Physical ScalarDiscrete and Physical Scalar
Type AttributesType Attributes

T’pos(x) position number of x in T

T’val(n) value in T at position n

T’succ(x) value in T at position one greater
than that of x

T’pred(x) value in T at position one less

than that of x

T’leftof(x) value in T at position one to the left of x

T’rightof(x) value in T at position one to the right of x

OperatorsOperators
■ “Short-Circuit” Operators

– Behavior with binary operators
»Evaluate left operand

»If value of operand determines the value of
expression, set result

»Else evaluate right operand

OperatorsOperators
– Left operand can be used to prevent right operand from

causing arithmetic error such as divide by zero

– Reduces computation time by eliminating redundant
calculations

■ Logic Operators

AND , OR , NAND , NOR

OperatorsOperators
■ Relational Operators

 = , /= , < , <= , > , >=
– Operands must be of the same type

– Yield Boolean results

■ Equality, Inequality Operators

 = , /=
– Operands of any type

OperatorsOperators
■ Concatenation Operator

 &
– Operates on one-dimensional arrays to form a new array

■ Arithmetic

 * , /
– Operate on integer, floating point and physical types

types.

OperatorsOperators
■ Modulo, Remainder

 mod , rem
– Operate only on integer types.

■ Absolute Value

 abs
– Operates on any numeric type

OperatorsOperators
■ Exponentiation

 **
– Integer or floating point left operand

– Integer right operand required

– Negative right operand requires floating point left
operand

SourcesSources

Max Salinas - VI Workshop Revision

Prof. K. J. Hintz

Department of Electrical and Computer Engineering

George Mason University

End of End of LetureLeture

The End

