Variable

assignment
statement

Signal assignment

walt

Sequential Statements

0 Variable assignment _
statement 0 EXIt statement

0 Signal assignment 0 Null statement

0 If statement 0 Procedure call

0 Case statement statement

0 Loop statement
0O Next statement

0 Return statement

0 Assertion
statement

Variable assignment
statement

Variable assignment_statement ::= target:=expression;

architecture RTL of VASSIGN is
signal A, B, J : bit_vector(1 downto 0);
signal E, F, G : bit;
begin
p0 : process (A, B, E, F, G, J)
variable C, D, H, Y : bit_vector(1 downto 0);

variable W, Q . bit_vector(3 downto 0);

variable Z . bit_vector(0 to 7);

variable X . bit;

variable DATA . bit_vector(31 downto 0);
begin ...

end process
end RTL;

Variable assignment statement

signal A, B, J : bit_vector(1 downto 0);

signal E, F, G : bit;

p0 : process (A, B, E, F, G, J)
--A, B, J, D, H :bit vector -E,F, G :bit
begin Variable assigned to a signal
C ="01" /
X = E nand F; The same signal
Y =HorJ;

G (a bit) goes to

Z(0to3) =C&D; -
two bits

Z(4to7) :=(notA) & (A nor B);

D =('1','0); /
W = (2downto 1 => G, 3=>"1", others =>"'0");
DATA = (others =>'0");

end process;

O O 0o o0 o0 oo 0o 4000 o

Make note of mapping notation again

Formal Syntax of a signal
assignment statement

VHDL syntax description In
metalanguage

nt_statement :.=

target<=|[Jwaveform_element{,waveform_element};

/

waveform_element::=

value expression[after time_expression]|nullf time_expression]

PO : process (A, B)

begin . .
Y <= A nand B after 10 s Signal assignment
X <= transport A nand B =
“fter 10 5; statements and wait for

end process;

pl : process

begin < SOTTS -
A <="'0', '1" after 20 ns, ‘0" 0 [{ 0 I i i (!
after 40 ns, '1' after 60 ns; el bnloalodndlondidinb i
B <="0", '1" after 30 ns, '0" A

after 35 ns, '1' after 50 ns;

i B
wait for 80 ns; - i
end process; %
|

Y SR

A pulse with a duration

shorter than the swirching | R€CAIl waveforms , transport
time of the circuit will not and inertial delay

be transmitted in transport.

Signal assignment statement

IDELAY/a

[DELAYD

IDELAYA

DELAYly

Inertial and Transport
Delays

entity DELAY is
end DELAY;
architecture RTL of DELAY is
signal A, B, X, Y : bit;
begin
PO : process (A, B)
begin
Y <= A nand B after 10 ns;
X <= transport A nand B after

A

llll]lllll

Pl : process
begin
A <="0', '1" after 20 ns,
'0" after 40 ns, '1' after 60 ns;
B <="0', 1" after 30 ns,
'0" after 35 ns, '1' after 50 ns;
walt for 80 ns;
end process;
end RTL;

L 5 0 0

JllJ|llLI.J.LllllI'.IJJJ'.[lI IIIII|I1'|I|II|PII

IDELAY/a

\
DELAYD \ \

\
DELAYE \ \

DELAYY

FIGURE 4.1 Inertial and transport delay.

Role of wait for in discarding

IDRIVER/A 3 5 | 2 i 4 6 3

entity DRIVER is 5 after 20 ns, 7 after 40
end DRIVER,; .
_ _ : _ discarded

architecture RTL of DRIVER is wait for 30 ns;

signal A : integer; A <=2, 4 after 20 ns, 6 after
begin 40 ns, 8 after 60 ns;

pa : Process wait for 50 ns; P
begin end process;

end RTL;

This slide explains the role of wait for to discard
part of assignment statement

Differences between variables and
signals

0 1. Where declared

0 Local variables are declared and only visible inside a
process or a subprogram.

0 Signals cannot be declared inside a process or a
subprogram.

N 2. When updated

0 A local variable is iImmediately updated when the
variable assignment statement is executed.

0 A signal assignment statement updates the signal
driver. The new value of the signal is updated when the
process Is suspended.

Differences between variables and
signals

3. Variables are cheaper to implement in VHDL
simulation since the evaluation of drivers iIs not
needed. They require less memory

4 Signals communicate among concurrent statements
Ports declared In the entity are signals. Subprogram
arguments can be signals or variables.

5. A signal i1s used to indicate an interconnect (netin a
schematic). A local variable is used as a temporary
value In a function description.

Signals versus variables

6. A local variable is very useful to factor out
common parts of complex equations to
reduce the mathematical calculation.

/. Right-hand sides:

0 The right-hand side of a variable assignment
statement Is an expression.

0 There iIs no assoclated time expression.

0 The right-hand side of a signal assignment
statement Is a sequence of waveform elements with
assoclated time expressions.

Signals and variables in
timing diagrams

Variables on left

entity SIGVAL is begi\r/lARO { /
port (g Variables on
VAR1 :=D; ht
CLK, D :in bit; S1G0 <= VARD rig
FF2, FF3 : out bit; SIG1 <= VAR1:
Y :outbit_vector(7 downto 0)); Y (1 downto 0) <= VAR1 & VARQO;
end SIGVAL: Y (3 downto 2) <= SIG1 & SIGO;

VARO := not VARO;
VAR1 :=not VAR1;
SIGO0 <= not VARQO;

architecture RTL of SIGVAL is
signal FF1, SIGO, SIG1 : bit;

begin SIG1 <= not D:
pO : process (D, SIG1, SIGO0) Y (5 downto 4) <= VAR1 & VARQO;
variable VARO, VAR1 : bit; Y (7 downto 6) <= SIG1 & SIGO;

end process;

Simulation

waveform for
variables and
signals k] -

begin
VARO :=D;
VARL1 :=D;
SIG0 <= VARQO;
SIG1 <= VAR];
Y (1 downto 0) <= VAR1 & VARQ;
Y (3 downto 2) <= SIG1 & SIGO;
VARO := not VARO;
VARL1 :=not VARI1,;
SIGO0 <= not VARQO;
SIG1 <=not D;
Y (5 downto 4) <= VAR1 & VARO;
Y (7 downto 6) <= SIG1 & SIGO;
end process;

: . WO PGP PGP Ertud = 1111 1 SR C C

ISIGVALIck /

ISIGVALd | | D D
ISIGVALIpOVARD | | | VO VO
ISIGVALDOVART | I Vi Vi

ISIGVALsig0 | | | SO SO
[SIGVALsig1 | ‘ ‘ | Sl Sl
[SIGVALYy(T:0) 10111000 X 01000111 X 10111000 X 01000111 X 10111000 Y Y
ISIGVALI | | | F1
SIGVALIR | | F2
ISIGVALIp2A | | | V3

SeVAL | | | F3

- Y <=(S1, S0, ~D, ~D, S1, S0, D, D) .

Timing of variables versus

FFFleizgclgr\é?:l%etgf ti m i n g Of S i g n al S

signal semantics

Pl : process
begin

| L]

Bl lC| <

TR

wait until CLK'evént and CLK ="1" N D

e T «——VARO

FF1<=D; FF2 <= FF1; s
\\\\\\\\\\\ SO ‘////:gﬁgé

end process;

P2 : process
variable V3 : bit;

begin

wait until CLK'event and CLK ="1";
V3 =D; FF3 <=

end process;
end RTL;

.~ e =8 Jicl

Gt :E « Y
SCATY oo X e X iy MX i

e :::;FFl

e e oY

e [
\/3; mm TR EE;

*\Variable V3 changes at the same time as FF1, and so FF3

 FF3 unlike FF2 MORAL.: Signals are scheduled, variables
change immediately

Three

architectures

v calculated

/ immediately

variable V : integer;

begin

V := (B*C + D*E*F + G);

Y<=A+V;Z<=A-V,; The same
end process; statements

end RTL1;
architecture RTL2 of TEMP is

entity TEMP is
end TEMP,;
architecture RTL of TEMP is
signal A,B,C,D, E,F, G, Y, Z: integer;
begin
pO0 : process (A, B,C,D, E, F, G)
begin
Y <= A+ (B*C + D*E*F + G);
Z<=A- (B*C + D*E*F + G);
end process;
end RTL;
architecture RTL1 of TEMP is
signal A,B,C,D,E,F, G, Y, Z: integer;
begin
p0 : process (A, B,C,D, E, F, G)

'\ end RTL2;

signal A,B,C,D,E, F, G, Y, Z: integer;
signal V : integer;
begin
p0 : process (A, B,C,D, E, F, G)
begin
V <= (B*C + D*E*F + G);
Y<=A+V;Z<=A-V,
end process;

Uses old value
of v, because it
Is a signal

First architecture has no variables
Second architecture uses variable V
Third architecture uses additional signal vV

Their operation is different because signal V is
scheduled and variable immediately assigned

sSources

0 VLSI. Ohio University, Starzyk

