
ArchitectureArchitecture
Of CubeOf Cube
CalculusCalculus
MachineMachine

Communication Between theCommunication Between the
Host and the CCMHost and the CCM

• The cube calculus machine acts as a coprocessor to the
host computer.

• The host puts instructions into the input FIFO and receives
the results from the output FIFO

• The CCM takes instructions from the input FIFO, executes
it and puts the results into the output FIFO.

HOST
INPUT FIFO

OUTPUT FIFO

CCM

The Architecture of CCMThe Architecture of CCM

• The simplified Block diagram of CCM:

INPUT
FIFO

Register
File

OUTPUT
FIFO

ILU

Mem OCU

Global Control Unit (GCU)

From host Computer To host Computer

Data Buses

Control
Buses

The Architecture of CCMThe Architecture of CCM

• The CCM communicates with the host computer through
the input and the output FIFOs.

• The ILU can take the input from register file and memory
and can write output to the register file, the memory and the
output FIFO.

• The ILU executes the cube operation under the control of
Operation Control Unit (OCU).

• The Global Control Unit (GCU) controls all the parts of the
CCM and let them work together.

• Let’s discuss the ILU in more detail.

ITERATIVEITERATIVE
LOGIC UNITLOGIC UNIT

(ILU)(ILU)

ITERATIVEITERATIVE
NETWORK OFNETWORK OF

CCMCCM

• The ILU architecture consists of an iterative network of
cells and a control unit which controls the operation of
these cells.

• Here the I/P’s A[i], B[i], Relation, Bef, Act, Aft come
from the register file and is not shown in the figure and
o/p C[i], is also not shown which goes to register file.

Cell 1 Cell 2 Cell n

Operational Control Unit (OCU)

next [n]next [2] next [3]
next [1]

next [n+1]

request, reset

The iterative network of the CCM

Initiate Terminate

The block diagram representationThe block diagram representation

of the Iterative cell used in CCMof the Iterative cell used in CCM

 Combinational
 Logic Block A

Combinational
Logic Block A

Sequential
Logic Block

Combinational
Logic Block C

Next [i]
Next [i+1]

Clk Reset A[i] B[i] Relation Bef Aft Act A[i] B[i]

C[i]

Var[i]

State[i]

Explanation of Iterative CellExplanation of Iterative Cell

• The Iterative Cell consists of 3 combinational blocks and
1 sequential block.

• Function of Combinational block A: To take the input
variables, apply a relation between the variables and
provide the output Var[i] .
Var[i] represent whether the variable is a special variable
or not.
Var[i] = 1 ⇒ The variable is a special variable (The
relation is satisfied).
Var[i] = 0 ⇒ The variable is not a special variable (The
relation is not satisfied).

Explanation of Iterative CellExplanation of Iterative Cell

• The function of combinational block A is to
identify a special variable Var[i], therefore the
block is named as IDENTIFY block.

• Var[i] signal is fed to sequential logic block
along with the other inputs(Clk,Next[i], Reset)
and provides an output (State[i]), which in turn
decides which operation (Bef, Aft, Act) to be
performed by the Combinational block B.

• Combinational block B is a block that performs Bef,
Act, Aft operations on input variables depending on
the input received from the sequential logic block
(state[i]) and gives the output variable C[i] .

• It has two input bits from operand literals A[i], B[i]
respectively, two bits for signal state[i],12 bits
programmable inputs for functions before, active, after
and two output bits C[i].

• The block performs different operations on input
variable and hence named as OPERATION block

Explanation of Iterative CellExplanation of Iterative Cell

• The realization of combinational block B can be done
by Multiplexer.
– Here the signal state[i] selects one function from the three

possible functions
– ⇒ this realization can be done by using one 4 to 1

multiplexer,
– here there are only three possible functions, so the last data

input is not used and is connected to a constant “0000”.

• Then the function is to be applied to inputs A[i], B[i]
again this is realized by the use of two 4 to 1
multiplexer.

• Total of three 4 to 1 multiplexers are used for the
realization of combinational block B (OPERATION
block)

Explanation of Iterative CellExplanation of Iterative Cell

RealizationRealization of Operation block of ITof Operation block of IT

• OPERATION block of IT:

0 1 2 3 0 1 2 3a0i

b0i

c0i c1i

b1i

a1i

 Bef Act Aft “0000”

4 4 4 4

State[i]
2

2

2

2

2

2 2

4

Explanation of Iterative CellExplanation of Iterative Cell

• Before explaining the function of
combinational logic block C, let’s
explain why we require Next[i] and
Next[i+1] signals.

Why We require Next signals inWhy We require Next signals in
Iterative CellIterative Cell

• For Sequential cube calculus operations the o/p result
consists of as many cubes as the number of special
variables.

• Let’s take an Example which has 6 variables and 3 special
variables in it at 2, 4, 5 position.

• X1
{ }

X2
{ }

X3
{ }

X4
{ }

X5
{ }

X6
{ }

• X1
{ }

X2
{ }

X3
{ }

X4
{ }

X5
{ }

X6
{ }

S S S

Why We require Next signals in
Iterative Cell

 1st Step: Check for the special variables.
2nd Step: Generate 3 cubes as a result, each cube is the
result of performing an Act operation on one special
variable and Aft operation on variables that lie to the left of
that special variable and Bef operation on the variables that
lie to right of that special variable.

⇒ Special variables are taken one at a time,
⇒ Generating one cube at a time

⇒ 3rd Step:we need to find a way to activate special variables
in series, and all other variables should know their relative
position with respect to current active variable, left or right.
– This is done by Combinational logic block C.

Why We require Next signals inWhy We require Next signals in
Iterative CellIterative Cell

Explanation of Iterative CellExplanation of Iterative Cell

• The function of Combinational logic block
C is to produce an o/p when the variable
is active variable
 (⇒ act[i] is true) or When the next[i] signal is 1

and Var[i] signal is 0.

• Therefore the logic of Combinational logic
block C is next[i+1] = act[i] + next[i].
Var[i].

Explanation of Iterative CellExplanation of Iterative Cell

• The Sequential logic block consists
of:

• FSM (Finite State Machine),
– the FSM has three states(Bef, Aft, Act)

– the o/p of FSM is state[i] signal.

– Here the FSM is reset to Bef state.

Flow chart of the FSMFlow chart of the FSM

• Flow chart:

State 00

Next [i]

Var [i]

State 01 State 10

0

1

1 0

Bef

Act Aft

General Expression forGeneral Expression for
three states of FSMthree states of FSM

• The state machine is described by:

 bef[i]=state1[i]*state0[i]

 act[i]=state1[i]*state0[i]

 aft[i]=state1[i]*state0[i]

• Since there are three states ⇒ the machine is realized by using two
D FF.

• The current state of the FSM is represented by the Q outputs of two
FF, which are state0[i] and state1[i].

• The next state of the FSM are the inputs of the two FF.

• Let’s denote those state as ex0 and ex1.

General Expression forGeneral Expression for
three states of FSMthree states of FSM

• From the flow chart we know that the ex0 and ex1 are act
state and aft state.

• Looking at the flow chart we have

 ex0[i] = bef[i] * next[i] * var[i]

 ex1[i]=bef[i] * next[i] * var[i] + act[i] + aft[i]

•There may an error in negation in this equation

State 0

Gate Level realization of state[i]Gate Level realization of state[i]

State 1

Next[i]

Ex0

Ex1 Active[i]

After[i]

Before[i]

Clear[i]

Variable[i]

Explanation of Iterative CellExplanation of Iterative Cell

• The function of Sequential circuit and
combinational circuit C together is to
calculate the state of the variable (State[i])
and propagate the information to next
iterative cell and hence the name STATE
block.

Additional Inputs toAdditional Inputs to
Iterative cellIterative cell

forfor
Handling MultiHandling Multi
Valued FunctionValued Function

Additional Inputs to Iterative CellAdditional Inputs to Iterative Cell

• CCM is a hardware, when it is realized , it has fixed
number of iterative cells.
– When we use CCM to solve a problem we cannot always use all

its iterative cells.

• Therefore we need a signal vector to tell whether a given
iterative cell is used by the operation or not.
– This signal is Water[i] (w[i]), where i=1,2-----n.

• The signal w[i] = 1 ⇒
– that particular IT is not used and it should pass all signals

running horizontally, like the next signal.

– ⇒ IT is transparent.

General Expression for W[i]General Expression for W[i]

•• General expression for w[i]General expression for w[i]

 W[i]=1-------------- IT[i] is not used

 W[i]=0-------------- IT[i] is used

Additional Inputs to Iterative CellAdditional Inputs to Iterative Cell
for Handling Multi valued Variablefor Handling Multi valued Variable

• We need a signal vector to tell where is the boundary of a
multi valued variable.
– This signal vector is right_edge[i] (re[i]), where i =1,2----n.

• The signal re[i] = 1 ⇒ IT[i] is right edge of a variable

• or IT[i] is the Last IT of a variable .
OR

• The signal re[i-1] = 1 ⇒ IT[i] is first IT of a variable.

• Because IT[1] is always the first IT of a variable ⇒
re[0] = 1

General Expression for re[i]General Expression for re[i]

•• General Expression of re[i]General Expression of re[i]

 re[i]=1----------------- IT[i] is Last IT of a variable
re[I-1]=1-------------- IT[i] is First IT of a variable.

Example for Right_edge signalExample for Right_edge signal
and water_signaland water_signal

• Example: Consider CCM with 6 Iterative cells. For a
given cube operation, there are 3 variables with 2, 4, 6
possible values respectively.

• Right_edge signal: 1 - 01 - 001

• Water_signal : 0-00-000

• Therefore the signal water[i] and re[i] are used for
identifying purpose and hence are the inputs to
identify block.

Var1 Var 2 Var 3

Handling Multi-valued FunctionsHandling Multi-valued Functions

• For multi valued variable, the next signal is described as:
When IT[i] is not used (w[i]=1) the iterative cell should
be transparent to signal next ⇒ next[i+1] = w[i].next[i].
otherwise
The next signal propogates till the right edge of the first
special variable that it will encounter when w[i]=0.
⇒ next[i+1] = w[i](act[i] + next[i]. Var[i]. rel[i])

• For handling multi valued variables the next signal is
described as :
next[i+1] =w[i](act[i]+next[i].Var[i].rel[i])+w[i].next[i]

Gate Level realization of next[i+1]Gate Level realization of next[i+1]

Re[i]

Var[i]

W[i]

Next[i]

Active[i]

Next[i+1]

Propagation Signals forPropagation Signals for
combining multiple iterative cellscombining multiple iterative cells

• Example:To process a pair of operand literals of a 6
valued variable ⇒ 3 Iterative Cells are combined.

• Here we assume that 3 iterative cells are used and since all
the cells are used ⇒ w[1]=0, w[2]=0, w[3]=0.

• IT[1] is the first IT of a variable ⇒ re[0] = 1

• IT[3] is the last IT of a variable ⇒ re[3] = 1

Next[1]

Carry[1]

Conf[0]

re[0] = 1

w[1]=0 re[1]=0

Next[2] Next[3] Next[4]

Carry[2] Carry[3] Carry[4]

Conf[1] Conf[2]

w[2]=0 w[3]=0re[2]=0 re[3]=1

Var[3]Var[2]Var[1]

IT[1] IT[2] IT[3]

• Here three Iterative cells are combined together therefore
the signal Var cannot be defined by a single iterative cell
because for a given OR type cube operation:
Var = rel(a1,b1)+ rel(a2,b2)+ rel(a3,b3)+ rel(a4,b4)+
rel(a5,b5)+ rel(a6,b6)
since a single iterative cell processes just two possible
values
carry[2]= rel(a1,b1)+ rel(a2,b2)
carry[3]= carry[2]+ rel(a3,b3)+ rel(a4,b4)
carry[4]= carry[3]+ rel(a5,b5)+ rel(a6,b6)

Propagation Signals forPropagation Signals for
combining multiple iterative cellscombining multiple iterative cells

• ⇒ carry[4] = rel(a1,b1)+ rel(a2,b2)+ rel(a3,b3)+ rel(a4,b4)+
rel(a5,b5)+ rel(a6,b6)
⇒ carry[4] = Var = Var[3]
⇒ the Signal Var is always generated at the end of last
cell of a variable.

• All the three cells which process the variable should know
the signal Var.

• Therefore all other cells that process the same variable
receive the signal Var through the propagation signal
conf from its successive cell.

Propagation Signals forPropagation Signals for
combining multiple iterative cellscombining multiple iterative cells

• Final equations of different cell
⇒ Var[3] = carry[4]
conf[2] = Var[3]
Var[2] = conf[2]
conf[1] = Var[2]
Var[1] = conf[1]
⇒ The carry propagates from left to right until the right
edge of the variable in order to generate signal var of the
variable then the signal var is propagated back (from right
to left) through conf.

Propagation Signals forPropagation Signals for
combining multiple iterative cellscombining multiple iterative cells

• ⇒ General Expression for conf:
conf[i-1] = carry[i+1] if IT[i] is the last IT of a variable.

• = conf[i] otherwise.

• ⇒ General Expression of var[i] for multi valued variable.
var[i] = conf[i-1]
carry[i+1]=var[i] For Last IT of a variable

Propagation Signals forPropagation Signals for
combining multiple iterative cellscombining multiple iterative cells

• General formula for signal carry[i]
For OR type relation:
carry_or[i+1]:
= rel0[i]+ rel1[i] if IT[i] is the first IT of a variable.
= rel0[i]+ rel1[i]+carry[i] otherwise.

• For AND type relation:
carry_and[i+1]:
= rel0[i].rel1[i] if IT[i] is the first IT of a variable.
= rel0[i].rel1[i].carry[i] otherwise.

Propagation Signals forPropagation Signals for
combining multiple iterative cellscombining multiple iterative cells

Combining the re[i] with Carry[i]Combining the re[i] with Carry[i]

• we know for Right_edge signal:
re[i-1] = 1 ⇒ IT[i] is first IT of a variable .
re[i] = 1 ⇒ IT[i] is last IT of a variable.

• Taking into consideration right edge signal into
carry_or[i+1] :
For OR type relation:
carry_or[i+1]:
=(rel0[i]+ rel1[i]).re[i-1]+(rel0[i]+ rel1[i]+carry[i]). re[i-1]
=(rel0[i]+rel1[i]).re[i-1]+ carry[i]. re[i-1]
+(rel0[i]+rel1[i]).re[i-1].
= (rel0[i]+rel1[i])+ carry[i]. re[i-1]

• Taking into consideration the right_edge signal
For AND type relation:
carry_and[i+1]:
= rel0[i].rel1[i].re[i-1]+ rel0[i].rel1[i].carry[i]. re[i-1]
= rel0[i].rel1[i].(re[i-1]+ carry[i]. re[i-1])
= rel0[i].rel1[i].re[i-1]+ rel0[i].rel1[i]. carry[i].

Combining the re[i] with Carry[i]Combining the re[i] with Carry[i]

Combining the carry_and[i+1] withCombining the carry_and[i+1] with
carry_or[i+1]carry_or[i+1]

• We know the carry[i+1]
= carry_and[i+1] For AND type of cube operation.
= carry_or[i+1] Otherwise
⇒
carry[i+1]=carry_and[i+1].and_or+carry_or[i+1].and_or
Where signal and_or represents the relation of cube type
of operation.
and_or =1 ⇒ Cube operation is AND type .
Otherwise ⇒ Cube operation is OR type.

General Expression for Carry[i+1]General Expression for Carry[i+1]
taking into consideration re[i]taking into consideration re[i]

• carry[i+1]
= carry_and[i+1].and_or + carry_or[i+1] .and_or
= carry_and[i+1] + carry_or[i+1] .and_or
Since Carry_or always equals 1 whenever carry_and
equals 1
=rel0[i].rel1[i].re[i-1]+ rel0[i].rel1[i]. carry[i].
+ (rel0[i]+rel1[i]). and_or +carry[i]. re[i-1] and_or

General Expression for Carry[i+1]General Expression for Carry[i+1]
 considering re[i] and w[i] considering re[i] and w[i]

• carry[i+1]=
= w[i](rel0[i].rel1[i].re[i-1]+ rel0[i].rel1[i]. carry[i]+
(rel0[i]+rel1[i]). and_or +carry[i]. re[i-1].and_or)
+w[i].carry[i]

Gate Level realization of carry[i+1]Gate Level realization of carry[i+1]

Rel 0

Rel 1

Re[i-1]

Carry[i]

And_or

W[i]

Carry[i+1]

Combining the re[i] with Conf[i]Combining the re[i] with Conf[i]

• For Right_edge signal re[i]:
re[i-1] = 1 ⇒ IT[i] is first IT of a variable .
re[i] = 1 ⇒ IT[i] is last IT of a variable General
Expression for conf:
conf[i-1] = carry[i+1] if IT[i] is the last IT of a variable.

• = conf[i] otherwise.
Combining the above two signals:
conf[i-1]= conf[i].rel[i]+ carry[i+1].re[i]

General Expression for Conf[i+1]General Expression for Conf[i+1]
 considering re[i] and w[i] considering re[i] and w[i]

• We know that if
W[i]=1-------------- IT[i] is not used(IT is Transparent)
W[i]=0-------------- IT[i] is used
conf[i-1]=[conf[i].rel[i]+carry[i+1].re[i]]w[i] + w[i].conf[i]

Gate Level realization of conf[i-1]Gate Level realization of conf[i-1]

Carry [i+1]
W[i]

Re[i]

Conf[i]

Gate Level realization

Conf[i-1]

var[i]

Disadvantage of IterativeDisadvantage of Iterative
NetworkNetwork

• The disadvantage of the iterative network is that the
propagation signal must propagrate through a large
number of cells

• ⇒ The response time is longer
⇒ There is a delay of propagation signal next reaching the
first special variable.

• The delay is Tpropagation mathematically Tpropagation = tFF +k.tc

⇒ K⇑ delay ⇑ where
tc:The worst case delay of the combinational logic block
C. k: Number of cells the propagation signal goes through.

• tFF : The time delay of FF used in sequential circuit.

The Signal ReadyThe Signal Ready
• The signal ready tells the OCU whether the ILU is ready

or not then the OCU generates the request signal only
when the ILU is ready.

• We introduced here a signal subready[i] which is
generated at the cell that represent a special variable and
recieves the next signal.
⇒ subready[i]=request.next[i].var[i]
Any of subready[i] signals become one means CCM is
ready to output the result cube.
⇒ ready = subready[1]+ subready[2]+------+ subready[n]

Realization of FSM for complexRealization of FSM for complex
combinational cube operationcombinational cube operation

• Originally the FSM was designed for
sequential cube operations.

• But there are active variables in complex
combinational cube operation where all the
active variables are taken at a time.

• Therefore to select sequential or complex
combinational cube operation we use two
separate input variables (selt1[i], selt0[i])

Detailed block diagram of aDetailed block diagram of a
Iterative cell(IT)Iterative cell(IT)

• The detailed block diagram:

IDENTIFY

STATE

OPERATION

A[i] B[i] Re[i-1] W[i] Re[i]
Rel [4]

And-Or [2]

 Carry[i]
Conf[i-1]

Carry[i+1]
Conf[i]

Cnt[i] [5]

Request
Clear

Prime

Next[i]
Next[i+1]

Bef [4]
Act [4]

Aft [4]

2
2

 Var[i]

Selt[i]

 [2]

 C[i]
 [2]

COUNTER
Count[i]

Cnt[i+1][5]

EMPTY

Subready[i]

Empty_carry[i+1]

Subempty[i]Empty_carry[i]

SourcesSources
• Seyda Mohsina

• Qihong Chen

• David Foote

