
•Applications Note 116:
VHDL Style Guidelines
for Performance

IntroductionIntroduction
• No matter how fast a simulator gets, the HDL developer can

further improve performance by applying a few simple
guidelines to the coding style.

• The key to higher performance is to avoid code that
needlessly creates additional work for the HDL compiler
and simulator.

• This paper will describe the general code constructs that
have a high performance impact, and how to avoid them.

• Specifically, this paper shows how to apply the ModelSim
Performance Analyzer to improve simulation
performance.

Performance BasicsPerformance Basics
• A simulator is a highly specialized database. For every event, the

simulator must quickly find all affected processes, evaluate these
processes, update the state and schedule the resulting new events.

• As with any database, the more data managed by the simulator the
slower the overall transaction time.

• The rules below describe the relative performance cost of different
VHDL language elements.

• The underlying strategy is to reduce the high cost elements by
replacing them with less costly elements or eliminating them entirely.

• Obviously, the underlying integrity of the design must be maintained.

• The rules below merely describe better ways to implement the same
content.

Measuring Performance on UNIXMeasuring Performance on UNIX
• Accurate performance measurements are necessary when tuning the code.

• On UNIX machines you can prefix the vsim invocation using the “time” command.
On Solaris this looks like:

 /usr/bin/time vsim –do perf_test.do

 . . .

 real 153.0

 user 112.3

 sys 4.1

• The “real” line shows how much wall clock time passed.

• The “user” line shows how much CPU time was used during the run. The “sys” line
refers to the amount of time taken by operating system calls.

• A large difference between the “real” and “user” time means one of two things:
– The system is heavily loaded with other simultaneous processes

– The simulation exceeds the memory, and is swapping to disk

• Changes to VHDL style are of little help in these cases, as limited computational
resources are curtailing simulation performance.

Measuring Performance on NTMeasuring Performance on NT
• On NT machines you can get the same information

through the task manager (CTRL-ALT-DEL Task
Manager or Right-Click on Task Bar > Task
Manager).

• Select the Processes tab and find the entry for
vsim.exe.

• The data CPU time column is cumulative if you run
several tests in the same ModelSim session.

Using Performance AnalyzerUsing Performance Analyzer
• Here is a small ModelSim Tcl script that measures

wall clock time for a simulation run.

• This would be appropriate for a machine that has
little running on it besides the simulator.

• This script also invokes the ModelSim performance
analyzer, opens the report GUI and writes the
performance profile results to a file called
“profile.txt”.

• Further description of the use of the performance analyzer
can be found in the ModelSim documentation and the
applications note: “ModelSim HDL Simulation
Performance Analyzer”.

HDL Style for PerformanceHDL Style for Performance
• Rule 1: Use Optimized Standard Libraries

• Customers report up to a 3x performance increase
when switching from unoptimized to optimized
VHDL libraries.

• For ModelSim, all of the most frequently used
VHDL libraries have been specifically tuned for
maximum performance within ModelSim.

• These optimizations can be disabled by using
special switches at compilation (-o0 or –noaccel) or
by explicitly mapping in alternate libraries.

HDL Style for PerformanceHDL Style for Performance
• However, the most common reason for mistaken use

of unoptimized libraries.

• This occurs if the build environment compiles
standard library source code from a non-Model Tech
source.

• Source code for standard libraries is often included
with synthesis tools or ASIC vendor libraries, and is
often compiled by mistake.

• These unoptimized libraries will take precedent over
the default ones.

• The Performance Analyzer can quickly show you when you are using an unoptimized
library.

• If the performance report implicates a line within a library (outside of user code) then
the library has not been optimized.

• Optimized libraries do not show up in the performance analyzer report.

• If the library indicated is one in the optimized list of Table 1, then review the steps taken
to compile the design.

Rule 2: Reduce Process SensitivityRule 2: Reduce Process Sensitivity
• Avoid inefficient processes like this one:

 inefficient : process (A, B) begin

 procedure_1(A);

 procedure_2(B);

 end process inefficient;

• Notice that every time B changes, a call is needlessly made to
procedure_1.

• Similarly, events on A will force the redundant evaluation
procedure_2.

• Note that if you have shared data between the two processes, you may
have difficulty accurately synthesizing the correct behavior.

• In the example above, the Performance Analyzer is likely to identify
excess time spent in this process.

• Two separate processes, each with the correct sensitivity list is the
more efficient coding style:

 efficient_1 : process (A) begin
 procedure_1(A);
 end process efficient_1;

 efficient_2 : process (B) begin
 procedure_2(B);
 end process efficient_2;
• This is a trivial example, but processes like these appear often in the

customer examples.
• Unnecessarily sensitive can severely impact performance.
• Also, use caution when creating processes sensitive to signals of

record type.
• The record may contain more information than the process strictly

needs, but any change to any element of the record will force a re-
evaluation of the process.

Rule 3: Reducing waitsRule 3: Reducing waits
• It is a common practice to use a for loop around a wait on

clock to allow a specific amount of time to pass.

• This fragment delays 100 clock cycles:

 for i in 1 to 100 loop

 wait until Clk’Event and Clk = ‘1’;

 end loop;

 next statement ...

• While this loop is not complicated, the Performance
Analyzer may identify the “wait” line as a bottleneck.

• The reason for this is the proliferation of processes waiting
for signal events, even though the action taken by each
process is minimal.

• Although slightly more obscure, the following fragment
accomplishes the same behavior:

 wait for (CLOCK_PERIOD_T * 100 – 1 ns);

 wait until Clk’Event and Clk = ‘1’;

 next statement ...

• The first fragment schedules 100 process evaluations, while
the second requires only two.

• The behavior is the same, but the performance consequence
is minimized.

• The final wait until Clk is needed to ensure proper
synchronization with the clock signal.

• Without it, the “next statement” is in a unpredictable race
condition with whatever is generating the clock.

Rule 4: Reduce or Delay CalculationsRule 4: Reduce or Delay Calculations
• The following fragment repeats the same 64-bit calculations at each

evaluation of the process:

 driver : process (Clk)

 begin

 if (Clk’event and Clk = ‘1’) then

 ...

 D <= Next_D_val after (CLOCK_PERIOD_T – SETUP_T);

 LD <= Next_LD_val after (CLOCK_PERIOD_T – SETUP_T);

 ...

• The drive times are repeatedly calculated.

• With the simple use of a constant, two 64-bit
operations per clock cycle are removed:

 driver : process (Clk)

 constant DRIVE_T : time := (CLOCK_PERIOD_T – SETUP_T);

 begin

 if (Clk’event and Clk = ‘1’) then

 ...

 D <= Next_D_val after (DRIVE_T);

 LD <= Next_LD_val after (DRIVE_T);

 ...

Another good rule of thumb is to delay calculations untilAnother good rule of thumb is to delay calculations until
they are needed.they are needed.
Here is an example of an inefficient call to a function:Here is an example of an inefficient call to a function:

• The example on the left makes the “to_integer” call
every evaluation, whether the result is used or not.

Rule 5: Limit File I/ORule 5: Limit File I/O

• Reading or writing to files during simulation is
costly to performance, because the simulator must
halt and wait while the OS completes each
transaction with the file system.

• Furthermore, the VHDL “read” functions that
convert text data to different data types are also
costly.

• One way to improve performance is to replace
ASCII vector files with a constant table in VHDL
like this one:

• The testbench would then loop through each record
in the table and drive or check pins appropriately for
each clock cycle.

• This approach not only removes the file access
overhead, no simulation time is spent parsing strings
or performing data conversion.

• Although the syntax of the vectors above is more
complex than a straight ASCII file, it should be easy
to generate or translate vector data to this format.

• One drawback is that the HDL table approach
like the example above can cause large
compilation times.

• Since compilation time grows in a non-linear
fashion, at some point the compilation time
will exceed the cost of ASCII vectors. Figure
1 below shows how the number of vectors
affects total compilation and simulation time
with the two approaches.

• For large vector sets, reading and translating the ASCII will edge out
HDL vectors when the compilation time is considered.

• Simulation performance of HDL vectors will always be better,
however.

• So, if the HDL vectors are stable, (needing only occasional re-
compilation), then HDL vectors will be the better choice.

• If file access cannot be eliminated, perhaps it can be reduced.

• You could read or write more information with each file access, to
reduce the overall number.

• For example, you could change the format of the input file so that
several vectors are contained on each line.

• This would reduce the number of calls to “readline”.

• Similarly, when writing out data, pack as much as you can into each
“writeline” operation. When using the vsim log or vcd commands, try
not to record more information than you really need.

Rule 6: IntegersRule 6: Integers vs vs. Vectors. Vectors

• Arithmetic operations on Standard Logic Vectors
(SLVs) are expensive compared to integer
operations.

• Consider converting an SLV to an integer,
performing the operations and converting the integer
back to an SLV.

• Integer conversion costs are small compared to costs
of even simple SLV operations.

• In the example below the unsigned vector “value” is
used in a simple comparison (> 0) and a subtraction.

• The performance analyzer might identify the two lines
as being the slowest part of this process.

• Suppose that for the purposes of your design, two states
would suffice for “value”.

• You could then use an integer instead:
...
int_value := to_integer(value);
if (int_value > 0) then -- <-- Fast
int_value := int_value – 1; -- <-- Fast
else
int_value := to_integer(startValue);
end if;
value <= to_unsigned(int_value, 8);
...

• The performance of the process would be significantly
improved.

• If you have testbench code that generates
only two-state or four-state behavior, it should be relatively
straight-forward to write the testbench using integers instead
of std_logic_vectors.

• For maximum performance, use ranged integers in entity
declarations instead of std_logic_vectors.

• With both the interface and internal state represented in
integers, the simulator will be able to process the design
much more efficiently.

• This is a fairly dramatic step, and you should make
sure that your synthesis tools can properly handle
ranged integers in your design.

Rule 7: Buffer ClocksRule 7: Buffer Clocks
Between Mixed HDLBetween Mixed HDL

• ModelSim is extremely efficient in handling mixed
VHDL/Verilog designs.

• There is only a slight penalty to move signal events between
HDL domains because of the ModelSim single kernel
architecture.

• If there are hundreds of process in one language domain that
are sensitive to a signal in the other domain, the
accumulation of this penalty can eventually get large
enough to be noticed.

• Consider the case where a clock signal generated in
VHDL code is connected to a large gate level
Verilog design.

• In this example, every flip flop in the Verilog
design is sensitive to the VHDL generated clock.

Rule 8: Avoid Slicing SignalsRule 8: Avoid Slicing Signals

• If a signal is sliced, vector optimizations cannot be
applied.

 signal A_sig : std_logic_vector (63 downto 0);

 ...

 A_sig(3) <= ‘1’;

• The signal is probably used in several places in the
design.

• Even a single bit slice propagates an unoptimized
vector to all affected processes.

• The introduction of a temporary variable can give
you the functionality of a bit slice, without the
performance penalty:

•In the example on the right, A_sig is kept whole, while the bit
slicing occurs for the temporary variable
 “tmp_A”.
•The costs of slicing the temporary variable and the additional
assignment are small in comparison to the penalty of an
unoptimized signal vector.

Rule 9: Check Optimization of VITALRule 9: Check Optimization of VITAL
librarieslibraries

• During gate level simulation, the profiler may indicate that a
small set of primitives are consuming the majority of
execution time.

• This may be because the design have many instances of
these primitives, or that the primitives were not optimized
when they were compiled. Improving a high-use
unoptimized cell can help performance significantly.

• Determining VITAL Cell Usage

• After the design is loaded, use this the write command at the
VSIM prompt:

 write report <filename>

Rule 9: Check Optimization ofRule 9: Check Optimization of
VITAL librariesVITAL libraries

• This report will include a list of all entities in the
design.

• You will have to post process the report with Perl or
grep to find the number of instances of the key cells
identified by the profiler.

• For example

 grep –c <cell name> <report file>

• This will count the number of occurances of the cell
name in the report.

Checking VITAL OptimizationChecking VITAL Optimization

• Use the -debugVA switch when compiling the
design, and save the results to a file:

 vcom –debugVA MyVitalDesign.vhd > <results
file name>

• Compile messages and any errors are written to the
results_of_compile file.

• Search for the string OPT_WHYNOT.

 grep OPT_WHYNOT <results file name>

• The compiler may not be able to optimize a particular
Cell for a variety of reasons.
– The primitive is based on VITAL 0 instead of VITAL 1. Only

VITAL 1 code is optimized.

– The Cell contains VITAL non-compliant code

– The cell is based on inefficient (usually auto-generated) code

• You can submit a bug report to the library vendor to
have the problem fixed.

• Many customers are willing to use a copy of the
inefficient cell that is hand modified to improve
performance.

• This optimized cell is used in place of the official one
until the final round of validations.

Rule 10:Rule 10:
Avoid theAvoid the
“Linear“Linear

TestbenchTestbench””
• One naïve approach

to testbench
creation is
especially bad for
performance. Here
is a fragment of a
“linear” testbench:

• Stimulus code like this is easy to generate
(translating a vector file with a Perl script, for
example).

• However, for a compiled simulator like ModelSim,
the simulator must evaluate and schedule a very
large

• number of events. This reduces simulation
performance in proportion to the size of the stimulus
process.

• As an alternative, consider using the VHDL table
approach seen in rule 6 above.

Rule 11: Optimize EverythingRule 11: Optimize Everything
0ver 1%0ver 1%

• The ModelSim Performance Analyzer will
identify the lines of code that consume the
greatest CPU time and display these lines in
ranked order in the performance profile
window.

• Double clicking a line in the report will bring
up the source file window with the file and
line displayed.

• The lines identified by the profiler may not appear to
contribute a significant amount to the overall execution
time.

• Amdahl’s law would suggest that attempting to make 4% of
the design run faster could improve overall performance by
no more than 4%.

• However, making a trivial fix many times reaps a large
performance benefit.

• This is because the change may
– Enable further optimization by the compiler
– Reduce the number events
– Reduce the number of processes sensitive to events

• Thus, a small improvement to the code can have a non-
linear result in the overall execution speed.

• Optimize any line responsible for more than 1% whenever
possible.

ConclusionsConclusions
• With the ModelSim Performance Analyzer,

simulation speed is no longer a black box.

• Often small changes to a handful of code lines can
yield a large performance benefit.

• The Performance Analyzer will direct you to the
critical performance bottlenecks, and the nine rules
above give a general outline as to how to deal with
them.

• A design and testbench built from scratch using
these rules will have maximum performance.

