
REVERSIBLE
LOGIC CIRCUITS

Pawel Kerntopf

Institute of Computer Science

Warsaw University of Technology

Warsaw, Poland

OUTLINE

• General issues

• Basic notions

• Reversible gates

• M athematical results

• Synthesis

• Open problems

• Conclusions

Information is Physical

• Is some minimum amount of energy
required per one computation step?

• Rolf Landauer, 1961. Whenever we use a logically
irreversible gate we dissipate energy into the
environment.

A

B
A ⊕ B

A

B

A

A ⊕ B
reversible

Information loss = energy loss

• The loss of information is associated with laws of
physics requiring that one bit of information lost
dissipates k T ln 2 of energy,
– where k is Boltzmann’ constant

– and T is the temperature of the system.

• Interest in reversible computation arises from the
desire to reduce heat dissipation, thereby allowing:
– higher densities

– higher speed

R. R. LandauerLandauer,, “Irreversibility and Heat Generation
in the Computing Process”, IBM J. Res. & Dev., 1961.

Solution = ReversibilitySolution = Reversibility
• Charles Bennett, 1973: There are no

unavoidable energy consumption requirements
per step in a computer.

• Power dissipation of reversible circuit, under
ideal physical circumstances, is zero.

• Tomasso Toffoli, 1980: There exists a reversible
gate which could play a role of a universal gate for
reversible circuits.

A

B

C

AReversible
and
universal

B
C ⊕ AB

Reversible computationReversible computation

• Landauer/Bennett: all operations required in computation
could be performed in a reversible manner, thus dissipating
no heat!

• The first condition for any deterministic device to be
reversible is that its input and output be uniquely retrievable
from each other - then it is called logically reversible.

• The second condition: a device can actually run
backwards - then it is called physically reversible.

• and the second law of thermodynamics guarantees that it
dissipates no heat.

Billiard Ball Model

Reversible logicReversible logic
Reversible are circuits

(gates) that have one-
to-one mapping
between vectors of
inputs and outputs;
thus the vector of input
states can be always
reconstructed from the
vector of output states.

000 000

001 001

010 010

011 011

100 100

101 101

110 110

111 111

INPUTS OUTPUTS

2→ 4

3 → 6

4 → 2

5 → 3

6 → 5

 (2,4)

 (3,6,5)

Balanced Functions
• 10 out of 20 permutation equivalence classes of 3-valued balanced

functions (70 functions altogether)

• Class # functions Representative
 1 3 x

 2 3 x ⊕⊕⊕⊕ y = x XOR y

 3 3 x ⊕⊕⊕⊕ yz

 4 1 x ⊕⊕⊕⊕ y ⊕⊕⊕⊕ z

 5 6 x ⊕⊕⊕⊕ y ⊕⊕⊕⊕ xz

 6 6 x ⊕⊕⊕⊕ xy ⊕⊕⊕⊕ xz

 7 1 xy ⊕⊕⊕⊕ xz ⊕⊕⊕⊕ yz

 8 3 x ⊕⊕⊕⊕ y ⊕⊕⊕⊕ z ⊕⊕⊕⊕ xy

 9 6 x ⊕⊕⊕⊕ y ⊕⊕⊕⊕ xy ⊕⊕⊕⊕ xz

 10 3 x ⊕⊕⊕⊕ y ⊕⊕⊕⊕ xy ⊕⊕⊕⊕ xz ⊕⊕⊕⊕ yz

Reversible Gates versus Balanced
Functions

• There exist 224 = 16,777,216 different truth tables
with 3 inputs and 3 outputs.

• The number of triples of balanced functions is
equal to 70 * 70 * 70 = 343 000

• However, the number of reversible (3,3)-gates is
much smaller: 8! = 40320
– not every pair of balanced functions of 3 variables

may appear in a reversible (3,3)-gate

Extension of the tableExtension of the table

 A B C D P Q R S

 0 0 0 0 0 0

 0 0 0 1 1 0

 0 0 1 0 1 0

 0 0 1 1 0 1

 0 1 0 0 1 0

 0 1 0 1 0 1

 0 1 1 0 0 1

 0 1 1 1 1 1

 1 0 0 0

 1 0 0 1

 1 0 1 0

 1 0 1 1

 1 1 0 0

 1 1 0 1

 1 1 1 0

 1 1 1 1

•Balanced functions must be used

•We want to extend the table to make all its
output rows to be permutations of input rows

•This sets certain constraints on selection of
entries leading to garbage outputs

• When A = 0 then Q = B, when A = 1
then Q = B’.

• Every linear reversible function can be
built by composing only 2*2 Feynman
gates and inverters

• With B=0 Feynman gate is used as a
fan-out gate.fan-out gate. (Copying gateCopying gate)

Feynman GateFeynman Gate
 +

A B

P Q

 +

A 0

 +

A 1

A A A ¬¬¬¬ A

FredkinFredkin Gate Gate

– Fredkin Gate is a fundamental concept in
reversible and quantum computingreversible and quantum computing.

– Every Boolean function can be build
from 3 * 3 Fredkin gates:
P = A,

Q = if A then C else B,

R = if A then B else C.

Useful Notation forUseful Notation for Fredkin Fredkin Gate Gate

In this gate the input signals P and Q are routed to the
same or exchanged output ports depending on the value of
control signal C

Fredkin Fredkin GateGate Inverse Inverse Fredkin Fredkin GateGate

P

C

CP+C’Q

C’P+CQ

C

Q

P

C

CP+C’Q

C’P+CQ

C

Q

Fredkin gate is conservative and it is its own inverse

Operation of the Fredkin gate

A
0
B

A
B
1

A
0
1

C
A
B

C

AC’+BC
BC’+AC

A
AB

A
A+B

A
A
A’

0
A
B

1
A
B

0

A
B

1
B
A

A 4-input Fredkin gate
X
A
B
C

0
A
B
C

A
B
0
1

1
A
B
C

X

AX’+CX
BX’+AX
CX’+BX

0
A
B
C

1
C
A
B

A
A+B
AB
A’

Reversible logic:Reversible logic:
GarbageGarbage

• A reversible circuit without constants on inputs
realizes on all outputs only balanced functions.

• Therefore, reversible circuit can realize
unbalanced functions only with additional
inputs and garbage outputs.

Minimal Full Adder UsingMinimal Full Adder Using Fredkin Fredkin Gates Gates

In this gate the input signals P and Q are routed to the
same or exchanged output ports depending on the value of
control signal C

C

A

B
carry

1

0 sum

3 garbage bits

Switch GateSwitch Gate

In this gate the input signal P is routed to one of two output
ports depending on the value of control signal C

Switch GateSwitch Gate Inverse Switch GateInverse Switch Gate

P

C

CP

C’P

C P

C

CP

C’P

C

Fredkin Fredkin Gate from Switch GatesGate from Switch Gates

Q

C

P

C

¬ CP+CQ

CP+ ¬ CQ

CP

¬ CP

CQ

¬ CQ

Interaction GateInteraction Gate

A

B

AB

A’B

AB’
AB

A

B

AB

A’B

AB’
AB

In this gate the input signals are routed to one of two output
ports depending on the values of A and B

Interaction GateInteraction Gate Inverse interactionInverse interaction
GateGate

FredkinFredkin Gate from Interaction Gates Gate from Interaction Gates

P

Q

C

C

CP+ ¬ CQ

¬ CP+ CQ

PQ

¬ PQ

PQ

C¬ PQ

Types of reversible logic

ReversibleReversible

Conservative

The same number
of inputs and
outputs

Toffoli

Kerntopf

Fredkin
Margolus

Feynman

inverter

Double rail
inverter

Switch
Interaction

Sasao/Kinoshita
gates

Toffoli

Fredkin

A

B

C

F1D

F2

Feynman

Feynman

How to build garbage-less circuits

GARBAGE BIT 1

GARBAGE BIT 2

We can decrease garbage at the cost of delay
and number of gates

We create inverse circuit and add We create inverse circuit and add spies spies for all outputsfor all outputs

2 outputs2 outputs

2 2 garbagesgarbages

width = 4width = 4

delay = 4delay = 4

Toffoli

Fredki
n

A
B
C

D

Feyn
man

Feynm
an

To
ffo
li

Fred
kin

A
B
C

D

Feyn
man

Feynm
an

copy

copy

How to build garbage-less circuits

A,B,C,D are original inputs

inputs
reconstructed

This process is informationally reversible

It can be in addition thermodynamically reversible

F1 from spyF2 from spy
2 outputs2 outputs

no garbageno garbage

width = 4width = 4

delay = 9delay = 9

Efficiency of gates (definitions)
•• DefinitionDefinition. A gate is universal in n arguments (is

ULM-n) if every Boolean function of n variables can be
implemented at one of its outputs using this gate
(allowing constant signals at some inputs).

•• DefinitionDefinition. A gate is two-level universal in n
arguments if it is possible to implement every Boolean
function of n variables with a two-level circuit using this
gate (allowing constant signals at some inputs).

•• DefinitionDefinition. A gate is cascade-universal in n arguments
if it is possible to realize and arbitrary n*n-gate with a
cascade circuit using this gate (allowing constant signals
at some inputs).

Earlier work on Efficiency of gates
• Yale N. Patt (AFIPS Spring Joint Comp. Conf., 1967) established

that the 3*1-gate implementing the following function

 F = 1 ⊕⊕⊕⊕ x1 ⊕⊕⊕⊕ x3 ⊕⊕⊕⊕ x1*x2

is universal in three arguments with no more than three gates.

• George I. Opsahl (IEEE Trans.on Comp., 1972) showed that F is
two-level universal in three arguments and that the following
generalization of F:
G=1 ⊕⊕⊕⊕ x1 ⊕⊕⊕⊕ x3 ⊕⊕⊕⊕ x4 ⊕⊕⊕⊕ x1*x4 ⊕⊕⊕⊕ x2*x3 ⊕⊕⊕⊕ x1*x2*x4 ⊕⊕⊕⊕ x2*x3*x4
is two-level universal in four arguments. He also defined a
sequence of functions having similar properties to HWBn.

• It was also shown that functions with the best compositional
properties have the number of cofactors close to the maximum
(P. Kerntopf, IEEE Symp. on Switching and Automata Theory,
1974).

Statement of the Problems
• We will be concerned with searching for optimal gates.

• Let us try to find answers to the following questions
– (1) Is there a reversible 3*3-gate for which all cofactors of the

output functions obtained by replacements of one variable by
constant 0 and 1 are distinct?

– (2) Does there exist a reversible 3*3-gate universal in two
arguments?

– (3) Does there exist a reversible 3*3-gate two-level universal in
three arguments?

– (4) Does there exist a reversible 3*3-gate cascade-universal in
three arguments?

Despite reversibility constraint the answers to all the above
questions are positive.

Gate Having 18 Distinct Cofactors

 P = 1 P = 1 ⊕⊕⊕⊕ AB AB ⊕⊕⊕⊕ AC AC ⊕⊕⊕⊕ BC BC

 Q = A Q = A ⊕⊕⊕⊕ C C ⊕⊕⊕⊕ AB AB ⊕⊕⊕⊕ AC AC ⊕⊕⊕⊕ BCBC

 R = A R = A ⊕⊕⊕⊕ B B ⊕⊕⊕⊕ AB AB ⊕⊕⊕⊕ AC AC ⊕⊕⊕⊕ BC BC
if if A=0A=0 then if then if A=1A=1 then if then if B=0B=0 then then

 P= 1 P= 1 ⊕⊕⊕⊕ BC P=1 BC P=1 ⊕⊕⊕⊕ B B ⊕⊕⊕⊕ C C ⊕⊕⊕⊕ BC P=1 BC P=1 ⊕⊕⊕⊕ AC AC

 Q=C Q=C ⊕⊕⊕⊕ BC Q=1 BC Q=1 ⊕⊕⊕⊕ B B ⊕⊕⊕⊕ BC Q=A BC Q=A ⊕⊕⊕⊕ C C ⊕⊕⊕⊕ AC AC

 R=B R=B ⊕⊕⊕⊕ BC R=1 BC R=1 ⊕⊕⊕⊕ C C ⊕⊕⊕⊕ BC R=A BC R=A ⊕⊕⊕⊕ AC AC

if if B=1B=1 then if then if C=0C=0 then then if if C=1C=1 then then

 P=1 P=1 ⊕⊕⊕⊕ A A ⊕⊕⊕⊕ C C ⊕⊕⊕⊕ AC P=1 AC P=1 ⊕⊕⊕⊕ AB AB P=1 P=1 ⊕⊕⊕⊕ A A ⊕⊕⊕⊕ B B ⊕⊕⊕⊕ AB AB

 Q=AC Q=AC Q=A Q=A ⊕⊕⊕⊕ AB Q=1 AB Q=1 ⊕⊕⊕⊕ B B ⊕⊕⊕⊕ AB AB

 R=1 R=1 ⊕⊕⊕⊕ C C ⊕⊕⊕⊕ AC R=A AC R=A ⊕⊕⊕⊕ B B ⊕⊕⊕⊕ AB R=AB AB R=AB

 A B C P Q R

 0 0 0 1 1 0

 0 0 1 1 0 1

 0 1 0 1 0 0

 0 1 1 0 1 1

 1 0 0 0 1 0

 1 0 1 0 0 0

 1 1 0 1 1 1

 1 1 1 0 0 1

3*3-gate, universal in two arguments (ULM-2)
 Inputs Output

 A=1, B=0, C=y P=0

 A=x, B=y, C=1 P=x’y’

 A=x, B=y, C=1 Q=x’y

 A=x, B=0, C=y P=x’

 A=1, B=x, C=y P=xy’

 A=x, B=1,C=y P=y’

 A=x, B=1, C=y Q=x ⊕⊕⊕⊕ y

 A=0, B=x, C=y P=x’+y’

 A=x, B=y, C=0 R=xy

 A=0, B=x, C=y Q=(x ⊕⊕⊕⊕ y)’

 A=0, B=x, C=y R=y

 A=x, B=y, C=0 P=x’+y

 A=1, B=x, C=y R=x

 A=x, B=y, C=0 Q=x+y’

 A=x, B=1, C=y R=x+y

 A=1, B=1, C=y R=1

Experimental Results

• Program was run constructing all two-gate
circuits made of identical reversible 3*3-gates:
– (3,3)-circuits,

– (4,4)-circuits with one additional input to which only
one constant signal was applied,

– (5,5)-circuit with two additional inputs to which two
identical constant signals are applied (00 or 11),

– (5,5)-circuit with two additional inputs to which
different constant signals are applied (00, 01, 10, 11).

– There exist reversible 3*3-gates two-level universal in
3 arguments and cascade-universal in 3 arguments.

1. Minimize the garbage

2. Minimize the width of the circuit

(the number of additional inputs)

3. Minimize the total number of gates

4. Minimize the delay

Goals of reversible logic synthesisGoals of reversible logic synthesis

Use of two Multi-valued Fredkin (Picton) Gates to
create MIN/MAX gate

A
B
0
1

>=

 MIN(A,B)

 MAX(A,B)

>=

 MIN(A,B)

 MAX(A,B)

Min/max
gate

MAX(A,B) = A + B

 MIN(A,B) = A*B

Max/min
gate

Two garbage outputs
for MIN/MAX cells
using Picton Gate

• Let us define a gate by the following equations:

P = 1 ⊕⊕⊕⊕ A ⊕⊕⊕⊕ B ⊕⊕⊕⊕ C ⊕⊕⊕⊕ AB

Q = 1 ⊕⊕⊕⊕ AB ⊕⊕⊕⊕ B ⊕⊕⊕⊕ C ⊕⊕⊕⊕ BC

R = 1 ⊕⊕⊕⊕ A ⊕⊕⊕⊕ B ⊕⊕⊕⊕ AC

• When C = 1 then P = A+B, Q = A*B, R = B’, so
operators AND/OR/NOT are realized on outputs P and
Q with C as the controlling input value.

• When C = 0 then P = (A+B)’, Q = A+B’, R = (A⊕⊕⊕⊕ B)’.

ComplexComplex Gate Gate

Every single index Symmetric Function can be created by EXOR-ing
last level gates of the previous regular expansion structure

 MAX(A,B)

 MIN(A,B)

Max/Min gate

Max/Min gate

Max/Min gate
A

B

C

S 1,2,3(A,B,C)

S 3(A,B,C)

=A+B

=A*B

C(A+B)

S 2,3(A,B,C)

S 1(A,B,C)

S 2(A,B,C)
3

2
2

2

1
1

1

0
AB

C

00
01
11
10

0 1

Indices of symmetric binary functions of 3 variables

Regular
symmetric
structure

EXOR
level

EXOR
level

regular regular

regular,simple
inputs

outputs

Unate interval
symmetric
functions

Single Index
symmetric
functions

Regular
Structure for
Symmetric
Functions

Example for four variables, EXOR level added

 MAX(A,B)

 MIN(A,B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

A
B

C MAX(A,B,C) =
(A+B)+C = S
1,2,3(A,B,C)

MIN(A,B,C) =
(A*B)*C =

S 3(A,B,C)

=A+B

=A*B
C(A+B)

S 2,3(A,B,C) = (A*B)
+ C(A+B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

D

 MIN(A,B)

MAX(A,B,C,D) = A+B+C+D =
S 1,2,,3,4(A,B,C)

MIN(A,B,C,D) = A*B*C*D = S 4(A,B,C,D)

S 3,4(A,B,C,D)

S,2.3.4(A,B,C,D)

S 3(A,B,C,D)

S 4(A,B,C,D)

S 2(A,B,C,D)

S 1(A,B,C,D)

It is obvious that any multi-output function can be
created by OR-ing the outputs of EXOR level

Now we extend to Reversible Logic

 MAX(A,B)

 MIN(A,B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

A
B

C MAX(A,B,C) =
(A+B)+C = S
1,2,3(A,B,C)

MIN(A,B,C) =
(A*B)*C =

S 3(A,B,C)

=A+B

=A*B
C(A+B)

S 2,3(A,B,C) = (A*B)
+ C(A+B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

D

 MIN(A,B)

MAX(A,B,C,D) = A+B+C+D =
S 1,2,,3,4(A,B,C)

MIN(A,B,C,D) = A*B*C*D = S 4(A,B,C,D)

S 3,4(A,B,C,D)

S,2.3.4(A,B,C,D)

S 3(A,B,C,D)

S 4(A,B,C,D)

S 2(A,B,C,D)

S 1(A,B,C,D)

S 3,4(A,B,C,D)

S 2,3,4(A,B,C,D)

Denotes fan-out gateDenotes Feynman
(controlled NOT) gate

Using Kerntopf and Feynman Gates in ReversibleReversible Programmable Gate Array

Arbitrary symmetric function can be created by exoring
single indices

Feynman

Kerntopf

RPGA

• Arbitrary symmetric function can be realized in a net without
repeated variables.

• Arbitrary (non-symmetric) function can be realized in a net with
repeated variables (so-called symmetrization).

• Many non-symmetric functions can be realized in a net without
repeated variables.

GENERALIZATIONSGENERALIZATIONS

In a similar way we can obtain very many new circuitIn a similar way we can obtain very many new circuit
types, which are types, which are reversible and multi-valuedreversible and multi-valued
generalizations of Shannon Lattices,generalizations of Shannon Lattices, Kronecker Kronecker Lattices, Lattices,
and other regular structures introduced in the past.and other regular structures introduced in the past.

Very little has been published

Sasao Sasao and Kinoshitaand Kinoshita - cascade circuits, - cascade circuits, small garbage , high delaysmall garbage , high delay

Picton Picton - binary and multiple-valued - binary and multiple-valued PLAsPLAs, , high garbage, high delay,high garbage, high delay,
high gate costhigh gate cost

General characteristic of logic synthesisGeneral characteristic of logic synthesis
methods for reversible logicmethods for reversible logic

ToffoliToffoli, , FredkinFredkin, , MargolusMargolus - - examples of good circuits, no systematic methodsexamples of good circuits, no systematic methods

De De VosVos, , KerntopfKerntopf - new gates and their properties, - new gates and their properties, no systematic methodsno systematic methods

Knight, Frank, Knight, Frank, VieriVieri (MIT); (MIT); AthasAthas et al. (USC) et al. (USC) - circuit design,- circuit design,
no systematic methodsno systematic methods

JJoonho Limoonho Lim, Dong-, Dong-GyuGyu Kim and Kim and Soo Soo--Ik ChaeIk Chae
School of Electrical Engineering, Seoul National UniversitySchool of Electrical Engineering, Seoul National University
- circuit design, - circuit design, no systematic methodsno systematic methods

•PQLG (Portland Quantum Logic Group) - Design methods for regular
structures (including multiple-valued and three-dimensional)

Selection of good building blocks
(another approach)

• Binary reversible logic gates with three inputs and three outputs
have a privileged position: they are sufficient for constructing
arbitrary binary reversible networks and therefore are the key to
reversible digital computers.

• There exist as many as 8! = 40,320 different 3-bit reversible gates.

• The question: which ones to choose as building blockswhich ones to choose as building blocks.

• Because these gates form a group with respect to the operation
‘cascading’, it is possible to apply group theoreticalgroup theoretical tools, in order to
make such a choice.

• Leo Storme, Alexis De Vos, Gerald Jacobs (Journal of Universal
Computer Science, 1999)

• When a reversible 3*3 gate x is cascaded by a reversible
3*3 gate y then a new reversible 3*3 gate xy is formed.

• The subgroup of permutation and negation gates partitions R
into 52 double cosets.

• PROBLEMS:

• 1. Find generators of group R (r = s1 g s2 ... sn g sn+1).

• 2. Investigate the effectiveness of these generators, it means
the average number of cascade levels needed to generate an
arbitrary circuit from this type of generator.

• 3. Investigate small sets of generators as candidates for a
library of cells.

 R = the group of all reversible 3*3 gates (isomorphic to S8)

cascade-universal
gates

Toffoli gate

Circuits with Toffoli gates need 0 <n< 6
levels (with average value 97/26 = 3.73)
in order to generate R.

Best gates

• If we consider depth n = 4 as too deep a cascade (too much
silicon surface area/delay), we can construct a larger library.

• If we choose an p = 2 library, there are four equivalent
optimal combinations:

– r14 together with r18,

– r14 together with r41,

– r44 together with r48 , and

– r44 together with r50 .

• Now we have n = 3, with expectation value 101/52 = 1.94.

• Enlarging the library to p = 3 yields n = 2 and average
cascade depth 99/52 = 1.90.

Cascade-universal gates (cont’d)

• An arbitrary Boolean function of n variables can be
implemented using Fredkin gates by a circuit with three
constant inputs (Tsutomu Sasao, Kozo Kinoshita,
“Conservative Logic Elements and Their Universality”,
IEEE Trans. on Computers, 1979 - based on the paper by
Bernard Elspas, Harald S. Stone “Decomposition of group
functions and the synthesis of multirail cascades”, IEEE
Symposium on Switching and Automata Theory, 1967).

• For n = 3 there exist reversible 3*3 gates that using them it
is possible to implement each function with at most two
constant inputs (P. Kerntopf, IEEE Workshop on Logic
Synthesis, 2000)

Minimal number of constant inputs

• Reversible circuits have relatively rich ability of
computing in spite of reversibility constraint.

• Reversible Turing Machines have computation
universality:

• Lecerf (1963) defined a reversible Turing Machine
(TM) and proved that an irreversible TM can be
simulated by a reversible one at the expense of a linear
space-time slowdown.

• Bennett (1973) independently showed that irreversible
TM can be simulated by an equivalent reversible TM.

Rich Ability of CompuRich Ability of Computingting

• Toffoli (1977) showed that any k-dimensional cellular automaton
can be simulated by a (k+1)-dimensional reversible cellular
automaton (RCA).

• From this computation universality of 2-dimensional RCAs can
be derived.

• Morita, Harao (1989) proved that 1-dimensional RCAs are
computation universal in the sense that for any given RTM we
can construct a 1-dimensional RCA that simulates it.

• Morita (1990) proved that any sequential circuit, reversible finite
automaton and reversible cellular automaton (hence reversible
TM) can be constructed only from Fredkin gates and delays
without generating garbage signals.

Rich Ability of CompuRich Ability of Computing (2)ting (2)

Conclusions

•Reversible Computing
is an attractive research

area.
• Try to solve reversible problems:

•YOU’LL LIKE THEM!

