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On 3 Apr 02, at 16:27, XXX wrote:

> | am taking ECE 510 OC?7 under Prof. Perkowski. | need a computer
> account to be setup. Thanks

Hi,
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Our records indicate:
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User Services Manage
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m >Professor Perkowski,
>
>| have a question regarding the week of April 15th. I will be unable to
>attend class on Monday 4/15/2002. | really don't want to miss out on the class
>opportunity. Are/can classes be made available on video tape.
Yes, the classes are videotaped and also available as streamed video.
>
> | am interested in using Veribest Design Capture integrated with
>ModelSim for class projects. This would be beneficial for my work
>interest and interesting since | don't have any practical usage with
>either of these tools. Does this seem acceptible to you?

Yes, this is fine with me, but what project you want to work on? Please
think about it and write me a proposal.

Friday’s meetings will be perhaps streamed as well.
You are not restricted to the projects that | specified

Projects will be better explained, but you can start reading now



= >However, the projects listed in your class
>seem very challenging,
Remember that | will be explaining them in detail in the class. | just wanted to list
them now so interested people can start reading on their own.
The projects are not trivial but based on my 12 years of teaching this class they are
doable
Also, you can propose your own project and create group of students to work with
you. We have so many students that in any case | want to have more projects
> | am not sure that | can understand everything there.
It will be explained and more slides will be added. Students will make
presentations on these topics using PPT in class
>Are you assigning teams for each project?
No, you create teams and inform me. But there is no hurry now, the projects will
start in about 2 -3 weeks from now.
> also, what are subject of the two homeworks listed in your web?
On the web you have examples of previous homeworks. HOmeworks for this year
will be announced in the class.
Sincerely
Marek



Last question and answer.....

Dear Dr.Perkowski,

On your webpage,the grading of the VHDL Class stipulates 2 HWS and a Project.
But when | look at the 'slides from the lectures' on the webpage,its has

some five homeworks.

Nelson

You can choose any of the homeworks that are posted or do something similar.

If you choose one of previous homeworks, you have to solve the problem from

scratch rather than copy from previous students. Changing symbol names is not
enough.

Project must be explained, all your ideas and methodology, Kmaps, schematics,
etc.

Every student will have to do two homeworks. In these homeworks

he or she will have to prove ability to simulate and synthesize logic
circuits using VHDL or Verilog.




Copyrighted Material

s Some of the materials used In this course come from
ARPA RASSP Program and are copyright

— Rapid Prototyping of Application Specific Signal
Processors Program

— http://rassp.scra.org
= Some other of materials are copyright K. J. Hintz
= Some other from J. Wakerly.
m All sources will be acknowledged.




Review

m Please review the following material from Lecture 1.:
—1.D, T, and JK flip-flops
— 2. Shift operations using flip-flops and muxes

— 3. Design of a generalized register with arbitrary set of
operations

— 4. Register transfer statements that involve several
generalized registers and simple control.

— 5. Karnaugh Maps.

— 6. Sorter versions as examples of combinational,
pipelined and sequential circuits.

All this material will be reviewed again on Friday.




Lecture 2

Documentation
and Timing
Diagrams



Lecture Goals

m Introduce documentation standards.
m Explain basic logic gates

m Explain basic logic blocks.

m Explain basic technologies.




Documentation Standards

m Block diagrams
— first step in hierarchical design

m Schematic diagrams

s HDL programs (ABEL, Verilog, VHDL)
= TIming diagrams

m Circuit descriptions




Block Diagram
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In homeworks and
projects you need to
give a complete
documentation, not
only VHDL or
Verilog code.

Your ideas must be
also clearly
explained together
with design goals.



Schematic diagrams

m Details of component inputs, outputs, and

Interconnections
m Reference designators
= PIin numbers
m Title blocks
s Names for all signals
m Page-to-page connectors

Use names that have
some meaning, like
addr4




Example schematic
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Flat Schematic Structure
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Hierarchical Schematic Structure
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Other Documentation

= Timing diagrams

— Output from simulator

— Specialized timing-diagram drawing tools
m Circuilt descriptions

— Text (word processing)

— Can be as big as a book (e.g., typical Cisco ASIC
descriptions)

— Typically incorporate other elements (block diagrams,
timing diagrams, etc.)



Gate symbols

AND

.

OR

BUFFER

vw

NAND

-

NOR

INVERTER

7y

You must be able to
write a truth table and
a Kmap for every gate

that you are using

o >
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DeMorgan Equivalent Symbols

OR

NOR

AND

ke

NAND

0 &

Please review these
equivalencies using truth tables
and formulas

E} BUFFER —O[>O—
—I>07 INVERTER —o%

Which symbol to use?

Answer depends on
signal names and active levels.



Signal Names and Active Levels

» Signal names are chosen to be descriptive.

» Active levels -- HIGH or LOW

» named condition or action occurs in either the HIGH or
the LOW state, according to the active-level designation in

the name.
Active low Active Low Active High

READY—- HEA DY+

\ ERROR L ERROR.H
ADDR15(L) ADDR15(H)
RESET® RESET
EMABLE-~ EMABLE
~GE0 GO
'RHECEIVE RECEIVE

TRANSMIT_L TRANSMIT
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Timing Diagrams

(o)

o —’w 1:\?*\
DAT HT ﬁ

(a)
GO0 — —— BEADY
ENB — —— DAT . .
This 1s taken
from
Wakerly,
A | EISRekr Pl S PRASEAR, S page 331




Timing Diagrams

b) causality and
propagation delay

C) minimum and
maximum delays

ta)

GO — — READY

ENB — — DAT

Copyright @ 2000 by Prentice Hall, Inc.
Digttal Design Principles and Practices, 3/e
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Bus Timing Diagram
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Multiplexers

4-10-1
MUX

—> /

> —P

R~ OOoOl>

R ORFr OW

Data inputs
Versus
control inputs

JO0U

Use of muxes
In control and
data path



A typical use of a MUX In a
processor control path

Consider the following sequence of instructions:

Recall our
example about
systematically
designing data
path for a set of

register-
transfer

0x7F800 add $16, $18, $15 #regl6 — regl8 +regls
Ox7F804 beq $8, $0, target # if regl6 == 0 goto target
Ox7F808 sub $17, $17 $15 #regl7 — regl7 - regl5
—»{pC > Mux
Add 0
4 —p
1
Branch *
—»| Target Branch taken
Unit

operations




A 4-to-1 MUX can implement any
3-variable function

|
é ) lo Example: Implement the function
—> 1 F(R’ S’ T) — R’S’ + RT
T —]l, Z»FR,S,T)
T =¥
3 F(R,S,T) = R!S’.l + RT.(S"‘S’)

0P >
0 e 2 15

= R'S’e1 + RST + RS'T

Functions of how many input variables
can be implemented by an 8-t0-1 MUX?

Use an 8-t0-1 MUX to implement the
function:
FIX,Y,ZT)=XY'+Z'T

R, OOoO>
RO OW
— 4 O N

Drawing Kmaps is useful for such problems




Decoders

— General decoder structure

Decoder
input =
code word } O
T \\{ : output
— e« Code word
enable . —
inputs o

— Typically n inputs, 2" outputs
— 2-t0-4, 3-t0-38, 4-to0-16, etc.



Decoders
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Binary 2-to-4 decoder

| (] (] | (] ()

2-10-4 Inputs Outputs
decoder
1o vol— EN 11 o Y3 Y2 Y1 YD
— I Y1 — () X X () () () ()
Y2 |— J 0 0 0 0 0 J
— EN Y3 |— | (] | () () l L
|
|

Note “x” (don’t care) notation.

You have to understand various interpretations of don’t care




2-to-4-decoder logic diagram
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MSI 2-to-4 decoder

(1)
1G_L —ol>

(2)
1A

6)

So

1B

c >o

m Input buffering (less load)
= NAND gates (faster)
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Decoder Symbol

1/2 74x%139

G_L—OIG YO0 YO_L
Y1 Y1_L

A A Y2 Y2_L

B B Y3 Y3 L




Complete 74x139 Decoder
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More decoder symbols

1/2 74%139 1/2 74x139

G Yo

Y1
A Y2
B Y3




YO_L

3-t0-8 decoder
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G2A L — g } I
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74%138 3-to-8-decoder symbol

74x138

°| &1 YDGE
Y1 O—

2 ola2a 13
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Decoder Cascading

4BV 74x%138
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More

Cascading -

L 3
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Decoder applications

— Microprocessor memory systems
» selecting different banks of memory

— Microprocessor input/output systems
» selecting different devices

— Microprocessor instruction decoding
» enabling different functional units
— Memory chips
» enabling different rows of memory depending on address

— Lots of other applications



Programmable Logic Array
Structure

n Input{4> AND s OR
Li




Internal Structure of a
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Internal Structure of a
PLA
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Internal Structure of a PLA
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Programmable Logic Arrays
(PLAS)

— ldea: Build a large AND-OR array with lots of
Inputs and product terms, and programmable
connections.

» N Inputs

« AND gates have 2n inputs -- true and complement of each
variable.

» m outputs, driven by large OR gates

« Each AND gate is programmably connected to each output’s
OR gate.

» p AND gates (p<<2")



4x3 PLA, 6 product terms
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Compact Representation
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PLA Electrical Design

m See Section 5.3.5 -- wired-AND logic
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Programmable Array Logic (PALS)

— How beneficial is product sharing?
» Not enough to justify the extra AND array

— PALs ==> fixed OR array

» Each AND gate iIs permanently connected to a certain
OR gate.

— Example: PAL16L8

o




Programmable Array Logic (PAL)

A PAL is a special case of a PLA in which the AND
array Is programmable but the OR array is fixed.

An unprogrammed
L3 . Fe PAL

R
|




Programmable Array Logic (PAL)

A PAL is a special case of a PLA in which the AND
array Is programmable but the OR array is fixed.

DMHIZ

A programmed
L3 . Fe PAL

2 o o—
‘ ® *—
o——o ——
o1+




% L., =10 primary inputs

. niiaisn +—  — 8 outputs, with 7 ANDs per
- Slee output

| ~—1AND for 3-state enable

i . — 6 outputs available as inputs
; ﬁ_%L_._ - » more Inputs, at expense of
- i — outputs
;fD Lo » two-pass logic, helper terms
. —"~ = Note inversion on outputs
' %‘;H s .
3 =5 » output i1s complement of sum-
e = of-products
- e
e —~ | —newer PALs have selectable
j ~— L., Inversion

] —fa I i 1 1 .5.:]7“ 10



Designing with PALS

— Compare number of inputs and outputs of the problem
with available resources in the PAL.

— Write equations for each output using VHDL.

— Compile the VHDL program, determine whether
minimized equations fit in the available AND terms.

— If they do not fit, try to modify the equations or to
provide “helper” terms.



Some Questions

Is the criterion to minimize a set of functions to
Implement in a PAL the same that we used for
the implementation with individual gates?

What is the problem formulation for the
Implementation of a set of logic functions
In a PAL?



First Steps In
VHDL



Lecture Goals

s Introduce VHDL Concept and Motivation for
VHDL

s Introduce the VHDL Hierarchy and Alternative
Architectures Model

m Start Defining VHDL Syntax



Motivation for VHDL

m Digital System Complexity Continues to Increase

— No longer able to breadboard systems
» Number of chips
» Number of components
» Length of interconnects
— Need to simulate before committing to hardware
» Not just logic, but timing



Motivation

m Different Types of Models are Required at \Various
Development Stages
— Logic models
— Performance models
— Timing models
— System Models



Motivation

m Non-Proprietary Lingua Franca

— Need a universal language for various levels of system
design

— Replacement for schematics

— Unambiguous, formal language

— Partitions problem
» Design
» Simulation and Verification
» Implementation




Motivation

m Standard for Development of Upgrades
— Testbenches and results

— System modifications must still pass original
testbench

— Testbench can (and should) be written by people
other than designers




VHDL

Very High Speed Integrated Circuit (VHSIC)
Hardware
Description

Language



Need for VHDL

m Leads to Automatic Implementation--Synthesis
— Routing tools
— Standard cell libraries
— FPGA
— CPLD

— Formal Language description is independent of physical
Implementation



Need for VHDL

s Need a Unified Development Environment

— Errors occur at translations from one stage of
design to another

— VHDL language the same at all levels
— All people involved speak the same HDL
— Testing and verification

m Performance, Reliability, and Behavioral
Modeling Available at All Design Levels




Need for VHDL

m Need to Have Power and Flexibility to Model
Digital Systems at Many Different Levels of
Description
— Support “mixed” simulation at different levels of

abstraction, representation, and interpretation with an
ability for step-wise refinement

— Can model to high or low levels of detail, but still
simulate



VHDL

m International IEEE Standard Specification
Language (IEEE 1076-1993) for Describing
Digital Hardware

= A Formal Language
— Specification of designs

— Simulation of performance
— Interface to hardware detail design tools




Why VHDL?

s The Complexity and Size of Digital Systems leads
to
— Breadboards and prototypes which are too costly

— Software and hardware interactions which are difficult to
analyze without prototypes or simulations

— Difficulty iIn communicating accurate design
Information




VHDL Model Components

Complete VHDL Component Description Requires
— Entity

» Defines a component’s interface
— Architecture

» Defines a component’s function

Several Alternative Architectures May Be
Developed for Use With the Same Entity



Languages Other Than VHDL

s VHDL: VHSIC (Very High Speed Integrated
Circuit) Hardware Description Language

— Not the only hardware description language

m Most others are proprietary



ABEL

s ABEL
— Simplified HDL
— PLD language
— Dataflow primitives, e.g., registers
— Can use to Program XILINX FPGA



ALTERA

s ALTERA

— Created by Altera Corporation

— Simplified dialect of HDL
» AHDL



AHPL

s AHPL: A Hardware Programming Language
— Dataflow language
— Implicit clock
— Does not support asynchronous circults
— Fixed data types
— Non-hierarchical



CDL

s CDL: Computer Design Language
— Academic language for teaching digital systems
— Dataflow language
— Non-hierarchical
— Contains conditional statements



CONLAN

s CONLAN: CONsensus LANguage

— Family of languages for describing various levels of
abstraction

— Concurrent
— Hierarchical



iDL

m IDL: Interactive Design Language
— Internal IBM language
— Originally for automatic generation of PLA structures
— Generalized to cover other circuits
— Concurrent
— Hierarchical



ISPS

m ISPS: Instruction Set Processor Specification
— Behavioral language
— Used to design software based on specific hardware
— Statement level timing control, but no gate level control



TEGAS

s TEGAS: TEst Generation And Simulation
— Structural with behavioral extensions
— Hierarchical
— Allows detailed timing specifications



TI-HDL

s TI-HDL: Texas Instruments Hardware Description
Language
— Created at Texas Instruments
— Hierarchical
— Models synchronous and asynchronous circuits
— Non-extendable fixed data types



VERILOG

= Verilog
— Essentially identical in function to VHDL
— Simpler and syntactically different
— Gateway Design Automation Co., 1983
— Early de facto standard for ASIC programming
— Open Verilog International standard

— Programming language interface to allow connection to
non-Verilog code - PLI



ZEUS

m ZEUS
— Created at GTE
— Hierarchical
— Functional Descriptions
— Structural Descriptions
— Clock timing, but no gate delays
— No asynchronous circuits



Different Representation Models

= Some, Not Mutually Exclusive,
Models

— Functional
— Behavioral
— Dataflow
— Structural
— Physical




Functional Model

m Describes the logical Function of Hardware

m Independent of Any Specific Implementation or
Timing Information
— Can exist at multiple levels of abstraction, depending on

the granularity and the data types that are used in the
behavioral description



Behavioral Model

m Describes the Function and Timing of Hardware
Independent of Any Specific Implementation
— Can exist at multiple levels of abstraction, depending on

the granularity of the timing that are used in the
functional description



Functional & Behavioral
Descriptions

m Functional & Behavioral Models May Bear Little
Resemblance to System Implementation

— Structure not necessarily implied

Input | —| | Behavioral | | /5yt
Description




Dataflow Model

m Describes How Data Moves Through the System
and the Various Processing Steps

— Register Transfer Level (RTL)
— No registers are native to VHDL

— Hides detalls of underlying combinational circuitry and
functional implementation



Structural Model

m Represents a System In Terms of the
Interconnections of a Set of Components
— Components are interconnected in a hierarchical manner

— Components themselves are described structurally,
behaviorally, or functionally

» WIth Interfaces between structural and their behavioral-level
Implementations




Structural Descriptions

m Pre-Defined VHDL Components Are ‘Instantiated’
and Connected Together

m Structural Descriptions May Connect Simple Gates
or Complex, Abstract Components



Structural Descriptions

» Mechanisms for Supporting Hierarchical
Description

» Mechanisms for Describing Highly Repetitive
Structures Easily

>_

Input AB _JED » Output
D




Physical Model

m Specifies the Relationship Between the Component
Model and the Physical Packaging of the
Component.

— Contains all the timing and performance details to allow
for an accurate simulation of physical reality

— Back annotation allows precise simulations
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RASSP Roadmap
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Outline

s VHDL Background/History
s VHDL Design Example

» VHDL Model Components
—Entity Declarations

— Architecture Descriptions
m Basic Syntax and Lexicographical Conventions



Reasons for Using VHDL

= VHDL Is an International IEEE Standard
Specification Language (IEEE 1076-1993) for
Describing Digital Hardware Used by Industry
Worldwide

—~VHDL is an acronym for \VHSIC (Very High Speed
Integrated Circuit) Hardware Description Language



Reasons for Using VHDL

s VHDL enables hardware modeling from the gate to
system level

s VHDL provides a mechanism for digital design and
reusable design documentation

s VHDL Provides a Common Communications
Medium



A Brief History of VHDL

m Very High Speed Integrated Circuit
(VHSIC) Program
—Launched in 1980

—Object was to achieve significant gains in VLSI
technology by shortening the time from
concept to implementation (18 months to 6
months)

—Need for common descriptive language



A Brief History of VHDL

» \Woods Hole Workshop
— Held in June 1981 in Massachusetts
— Discussion of VHSIC goals

— Comprised of members of industry, government, and
academia



A Brief History of VHDL

m July 1983: contract awarded to develop VHDL
— Intermetrics
—1BM
— Texas Instruments

m August 1985: VHDL Version 7.2 released



A Brief History of VHDL

m December 1987: VHDL became IEEE Standard
1076-1987 and 1n 1988 an ANSI standard

m September 1993: VHDL was restandardized to
clarify and enhance the language

m VHDL has been accepted as a Draft International
Standard by the IEC



Gajski and Kuhn’s Y Chart
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VHDL Design Example

m Problem: Design a single bit half adder with carry and
enable

m Specifications
— Inputs and outputs are each one bit
— When enable is high, result gets x plus y
— When enable is high, carry gets any carry of x plus y
— Outputs are zero when enable input is low

X —>
y —» Half Adder
enable —»

—— carry
— result
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VHDL Design Example

Entity Declaration

m As a first step, the entity declaration
describes the interface of the component

—Input and output ports are declared

ENTI TY hal f _adder 1S

PORT( x, y, enable: INBIT,;
carry, result: OQUT BIT);
END hal f _adder;

X —p
y —»
enable —

Half
Adder

— carry

— result
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VHDL Design Example
Eunctional Specification

= A high level description can be used to
describe the function of the adder

ARCHI TECTURE hal f _adder _a OF hal f _adder 1S
BEG N
PROCESS (x, y, enable)
BEA N

| F enable = 1" THEN
result <= x XOR y;
carry <= x AND vy;
ELSE
carry <= ‘0’
result <=0
END | F;
END PROCCESS;
END hal f _adder _a;

= The model can then be simulated to verify
__correct functionality of the component

SSP E&



VHDL Design Example
Behavioral Specification

= A high level description can be used to
describe the function of the adder

ARCHI TECTURE hal f _adder b OF hal f _adder 1S
BEA N

PROCESS (x, Yy, enable) — tlmlng
BEG N

| F enable = 1" THEN

result <= x XOR y after 10ns;
carry <= x ANDy after 12 ns;
ELSE

carry <= ‘'0" after 10ns;
result <= ‘0" after 12ns;

END | F;

END PROCCESS;

END hal f _adder _b;

= The model can then be simulated to verify
correct timing of the entity
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VHDL Design Example

Data Flow Specification

m A Third Method Is to Use Logic Equations
to Develop a Data Flow Description

ARCHI TECTURE hal f _adder ¢ OF half _adder IS
BEG N
carry <= enable AND (x AND vy);

result <= enable AND (x XOR y);
END hal f _adder c;

e Again, the model can be simulated at this level to
confirm the logic equations
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VHDL Design Example

Structural Specification

m As a Fourth Method, a Structural
Description Can Be Created From
Previously Described Components

m These gates can be taken from a library of

parts
X -
engble' ‘I > carty
_>— result
o
A
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VHDL Design Example

Structural Specification (Cont.)

ARCHI TECTURE hal f _adder _d OF half _adder IS

COVPONENT and?2
PORT (inO, inl : INBIT,;
out0 : QUT BIT);
END COVPONENT;

COVPONENT and3
PORT (inO, inl, in2 : INBIT,;
out0 : QUT BIT);
END COVPONENT:;

COVPONENT xor 2
PORT (inO, inl : INBIT,;
out0 : QUT BIT);
END COVPONENT:;

FOR ALL : and2 USE ENTITY gate |ib.and2 Nty(and2_a);
FOR ALL : and3 USE ENTITY gate |ib.and3 Nty(and3_a);
FOR ALL : xor2 USE ENTITY gate lib.xor2 Nty(xor2 a);

-- description is continued on next slide

Copyright O 1995, 1996 RASSP E&F



VHDL Design Example

Structural Specification (Cont.)

-- continuing half_adder _d description

SIGNAL xor _res : BIT; -- internal signal
-- Note that other signals are already declared in entity

BEG N
A0 : and2 PORT MAP (enable, xor _res, result);
Al : and3 PORT MAP (x, Yy, enable, carry);
X0 : xor2 PORT MAP (X, Yy, XoOr_res);

END hal f _adder d;
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VHDL Model Components

s A Complete VHDL Component Description

RegQ
Arc

-T
-T

uires a VHDL Entity and a VHDL
nitecture

ne entity defines a component’s interface

ne architecture defines a component’s function

m Several Alternative Architectures May Be
Developed for Use With the Same Entity



VHDL Model Components

m Three Areas of Description for a VHDL
Component:
— Structural descriptions
— Functional descriptions
— Timing and delay descriptions (Behavioral)



Process

s Fundamental Unit for Component Behavior
Description Is the Process

— Processes may be explicitly or implicitly defined
— They are packaged in architectures



VHDL Model Components

s Primary Communication Mechanism Is the
Signal (distinct from a variable)

— Process executions result in new values being
assigned to signals which are then accessible to

other processes
— Similarly, a signal may be accessed by a

process In another architecture by connecting
the signal to ports In the the entities associated

with the two architectures
Note symbol
Qutput <= My_id + 10; used for signals




VHDL Entity

m The Primary Purpose of an Entity Is to Declare the
Input and Output Signals Which Communicate With
It.

— Interface signals are listed in the PORT clause which has

3 parts

» Name
» Mode
» Data type



VHDL Entity Example

entity OR3 Is

port ( A B, C : In bit,
D . out bit );

end OR3;



Entity Declarations

= The Primary Purpose of the Entity Is to
Declare the Signals in the Component’s
Interface

—The interface signals are listed in the PORT
clause

» In this respect, the entity is akin to the schematic
symbol for the component
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Entity versus Schematic Symbol

Entity Example

X —>

— carry
g SN

enable —

ENTI TY hal f _adder IS
GENERI C(prop_delay : TIME := 10 ns);

PORT( x, y, enable : INBIT,
carry, result : OQUT BIT);

END hal f _adder;




Entity Declarations
Port Clause

m PORT clause declares the interface signals of the object to the outside world

m Three parts of the PORT clause
— Name
— Mode
— Data type

PORT (signal _nane : node data_type);

— Note port signals (i.e. ‘ports’) of the same mode and type or subtype may be declared on
the same line
name mode Data type

| /

PORT ( input : INBIT VECTOR(3 DOANTO 0);
ready, output : QUT BIT );
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Entity Declarations
Port Clause (Cont.)

m [ he Port Mode of the Interface Describes the
Direction in Which Data Travels With
Respect to the Component

m Five Port Modes

1. In: data comes in this port and can only be
read

2. Out: data travels out this port



Entity Declarations
Port Clause (Cont.)

3. Buffer: bidirectional data, but only one
signal driver may be enabled at any one time

4. Inout: bidirectional data with any number of
active drivers allowed but requires a Bus
Resolution Function

5. Linkage: direction of data Is unknown



Entity Declarations

Generic Clause

m Generics May Be Used for Readability,
Maintenance and Configuration

m Generic Clause Syntax :

GENERI C (generic_nane : type [:= default _val ue]);

—If optional def aul t _val ue missing in generic

clause declaration, it must be present when
component Is to be used (1.e. instantiated)
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Behavioral Descriptions

s VHDL Provides Two Styles of Describing
Component Behavior
—Data Flow: concurrent signal assignment statements

—Behavioral: processes used to describe complex
behavior by means of high-level language constructs

» variables, loops, if-then-else statements, etc.
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Generic Clause

m Generic Clause Example :

GENERIC (M/_ID : INTEGER : = 37);

— The generic My_ID, with a default value of 37, can be
referenced by any architecture of the entity with this
generic clause

— The default can be overridden at component instantiation



Architecture Bodies

m Describes the Operation of the Component,
Not Just Its Interface

m More Than One Architecture Can (and
Usually Is) Associated With Each Entity




Architecture Bodies

m Consist of Two Parts:

1. Declarative part -- includes necessary declarations, e.g. :
» type declarations
» signal declarations
» component declarations
» subprogram declarations



Architecture Bodies

2. Statement part -- includes statements that describe
organization and/or functional operation of component,
e.g. :

» concurrent signal assignment statements
» Process statements
» component instantiation statements



Architecture Body, e.g.

AgCHITECTURE hal f _adder _d OF hal f _adder
|

-- architecture declarative part
SI GNAL xor _res : BIT ;

-- architecture statenent part
BEG N

carry <= enable AND (x AND vy)
result <= enable AND xor _res ;
Xor _ res <= x XOR vy ;

END hal f _adder d ;



Lexical Elements of VHDL

s Comments
— two dashes to end of line is a comment, e.g.,

--this 1s a coment



Lexical Elements of VHDL

m Basic Identifiers

— Can Only Use
» alphabetic letters ( A-Z, a-z ), or
» Decimal digits ( 0-9 ), or
» Underline character ()
— Must Start With Alphabetic Letter ( MyVal )



Lexical Elements of VHDL

m Basic Identifiers

— Not case sensitive
(Last Val ue = = | AsTvALue)

— May NOT end with underline ( MyVal _ )
— May NOT contain sequential underlines (My __Val )



Lexical Elements of VHDL

m Extended Identifiers
— Any character(s) enclosed by \ \
— Case IS significant

— Extended i1dentifiers are distinct from basic identifiers
— If“\ " Is needed in extended identifier, use

(11 \ \ (11



Lexical Elements of VHDL

m Reserved Words
— Do not use as identifiers

m Special Symbols
— Single characters

& () *+, - . ;< =>]
— Double characters (no intervening space)

=> k% = [ = >= <= <>



Lexical Elements of VHDL

s Numbers

— Underlines are NOT significant
(10#8 192 )

— Exponential notation allowed
(46e5 , 98. 6E+12 )

— Integer Literals (12)

» Only positive numbers; negative numbers are
preceded by unary negation operator

» No radix point



Lexical Elements of VHDL

— Real Literals (23. 1)

» Always include decimal point
» Radix point must be preceded and followed by at least one
digit.
— Radix ( radix # number expressed In radix)
» Any radix from binary ( 2 ) to hexadecimal ( 16 )
» Numbers in radices > 10 use letters a- f for 10-15.



Lexical Elements of VHDL

m String
— A sequence of any printable characters enclosed in
double quotes
(“a string” )
— Quote uses double quote
(“ he said ““nol”” ")

— Strings longer than one line use the concatenation
operator ( &) at beginning of continuation line.



Lexical Elements of VHDL

m Characters

— Any printable character including space enclosed In
single quotes (* x' )

m Bit Strings
— B for binary (b”0100_1001" )
— O for Octal (0" 76443 )

— X for hexadecimal (x” FFFE _F138” )



VHDL Syntax

s Extended Backus-Naur Form (EBNF)

— Language divided into syntactic categories

— Each category has a rule describing how to build a rule of
that category

— Syntactic category <= pattern
— “<=" Isread as “...i1s defined to be...”



VHDL Syntax

- e.g.,
variable_assignment <= target : =
expr essi on,

— A clause of the category variable assignment is defined

to be a clause from the category target followed by the
symbol “ : = “ followed by a clause from the expression

category followed by a terminating *; ”



VHDL Syntax

— syntax between outline brackets [ | is optional

— syntax between outline braces { } can be repeated none
or more times, a.k.a. “Kleene Star”

Copyright 00 1997, KJH



VHDL Syntax

— A preceding lexical element can be repeated an arbitrary
number of times If ellipses are present, e.g.,
case-statement <=
case expression is
case statenent alternative

(.. . \

end case ; repeated

Copyright 00 1997, KJH



VHDL Syntax

— If a delimiter 1s needed, it is included with the ellipses as

identifier_list <=
| dentifier { , . . . }



VHDL Syntax

m “OR” operator, “ | ”, In a list of alternatives,
e.g.,

mode <= in |out |inout
= \WWhen grouping Is ambiguous, parenthesis

are used, e.g.,
term <=
factor { ( * | / | nod | rem) factor }



VHDL Syntax

m e.g. an identifier may be defined in EBNF as

Identifier <=
letter { [ underline | letter _or _digit }



You can start working on Homework One

m For those who look for easy projects:
— 1. Big Decoder and timing optimization.
— 2. Generalized register with any set of operations, your choice but not only trivial.
— 3. Robot control state machine
— 4. Counter of large capacity without spikes
— 5. Your choice, must be approved by me.

= For those who look for medium projects:
— 1. Sorter but different from those on my www page

— 2. Any circuit that has a state machine control unit and a register-transfer data
path, for instance, GCD, Fibonacci, etc.

m For those who look for challenging projects:
— 1. Any component of CCM or DSP processor.
— 2. ALU using reversible logic
— 3. Counters using reversible logic
— 4. Controlling state machines in reversible logic.
— 5. Any other component of your future final project, must be approved by me.



Homework Tools

s Mentor Graphics QuickVHDL

— Covered in ECE 271

— Look to my WWW page and link to ECE 271.
a Other Mentor tools on Unix

s |[EEE VHDL Tutorial and VHDL Language
Standard On-line

m send emall to damtawek@ece.pdx.edu If you still
have no account.



Optional Homework Tool

m Cypress Semiconductor (Warp release 6.x)
— PC-based, Windows 3.1 with win32s extension
— ~$99 with textbook
— Oriented towards Cypress PLD & FPGA devices
— Partial VHDL simulator
— It 1s good to have Skahill’s book

= Any other tool that you have and wish to use.



Additional Reading

eSections 5.1, 5.2, 5.3, 5.4, 5.5 (Wakerly Textbook)
*Note, this book has Xilinx tools In it.
*You can do most of your project at home if you have a PC

_and this book. | Tt [ o
 First 4 chapters from Wakerly as a review. mandatory
e First three chapters from Mano/Kime.
John F. Wakerly, Digital Design. Principles and Practices, Third Both these
Edition, Prentice Hall books were
Includes the XILINX Student Edition Foundation Series highly
Software recommended
by my
Morris Mano and Charles Kime, Logic and Computer Design students and
Fundamentals, 2nd edition. Includes the same software as
Wakerly professors

from other
universities
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Variables

s EXxist Only Within an Architecture

— Values of variables cannot be passed to other
entities except through signals

m Variables Change Value When They Are
Evaluated.

— Signals change at a “later” time



Signals

m Entities are Interconnected by Signals

— Process executions result in new values being assigned to
signals which are then accessible to other processes

— A signal may be accessed by a process in another
architecture by connecting the signal to ports in the the
entities associated with the two architectures




Signals

m Signals Can Be Declared Internal to an
Architecture to Connect Internal Entities

m Variables Are Not Appropriate Since They Do Not
Have the Temporal Characteristics of Hardware

m Signals Declared Within an Entity Are Not
Avalilable to Other Entities Unless Specified in the
Port Clause of the Entity Declaration.




Entlty Syntax

entity i1dentifier
| port ( port _interface list ); |
[ entity declarative item}

end | entity | | 1dentifier |



Entity Syntax

port interface |ist <=
| dentifier ,
node subt ype I ndication
. = expression

node <= In | out | 1 nout



Entity Example

entity N CadCharger is

Voltage, Current : in reak////o 0 ;

AC . in bt ="
Charged, Recharge: out bit );

end entity N CadCharger



Architecture Syntax

architecture 1dentifier of
entity nane is

bl ock_decl arative item
begi n

concurrent st at enent
end | architecture | dentifirer |:



Structural Model

m A Representation of a System in Terms
of the Interconnections of a Set of
Defined Components.

— Components can be described either
structurally or behaviorally

— Smallest components are behavioral
entities

— Components usually stored in libraries




Structural Models

s Components Can Be Instantiated As Concurrent
Statements In Architectures
— If architecture not specified in statement

» Must be specified later, or
» Most recently analyzed architecture used

— Ports can be specified two ways
» Positional association
» Named association




Structural Model
Internal Signals

m Entity Ports Which are Declared within an
Architecture Body Are Local Signals

— These signals are not available outside the architecture
unless connected to one of the architecture’s ports



Odd Parity Generator
Example
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Parity Entity

entity Odd_Parity is

port (
IN 1, IN2, IN3: in bit ;
Qut 1 . out bit );

end entity Odd Parity ;



Odd Parity Behavior Architecture

architecture Odd _Parity B of
Qdd _Parity is
f(ABC)=ABC+ABC+ABC+ABC
begi n
Qut 1 <= ( IN1 and not IN 2 and IN 3 )
OCR ( not IN.1 and not IN 2 and not IN 3 )
CR ( not IN1 and IN 2 and IN 3 )
CR( IN1 and IN 2 and not IN 3 )
end architecture Odd Parity B ;



INV Entity/Architecture

entity INV iIs
port (
In 1 . In bit ;
In_ 1 Bar : out bit );
end entity NV ;
architecture INV.B of INV iIs
begi n
In_ 1 Bar <= not IN1 ;
end architecture NV B ;



AND 3 Entity/Architecture

entity AND 3 is

port (
IN 1, IN2, IN3: inbit ;
Qut 1 . out bit );

end entity AND 3 ;
architecture AND 3 B of AND 3 is
begi n
Qut 1 <= IN1 and IN2 and IN 3 ;
end architecture AND 3 B ;



OR_4 Entity/Architecture

entity OR 4 is

port (
IN 1, IN2, IN3, IN4: in bit ;
Qut 1 . out bit );

end entity OR 4 ;
architecture OR 4 B of OR 4 is

begi n

Qut 1 <= IN1or IN2 or IN3 or INA4;
end architecture OR 4 B ;



Odd Parity Structural Architecture

architecture Odd Parity_ S of
Qdd _Parity is
--bl ock declarative_ itens
- - conponent s
conmponent INV iIs
port (
In 1 . 1n bit ;
In_ 1 Bar : out bit );
end conponent | NV ;



Odd Parity Structural Architecture

conmponent AND 3 iIs
port( IN 1, IN2, IN3: in bit

Qut 1 . out bit );
end conponent AND 3 ;

conmponent OR 4 is
port( IN1, IN2, IN3 IN4: in bit

Qut 1 . out bit );
end conponent OR 4 ;



Structural Mapping
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Odd Parity Structural Architecture

--bl ock declarative itens
--internal signals
signal MI_ 0, MI_3, MI_5 MI 6 : Dbit
signal INV_1, INV 2, INV_3 . bit
begin --parity structural architecture
--connect gates
GlL: INV port map ( In_1, INV_1);
G2: INV port map ( In_2, INV_ 2 );
G3: INV port map ( In_3, INV.3 );



Odd Parity Structural Architecture

A: AND 3 port nap

( IN1, INV 2, IN3, M_5);
Gb: AND 3 port nap

( INV_ 1, INV 2, INV.3, M _ 0 );
G6: AND 3 port nap

( INV_1, IN2, IN3 M _3);
G/: AND 3 port nmap

( IN1, IN2, INV.3, M _6 );



Odd Parity Structural Architecture

G&B: OR 4 port nap
( MO, MI_.3, Mr 5, Mr 6, Qut_1 );
end architecture Odd Parity S ;



Packages

s Method for Grouping Related Declarations Which
Serve a Common Purpose
— Set of subprograms to operate on particular data type
— Set of declarations for particular model
— Allows declaration of *global” signals, e.g., clocks.




Packages

s Design Unit Similar to Entity Declarations and
Architecture Bodies

— Can be put in library and made accessible to other units

— Access to items declared in the package Is through using
its Selected Name
» library name . package name . item name

— Aliases can be used to allow shorter names for accessing
declared items



Packages

s Two Components to Packages
— Package declaration
— Package body

» Not necessary If package declaration does not declare
subprograms



Package Declaration

m Declares
— Subprograms using header, implementation is hidden
— Constants, do not need to be Initialized in declaration

— Types, must be completely specified
» Can have variable size arrays

— Signals must be completely specified



Package Declaration Syntax

package i1dentifier is
{ package declarative item}

end | package | | identifier | ;



Package Declaration Example

package dp32_types is
constant unit _delay : Tinme := 1 ns;

type bool to bit table is array (boolean) of
bit;

end dp32 types ;



Package Body

m Declared Subprograms Must Include the Full
Declaration As Used In Package Declaration

— Numeric literals can be written differently if same value

— Simple name may be replaced by a selected name
provided it refers to same item



Package Body

s May Contain Additional Declarations Which Are
Local to the Package Body

— Cannot declare signals in body



Package Body

package body identifier is
package body declarative Item

end package body | dentifier



sources

m Prof. K. J. Hintz, Department of Electrical and
Computer Engineering, George Mason University

m Prof. John Wakerly, CISCO Systems and Stanford
Jniversity.

m Dr. Jose Nelson Amaral, University of Alberta

s More information on ECE 271 class of Marek
Perkowski.




