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*10 hours needed if a single person can dig a one-by-one-by-one hole in one hour

« What happens if the hole is to be 10 meter deep?
Even with 100 persons 10 hours are still needed!!



* PARALLEL ALGORITHMS

e WHICH MODEL OF COMPUTATION IS THE BETTER
TO USE?

e HOW MUCH TIME WE EXPECT TO SAVE USING A
PARALLEL ALGORITHM?

e HOW TO CONSTRUCT EFFICIENT ALGORITHMS?
* MANY CONCEPTS OF THE COMPLEXITY
THEORY MUST BE REVISITED

» IS THE PARALLELISM A SOLUTION FOR HARD
PROBLEMS?

e ARE THERE PROBLEMS NOT ADMITTING AN
EFFICIENT PARALLEL SOLUTION, THAT IS
INHERENTLY SEQUENTIAL PROBLEMS?

» INDECIDABLE PROBLEMS REMAIN
UNDECIDABLE!




Data Parallel Systems

 Programming model

e Operations performed in parallel on each element of data structure

e Logically single thread of control, performs sequential or parallel steps

e Conceptually, a processor associated with each data element

 Architectural model

e Array of many simple, cheap processors with little memory each
e Processors don’t sequence through instructions
e Attached to a control processor that issues instructions

e Specialized and general communication, cheap global synchronization
* Original motivations

e Matches simple differential equation solvers

e Centralize high cost of instruction fetch/sequencing



Application of Data Parallelism

Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05

else

salary = salary *1.10

Logically, the whole operation is a single step
Some processors enabled for arithmetic operation, others disabled
Other examples:

e Finite differences, linear algebra, ...

e Document searching, graphics, image processing, ...
Some famous machines:

e Thinking Machines CM-1, CM-2 (and CM-5)

e Maspar MP-1 and MP-2,



Flynn’s Taxonomy

 # instruction x # Data

e Single Instruction Single Data (SISD)

e Single Instruction Multip]

C

e Multiple Instruction Sing|

e Multiple Instruction Multip]

* Everything is MIMD!

C

Data (SIMD)
Data

e Data (MIMD)



Convergence: Generic Parallel Architecture

 Node: processor(s), memory system, plus
communication assist

e Network interface and communication controller

e Scalable network

 Convergence allows lots of innovation, within
framework

Communication
hdem | as=zist (CA)
[




VWe need a model of computation

* NETWORK (VLSI) MODEL

* The processors are connected by a network of bounded degree.
* No shared memory is available.
» Several interconnection topologies.

« Syncronous way of operating.

MESH CONNECTED ARRAY

]

degree =4 diameter = N

6 o 4 & o A model for VLSI
processing also needs

natrallelicrm




N elements are sorted on a Butterfly of order log N in

2log2+2logd+2log8+...+2logN= 2(1+2+ ..+logN)=logN(logN+ 1)

= 0O (log 2n)
Merge 2 lists A and B of m = 2% elements in L
A=ag ..., a4 B=by,...,b, 4 set
even(A) = odd(A) = even(B) = odd(B) =
Merge even{A)and odd (B)toform C Merge odd(A)and even (B)to form D

(A and B are distributed among C and D so as to balance the num ber of smalf items)

Form by interleaving and
Compare only and flip those out of order;
even(A) = =
'=214,358678 Example of parallel

computation



In the network model a PARALLEL MACHINE is a
very complex ensemble of small interconnected
units, performing elementary operations.

Each processor has its own memory.

Processors work synchronously.
LIMITS OF THE MODEL

e different topologies require different algorithms to solve
the same problem

e 1t 1s difficult to describe and analyze algorithms (the
migration of data have to be described)

— A shared-memory model 1s more suitable by an
algorithmic point of view



THREE TYPES OF MULTIPROCESSING FRAMEWORKS, CLOSELY RELATED

« CONCURRENT
- PARALLEL

MULTIPROCESSING ACTVITIES TAKE PLACE IN A SINGLE MACHINE (POSSIBLY USING
SEVERAL PROCESSORS), SHARING MEMORY AND TASKS.

PARALLEL COMPUTERS (USUALLY)WORKIN TIGHT SYNCRONY, SHARE MEMORY TO
A LARGE EXTENT AND HAVE A VERY FAST AND RELIABLE COMMUNICATION
MECHANISM BETWEEN THEM.

ARE MORE INDEPENDENT, COMMUNICATION IS LESS
FREQUENT AND LESS SYNCRONOUS, AND THE COOPERATION IS LIMITED.

 PARALLEL COMPUTERS COOPERATE TO SOLVE MORE EFFICIENTLY (POSSIBLY)
DIFFICULT PROBLEMS

HAVE INDIVIDUAL GOALS AND PRIVATE ACTIVITIES.
SOMETIME COMMUNICATIONS WITH OTHER ONES ARE NEEDED. (E. G. DISTRIBUTED
DATA BASE OPERATIONS).

PARALLEL COMPUTERS: COOPERATION IN A POSITIVE SENSE



Systolic arrays

* ‘Laying out algorithms in VLSI’
e cfficient use of hardware
e not general purpose
e not suitable for large I/O bound applications

e control and data flow must be regular

e Achieve pipelining and parallel execution

e Simple cells

e Each cell performs one operation

e (usually)



Systolic Computing

* Definition
e sys-to-le (sis'te-1€) noun

e The rhythmic contraction of the heart, especially of the ventricles, by which
blood is driven through the aorta and pulmonary artery after each dilation or
diastole.

e [Greek sustolé, contraction, from sustellein, to contract. See systaltic. ]
e — sys-tol'ic (si-stol'ik) adjective
e American Heritage Dictionary

» Data flows from memory in a rhythmic fashion, passing through many
processing elements before it returns to memory.

« H.T.Kung



Systolic’ 1s normally used to describe the regular pumping action of
the heart

By analogy, systolic computers pump data through

The 1dea 1s to exploit VLSI efficiently by laying out algorithms
(and hence architectures) in 2-D (not all systolic machines are 2-D,
but probably most are)

The architectures thus produced are not general but tied to specific
algorithms

This 1s good for computation-intensive tasks but not I/O-intensive
tasks

* e.g. signal processing

Most designs are simple and regular in order to keep the VLSI
implementation costs low

« programs with simple data and control flow are best

Systolic computers show both pipelining and parallel computation



Structures for
Systolic
Computing




Systolic Computing

Definition

A set of simple processing elements with regular and local
connections which takes external inputs and processes
them in a predetermined manner in a pipelined fashion



Systolic Architecture

A systolic network is often use with a host station responsible for
the communication with the outside world.

As a result of the local

IS

tion scheme, a systolic network i
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easily extended without to add any burden to the I/0.
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Systolic Architecture

« Example of systolic architecture: linear
network

Sl




Systolic Architecture

« Example of systolic network: Bi-
dimensional network




Systolic Architecture

« Example of systolic network: hexagonal
network




Motivation for Systolic

 Effectively utilize VLSI
e Reduce “Von Neumann Bottleneck”

» Target compute-intensive applications

* Reduce design cost:

e Simple
e Regular

* Exploit Concurrency




Using VLSI Effectively

* Replicate simple cells

e Local Communication ==>

e Short wires
e small delay
e low clock skew
e small drivers

e less area

e Scalable

e Small number of 1/Os




Regular Interconnect: why good

1-d Array

2-d Array

Hex Array

Triangular Array

Tree
O O O O



Hypercubes

N = 24 PROCESSORS

0110 0111
1110 1111
0100
0101 //X . -
degree = 4 (log,N) 1100 1101 diameter = 4
%010 0011
/ / /.1010 1011
0000 0001 XXK

1000 1001

Sum on the Hypercube

input: an array A of n elements such that each element A{i) is stored
in the local memory of processor P,

output:the sum S =0_, A(i)

algorithm for P,
begin
forl= d-1to0do
If (0S 1S 2-") then
Set A(l) .= A(l) + A" Il index | with bit | complemented
end



Characteristics
of Systolic
Architectures



Regular Interconnect in 3D

e 3-d Array

e 4-d Array (mapped to 3-D)
e 3-D Hex Array

e 3-D Trees and Lattices



Eliminating the Von Neuman’s
Bottleneck

* Process each input multiple times.
* Keep partial results in the PEs.

* Does this still present a win today?
e [arge cost

e Many registers



Balancing 1/0 and
Computation

e Can’t go faster than the data arrives
* Reduce bandwidth requirements
* Choose applications well!

* Choose algorithms correctly!



Exploiting Concurrency

* Large number of simple PEs

« Manage without instruction store
 Methods:

e Pipelining

e SIMD/MIMD

e Vector

 Limits application space. How severely?



Systolic versus
Reconfigurable
Computing




Systolic Architectural Model is a
c00d match with FPGAs and
Reconfigurable Computing

» Simple PEs
* Regular and local interconnect
 Pipeline between PEs
* I/0 at boundary
e Characteristics of best RC Designs.

o RC =



Systolic architecture versus RC

» A systolic architecture has the following
characteristics :

e A massive and non-centralized parallelism
e [ocal communications
e Synchronous evaluation

e Only the processors at the border of the architecture can
communicate outside.

e The task of one cell can be summarized as : receive-
compute-transmit



Systolic architecture versus RC

 Other characteristics :

¢ Data coming from the memory are
used several time before to come
back to it.

e These architectures are well suited
for a VLSI or FPGA network
implementation



Systolic Is Good RC Starting Point.

e Original motivation: Custom silicon for an
application.

* Model Architecture is efficient for RC
e Target Algorithms match
 Well developed theory

« Compilation technology well studied

* Was Systolic Computing ahead of its time?



One Big Difference

* Kung et al’s approach fabricated
silicon.

* RC compiles to fabric.
* Kung’s PEs must be “general
purpose.”



Mapping Approach for RC

 Allocate PEs

* Schedule computation

e schedule PEs structure

e schedule data flow driver

e Optimize



Example: Matrix Multiplication
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Each cell (P1, P2, P3) does just one instruction

e Multiply the top and bottom inputs, add the left input to the
product just obtained, output the final result to the right

The cells are simple

 Just an adder and a few registers

The cleverness comes in the order in which you
feed input into the systolic array

« At time t0, the array receives 1, a, p, q, and r (the other inputs
are all zero)At time tl, the array receives m, d, b, p, g, and r
And so on.

Results emerge after 5 (?) steps



Processor P
local operations
communication operations

« send (X,i
. receiu!e (3), i Systolic Matrix

Moltiplication on the Mesh

input: A, B nxn matrices; output: C =AxB where ¢;=0,,, , ayb,
bdd
b43 b34
b42 b33 b24
by by b
Ca3=1D15+ab,5+a53b55+a,4by5 b by
by by 13
b, by : : _
b, - : : when P; receives
Y v v v A, and B, computes
=G :
a, a; a, a;—» P_.“ P_12 P_ﬁ P_’M Clj' Clj Ail B|j
then sends A,
n 9 A A " * \Py| |Pp| Pyl |Py to the right and
B, down
a3 Ap Ap a4y - = Py | |Py| |Py| |Py

Example: Matrix-Matr

ay Ay ap Ay ., - plle e | le | "aves 1. oo




Example:
FIR Filter or
Convolution




Various Possible Implementations

* Broadcast

— Y moves
— Wmoves Running Example: Convolution
» Fan-In for (i=1; i < n; i++)
« Systolic for (j=1; j < k; j++)
— Bidirectional ¥V, = Wy X5,
* Yin place
« Xin place
— Unidirectional
* Yin place

« Win place



Bag of Tricks

e Preload-repeated-value

* Replace-feedback-with-register
 Internalize-data-flow

* Broadcast-common-input

* Propagate-common-input

* Retime-to-eliminate-broadcasting




Bogus Attempt at Systolic FIR

for 1=1 to n 1n parallel

for j=1 to k in place

— X
YiT= W, " X g4

W, —»
X, —» — v
¥i >
W, —» L .
]
X, — -y, 'feedback from sequential implementation
----- L Fi I H

1
ot

]
am
------
......................................

_h . .
X, —» Y, Replace with register




Bogus Attempt: Outer Loop

for 1=1 to n 1n parallel

for j=1 to k in place

— X
YiT= W, " X g4

X1 X Xig Ko
WXy WiX WX, ntk j | | |
¥n ¥1 ¥a ¥a 7o 7l & Ya

From in parallel Broadcast common mput




Bogus Attempt: Outer Loop - 2

for 1=1 to n 1n parallel

for j=1 to k 1n place

X,
? . =w, *
: }EJ X, Yi T= Wi ™ X i
S X
4—eeon +— W
FD Fl FE Fﬂ

Retime to eliminate broadcast



Bogus Attempt: Outer Loop - 2a

for 1=1 to n 1n parallel
for j=1 to k in place

= *
Yi T= Wi ™ X i

‘}';"Irl-lc:-l
ot ?
A ? ?
0
A1 ' ’ ?
w,— 1 | \ eses
¥ ¥ ¥ ¥n

Retime to eliminate broadcast



Bogus Attempt: Outer Loop - 3

for 1=1 to n 1n parallel

for j=1 to k 1n place

= *
Yi T= Wi ™ X i

W add

¥ ¥1 ¥a ¥n

Broadcast common mput



Attempt at Systolic FIR

for i=1 to n in place

for jJj=1 to k in parallel

W.
o= W,k ox. ] :‘
Yl i | i+j-1 Xi+j_1 . Fi
¥i »

x 3 P Wi
P XaWy ? 2 Xin Wi Xfﬁt
¥i 2 9 2

Wb b ﬂ

li'll ¥, —» _— —p o 0ol




Outer Loop

for i=1 to n in place
for jJj=1 to k in parallel

— *
Y, 75 OW Y X 5

K 'K
X, %W, ? 2
Xfﬁ% 3 ? 7 2

e Yo ¥ = e —- 8 & 8|




Optimize Outer Loop
Preload-repeated Value

for i=1 to n in place
for jJ=0 to k in parallel

— *
Yy t= ¥, iy

—
Q " : x .
f— 5 o

e @ & B

=

VY —e| W, |




Optimize Outer Loop
Broadcast Common Value

for i=1 to n in place

for jJj=1 to k in parallel

— *
Yy t= ¥, iy

B1 From [Kung82]

e I |

e Yo¥y = W, M W, [rees W




Optimize Outer Loop
Retime to Eliminate Broadcast

for i=1 to n in place
for jJj=1 to k in parallel

= *
¥; = W3 ¥ X

Similar to W2 From [Kung82]

X X —
...}rz}rl ﬁﬁﬁ’...l Wk




How 1t works

S 7 Sq—. >
21— W -F:| W, -[|->-"

wk
¥1
X1
Y2
X X
Y3 ¥1
23 X3 X9
Ya Y2
Xy X3 Xy
Ys Y3 ¥1
Xs Xy X3




FIR details

X;2

—r“—r—h

Yiq



FIR details

X1
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ufa
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FIR Summary

« Sequential:
— Memory Bandwidth per output:
each x ktimes. k w's. plus one v.
— 1 result o(k) cycles
— 0o(1) hardware
« Systolic:
— Memory Bandwidth per output:
1x+1y.
— 1 result every cycle - o(1)

I D T (N



Example:

Pipeline-

Reconfigurable
FPGAS




Reconfigurable Computing

Two big problems
+ No forward compatibility

< performance does not scale with technology

cutt etd genetration tiext generation
FPGA FPGA
Dlegion ' L
corpiled —* / R /
ivite, hardm 77 tecompilation /o
fullyutilized

partially uhlized

+ Not compiler-friendly
<= applications have to fit in hardware!



Solution based on Hardware
Virtualization

+ assume you have atarget hardware that fits the entire
application at once

compile to big
target hardware

Application

. . FPGA
time-multiplex on v ailable with
avallable hardware , '

today’s

"K\\__i:echnﬂlﬂg}r



Making it happen

Incremental Reconfiguration: ““scrolling” FPGA fabric

¥

4

> 4

. 4




How good is this concept?

&« CMU PipeRench

+ 100 5. mum die area
+ 128-hit datapath
+ 100 MHz clock
+ 0.35 um technology

& Kev Points
performance like FPGA
degradation ldze DEP

b
=

"

LA
=

Mega Samples Per Second (MSPS)
=

—PipeFemch

— Zilnx FDA
il DDA

—TII:P

0 100

A0

FIE Fibker T ap=




What’s coming your way

* What’s required to make hardware
virtualization work?

* We will use an example to illustrate
e breaks 1n the input data stream

e saving and restoring lost state



Example: Convolution Algorithm

i 4-tap FIE filter

F7 mput data elements X[ 0] - X[&]
4 output data elements Y[0] - Y[ 3]
4 constant weights W[ 0] - W[ 3]

for1=0to3 {
TNh]=0
for1=0t03 {
Y1) +=X[rH)] * W],
h
h




A Systolic Implementation

i
fori=0t03 | | |
¥ [1] = 0, | 1
for j=0to3 { — [ |
T[] += Ly *Wh], 2
} N
3
l Y out= ¥in +Zin*W[l ]
ot
T data

att eatm



Target Hardware

d-tap corrrolubon bmken
up into 4 ppehne stages

|:| ]

1 | | Pipehired FP3 A
2 l i Hadvrare
£ |

4 virtual stripes 5 physical stripes

= Pipelined
= Concurrent reconfiguration and execution
+ One pipestage reconfizured each cyele

+ Other stages may execute



Clock Cycle 0

& Configure next available physical stripe

Virtual Stripe 0 HARDWARE

configuring Physical Stripe

[ 7777 | configured
] |
4 I

unconfigured

_ —

LIEMORY

Comvolution’s conficuraiion
wordsin memory




Clock Cycle 1

& Physical Stripe 0

+ configured to behave
like Virtual Stripe 0

+ now executing
+ needs data X[ 0]

& Physical Stripe 1 being
configured...




The first four cycles

0] Z[1] Z[4]
I B
V30 0] |:{[1] [0 | V33
VS1 [ [ zm
[ vs2 ]
CYCLE 0 CYCLE 1 CYCLE 2 CYCLE 3

Virtual Stripe 0 gets
replaced by Virtual Stripe 3



x[0]

Pipeline Disruption

1]

[

l

1] [M]

a3

X[0]

e 0]
el
CYCLED CYCLE ]

e break in data stream: mput has to stop

el

CYCLE 2

= only done with X[1] and X[0].
+ needs to process X[2]-X[6]

+ 5 more execution cycles to go

CYCLE 3

~

Virnal Stipe O zets
wplaced by Virtaal Stape 3



The life of Virtual Stripe 0

* Behavior a function of application and architecture

— With V virtual and P physical stripes
e cxecution cycles at a stretch=P - 1

e swap-out duration=V - P + 1

=

Betve
Execubon
Crrles

- ;/ DOHE.
./_/
1 2 34546 7 89 10111215 14

Titne (clock ficks)

— b ) e e O ) 00 WD




Further complications!

* Virtual Stripe 0 has state
e required when 1t resumes executing

e need to save and restore 1t when stripe 1s
configured back 1n

H[1 2] state [

!

E._
:

| ®m | w1 [0 m | *:x
| il ] | | | 80 X[2] E[
[ ] 1 ] v

CY¥CLEL CY¥CLE2 CY¥CLEZ CYCLE4 C¥CLE A




Implementing Save/Restore

SWAPPING INTO FPOA
(RESTORE)

ARII

Fabac

RII

5
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Lo oty ton Mo monyr

ftak Momery

r—-----

SWAPPING OUT OF FPG A
(SAVE)

KII

Faloc

GALL L) Genfipmaten, Ragkwr

1
L e §|[]
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A —r—
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Conclusions

e Pipeline-
reconfigurable -
FPGAs provide 3 m—
e forward % 150 = Xihnx FD&
compatibility 3 Hiline DDA
—TIDSE
e robust & 104
compilation A
E 50 1




PipeRench-1
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Implementing hardware virtualization

« Reconfigure entire FPGA
e need more reconfiguration time

e need intermediate storage

1
s T R
FaERIC
——
| EECOMFIGURE
= oo
]
]

SIMPLE PIPELINED APPLICATION



