
SystolicSystolic
ComputingComputing

FundamentalsFundamentals

MotivationsMotivations
for Systolicfor Systolic
ProcessingProcessing

• PARALLEL ALGORITHMS
• WHICH MODEL OF COMPUTATION IS THE BETTER

TO USE?

• HOW MUCH TIME WE EXPECT TO SAVE USING A
PARALLEL ALGORITHM?

• HOW TO CONSTRUCT EFFICIENT ALGORITHMS?

• MANY CONCEPTS OF THE COMPLEXITY
THEORY MUST BE REVISITED

» IS THE PARALLELISM A SOLUTION FOR HARD
PROBLEMS?

• ARE THERE PROBLEMS NOT ADMITTING AN
EFFICIENT PARALLEL SOLUTION, THAT IS
INHERENTLY SEQUENTIAL PROBLEMS?

» INDECIDABLE PROBLEMS REMAIN
UNDECIDABLEUNDECIDABLE!

Data Parallel SystemsData Parallel Systems
•• Programming modelProgramming model

• Operations performed in parallel on each element of data structure

• Logically single thread of control, performs sequential or parallel steps

• Conceptually, a processor associated with each data element

• Architectural model

• Array of many simple, cheap processors with little memory each

• Processors don’t sequence through instructions

• Attached to a control processor that issues instructions

• Specialized and general communication, cheap global synchronization

•• Original motivationsOriginal motivations

• Matches simple differential equation solvers

• Centralize high cost of instruction fetch/sequencing

Application of Data Parallelism
• Each PE contains an employee record with his/her salary

If salary > 100K then
salary = salary *1.05
else
salary = salary *1.10

• Logically, the whole operation is a single step

• Some processors enabled for arithmetic operation, others disabled

• Other examples:

• Finite differences, linear algebra, ...

• Document searching, graphics, image processing, ...

• Some famous machines:

• Thinking Machines CM-1, CM-2 (and CM-5)

• Maspar MP-1 and MP-2,

Flynn’s Taxonomy

• # instruction x # Data
• Single Instruction Single Data (SISD)

• Single Instruction Multiple Data (SIMD)

• Multiple Instruction Single Data

• Multiple Instruction Multiple Data (MIMD)

• Everything is MIMD!

Convergence: Generic Parallel Architecture

• Node: processor(s), memory system, plus
communication assist

• Network interface and communication controller

• Scalable network

• Convergence allows lots of innovation, within
framework

• Integration of assist with node, what operations, how
efficiently...

A model for VLSI
processing also needs
parallelism

Example of parallel
computation

• In the network model a PARALLEL MACHINE is a
very complex ensemble of small interconnected
units, performing elementary operations.

• Each processor has its own memory.

• Processors work synchronously.

• LIMITS OF THE MODEL

• different topologies require different algorithms to solve
the same problem

• it is difficult to describe and analyze algorithms (the
migration of data have to be described)

– A shared-memory model is more suitable by an
algorithmic point of view

Systolic arrays
• ‘Laying out algorithms in VLSI’Laying out algorithms in VLSI’

• efficient use of hardware

• not general purpose

• not suitable for large I/O bound applications

• control and data flow must be regular

• Achieve pipelining and parallel execution

• Simple cells

• Each cell performs one operation

• (usually)

Systolic ComputingSystolic Computing
• Definition
• sys∙ to∙ le (sîs¹te-lê) noun

• The rhythmic contraction of the heart, especially of the ventricles, by which
blood is driven through the aorta and pulmonary artery after each dilation or
diastole.

• [Greek sustolê, contraction, from sustellein, to contract. See systaltic.]

• — sys∙ tol¹ic (sî-stòl¹îk) adjective

• American Heritage Dictionary

• Data flows from memory in a rhythmic fashion, passing through many
processing elements before it returns to memory.

• H.T.Kung

• Systolic’ is normally used to describe the regular pumping action of
the heart

• By analogy, systolic computers pump data through

• The idea is to exploit VLSI efficiently by laying out algorithms
(and hence architectures) in 2-D (not all systolic machines are 2-D,
but probably most are)

• The architectures thus produced are not general but tied to specific
algorithms

• This is good for computation-intensive tasks but not I/O-intensive
tasks

• e.g. signal processing

• Most designs are simple and regular in order to keep the VLSI
implementation costs low

• programs with simple data and control flow are best

• Systolic computers show both pipelining and parallel computation

Structures forStructures for
SystolicSystolic

ComputingComputing

Systolic Computing

A set of simple processing elements with regular and local
connections which takes external inputs and processes
them in a predetermined manner in a pipelined fashion

Definition

Systolic ArchitectureSystolic Architecture

Systolic Architecture
• Example of systolic architecture: linear

network

Systolic Architecture

• Example of systolic network: Bi-
dimensional network

Systolic Architecture

• Example of systolic network: hexagonal
network

Motivation for SystolicMotivation for Systolic

• Effectively utilize VLSI

• Reduce “Von Neumann Bottleneck”

• Target compute-intensive applications

• Reduce design cost:

• Simple

• Regular

• Exploit Concurrency

Using VLSI EffectivelyUsing VLSI Effectively
• Replicate simple cells

• Local Communication ==>

• Short wires

• small delay

• low clock skew

• small drivers

• less area

• Scalable

• Small number of I/Os

Routing costs
dominate: power,
area, and time!

Regular Interconnect: why good

Hypercubes

CharacteristicsCharacteristics
of Systolicof Systolic

ArchitecturesArchitectures

Regular Interconnect in 3D

• 3-d Array

• 4-d Array (mapped to 3-D)

• 3-D Hex Array

• 3-D Trees and Lattices

Eliminating the Von Neuman’s
Bottleneck

• Process each input multiple times.

• Keep partial results in the PEs.

• Does this still present a win today?

• Large cost

• Many registers

Balancing I/O andBalancing I/O and
ComputationComputation

• Can’t go faster than the data arrives

• Reduce bandwidth requirements

• Choose applications well!

• Choose algorithms correctly!

Exploiting ConcurrencyExploiting Concurrency

• Large number of simple PEs

• Manage without instruction store

• Methods:

• Pipelining

• SIMD/MIMD

• Vector

• Limits application space. How severely?How severely?

Systolic versusSystolic versus
ReconfigurableReconfigurable

ComputingComputing

Systolic Architectural Model is a
good match with FPGAs and
Reconfigurable Computing

• Simple PEs

• Regular and local interconnect

• Pipeline between PEs

• I/O at boundary

• Characteristics of best RC Designs.
• RC = reconfigurable reconfigurable computingcomputing

Systolic architecture versus RC

• A systolic architecture has the following
characteristics :

• A massive and non-centralized parallelism

• Local communications

• Synchronous evaluation

• Only the processors at the border of the architecture can
communicate outside.

• The task of one cell can be summarized as : receive-
compute-transmit

Systolic architecture versus RC

• Other characteristics :
•Data coming from the memory are

used several time before to come
back to it.

•These architectures are well suited
for a VLSI or FPGA network
implementation

Systolic Is Good Systolic Is Good RCRC StartingStarting Point. Point.

• Original motivation: Custom silicon for an
application.

• Model Architecture is efficient for RC

• Target Algorithms match

• Well developed theory

• Compilation technology well studied

• Was Systolic Computing ahead of its time?

One Big DifferenceOne Big Difference

• Kung et al’s approach fabricated
silicon.

•• RCRC compiles to fabric.

• Kung’s PEs must be “general
purpose.”

Mapping Approach for RCMapping Approach for RC

• Allocate PEs

• Schedule computation

• schedule PEs structure

• schedule data flow driver

• Optimize

Example:Example: Matrix Multiplication

• Analyze each
row

• Each cell (P1, P2, P3) does just one instruction
• Multiply the top and bottom inputs, add the left input to the

product just obtained, output the final result to the right

• The cells are simple
• Just an adder and a few registers

• The cleverness comes in the order in which you
feed input into the systolic array

• At time t0, the array receives l, a, p, q, and r (the other inputs
are all zero)At time t1, the array receives m, d, b, p, q, and r
And so on.

• Results emerge after 5 (?) steps

Example:Example: Matrix-Matri
Multiplication

Example:Example:
FIR Filter orFIR Filter or
ConvolutionConvolution

Various Possible ImplementationsVarious Possible Implementations

Bag of TricksBag of Tricks

• Preload-repeated-value

• Replace-feedback-with-register

• Internalize-data-flow

• Broadcast-common-input

• Propagate-common-input

• Retime-to-eliminate-broadcasting

Bogus Attempt at Systolic FIR
for i=1 to n in parallel

 for j=1 to k in place

 yi += wj * x i+j-1

feedback from sequential implementation

Replace with register

Bogus Attempt: Outer Loop
for i=1 to n in parallel

 for j=1 to k in place

 yi += wj * x i+j-1

Bogus Attempt: Outer Loop - 2
for i=1 to n in parallel

 for j=1 to k in place

 yi += wj * x i+j-1

for i=1 to n in parallel

 for j=1 to k in place

 yi += wj * x i+j-1

Bogus Attempt: Outer Loop - 2a

Bogus Attempt: Outer Loop - 3
for i=1 to n in parallel

 for j=1 to k in place

 yi += wj * x i+j-1

Attempt at Systolic FIR

Outer Loop

Optimize Outer Loop
Preload-repeated Value

Optimize Outer Loop
Broadcast Common Value

Optimize Outer Loop
Retime to Eliminate Broadcast

How it works

FIR details

FIR details

FIR SummaryFIR Summary

 Example: Example:
Pipeline-Pipeline-

ReconfigurableReconfigurable
FPGAsFPGAs

Reconfigurable Computing

Solution based on Hardware
Virtualization

Making it happen

How good is this concept?How good is this concept?

What’s coming your wayWhat’s coming your way

• What’s required to make hardware
virtualization work?

• We will use an example to illustrate

• breaks in the input data stream

• saving and restoring lost state

Example: Convolution Algorithm

A Systolic ImplementationA Systolic Implementation

Target Hardware

Clock Cycle 0

Clock Cycle 1

The first four cycles

Pipeline Disruption

The life of Virtual Stripe 0
• Behavior a function of application and architecture

– With V virtual and P physical stripes

• execution cycles at a stretch = P - 1

• swap-out duration = V - P + 1

Further complications!

• Virtual Stripe 0 has state

• required when it resumes executing

• need to save and restore it when stripe is
configured back in

Implementing Save/Restore

Conclusions
• Pipeline-

reconfigurable
FPGAs provide

• forward
compatibility

• robust
compilation

PipeRench-1

Implementing hardware virtualization
• Reconfigure entire FPGA

• need more reconfiguration time

• need intermediate storage

