Rapid: A Configurable Architecture
for Compute-Intensive Applications

Carl Ebeling
Dept. of Computer Science and Engineering
University of Washington

Alternatives for High-Performance Systems

+ ASIC

& Use application-specific architecture that matches the computation
& Large speedup from fine-grained parallel processing
& Smaller chip because hardware 1s tuned to one problem
& Lower power since no extra work is done
& Little or no flexibility: problem changes slightly, design a new chip
» No economy of scale
» Long design cycle

+ Daigital Signal Processors
& Optimized to signal processing operations
» Simple, streamlined processor architecture
» Cheaper, lower power than GP processors
& Very flexible: just change the program
& Lower performance: small scale parallelism

Reconfigurable Pipelined Datapaths 2

Motivation for Rapid

+ Many applications require programmability
& Old standards evolve
& Multiple standards, protocols, technology
» Similar but different computation
» Reprogram for different context
& New algorithms give competitive advantage

+ We need a “configurable ASIC”

& Application-specific architecture
& Reprogrammable

Reconfigurable Pipelined Datapaths

What is a Configurable ASIC?

4+ Like an ASIC: Architecture tuned to application
& High performance/low cost

+ But configurable:
& Datapath structure can be rewired via static configuration
& Datapath control can be reprogrammed

4+ Rapid approach
& Domain-specific architecture model
» Reconfigurable Pipelined Datapaths
© Well-suited to many compute-intensive applications

Reconfigurable Pipelined Datapaths 4

Example: Programmable Downconverter

Configurable ASIC

Bandpass Filter|

Custom Analog

(FIR) <

A/D

A

Analog LPF

[€— Analog input

Embedded
Controller

Y

Low Pass Filter Symmetric LPF
(FIR + > (FIR + Matched Filter »| Resampler
decimation) decimation)
Low Pass Filter Symmetric LPF
—"->®—> (FIR + > (FIR + Matched Filter » Resampler
y decimation) decimation)
A A4
NCO Timing Recovery
Custom
F Macroblock

Reconfigurable Pipelined Datapaths

Post
Processing

Example: Programmable Downconverter

Configurable ASIC

Custom Analog

128-tap FIR |«

16-tap FIR +

2X downsampling

Embedded
Controller

P

16-tap FIR +

2X downsampling

A/D < Analog LPF [« Analog input
32-tap E?/r? metric Matched Filter »| Resampler
32-tap Elyr\r)nmetrlc Matched Filter »| Resampler

Y

NCO |«

A A 4

Custom
F Macroblock

Reconfigurable Pipelined Datapaths

Timing Recovery

Post
Processing

Example: Programmable Downconverter

Y

Embedded
Controller

Configurable ASIC
Custom Analog
2 stage IR |« A/D < Analog LPF [« Analog input
32-tap FIR + > 16-tap FIR + 16-tap FIR > Adaptive 8-
4x downsampling 2x downsampling tap FIR
| 32-tap FIR + > 16-tap FIR + 16-tap FIR > Adaptive 8-
4x downsampling 2x downsampling tap FIR
A
A A4
NCO |« Timing Recovery
Custom

F Macroblock

Reconfigurable Pipelined Datapaths

Post
Processing

Generating a Rapid Array

Rapid-C
Program

Rapid-C
Program

Rapid-C
Program

Rapid-C
Program

!

!

!

!

G

v

v

v

apid CompiIeD Gapid CompiIeD Gapid CompileD Gapid Compiler

v

Netlist

Netlist

Netlist

Netlist

Reconfigurable Pipelined Datapaths

Rapid Array
Synthesis

v

Rapid Array
Netlist

!

Hardware
Synthesis

v

L]

Rapid Array

Rapid Architecture
Model

Programmable Downconverter ASIC

Memory for
programmable
control

Analog
NCO
Rapid Array
Embedded
DSP
Datapath
Program Control
Program

S5 0 =0 =C@Q@ —-—-=-300

Reconfigurable Pipelined Datapaths

Reconfiguring the Rapid Array

Rapid-C
Program

!

Rapid Compiler

!

Netlist

Map
Place/Route

v

Configurable ASIC
Description

Configuration Control Program

l

]]
Rapid Array Rapid Array

Reconfigurable Pipelined Datapaths

Overview of Using Rapid

Generating a Rapid Array

Rapid-C
Programs

L

Rapid CompiIeD

v

Rapid Rapid Array

Architecture Netlist
Model l
Hardware
Synthesis
[]

Rapid Array
\ |

Programming a Rapid Array

New Rapid-C
Program

!

Gapid CompiIeD

Rapid Program
Netlist

Map
Place/Route

v

Configuration Control Program

]

Rapid Array
\ |

Reconfigurable Pipelined Datapaths

11

How Configurable 1s Rapid?

+ Experimental Rapid Array:
&> 16-bit data, configurable long addition
> 16 Multipliers, 48 ALUs, 48 Memories, Registers
& Extensive routing resources
& Configurable control logic
% 100 Mhz
> ~100 mm? in .6u technology
» Layout done for major components

Reconfigurable Pipelined Datapaths

12

How Configurable 1s Rapid?

+ Applications mapped to Experimental Array
o FIR filters
» 16 tap, 100MHz sample rate
» 1024 tap, 1.5 MHz sample rate
» 16-bit multiply, 32-bit accumulate
» Decimating filters
o IIR filters
© Matrix multiply
» Unlimited size matrices
> 2-D DCT
© Motion Estimation
& 2-D Convolution
o FFT
% 3-D spline generation

4+ Performance:
= >3 BOPS (data multiplies and adds)

Reconfigurable Pipelined Datapaths

13

Questions to be Answered

+ How do you add configurability to an application-specific

architecture?
& Use a domain-specific meta-architecture: Rapid
» Fine-grained parallelism
» Deep computational pipelines
» High performance

+ How do you program a Rapid array?
& Use a programming model tuned to the meta-architecture
& Concise descriptions of pipelined computations

+ How do you compile a Rapid array?
& Generating a Rapid array from multiple source programs
& Reconfiguring Rapid from a source program

Reconfigurable Pipelined Datapaths 14

RaP1D: Reconfigurable Pipelined Datapath

Input Output
Streams Streams

Custom
Function

A A A
L - L - L -
M u MU My

Memory Multiply Multiply Memory

& Linear array of function units

» Function type determined by application
& Function units are connected together as needed using segmented buses
& Data enters the pipeline via input streams and exits via output streams

Reconfigurable Pipelined Datapaths 15

Section of a Sample Rapid Datapath

Multiply Memory
Programmable

/ registers

Word-based .

data busses \]

=

Input / T Bus connector: Open,

multiplexers Tri-state connected, or up to

output drivers three register delays

Reconfigurable Pipelined Datapaths 16

An Example Application: FIR Filter
+ FIR Filter

© Given a fixed set of coefficient weights and an input vector

© Compute the dot product of the coefficient vector and a window of the
input vector

& Easily mapped to a linear pipeline

Reconfigurable Pipelined Datapaths 17

FIR Filter

X X X Each number refers

Y - =2 - to the index of the

stream: e.g. wg, wy, W,

| v
| v

| v
+
\

l*rx

Reconfigurable Pipelined Datapaths 18

FIR Filter

X

A
7

Each number refers

X X X
Y - =2 - to the index of the

w stream: e.g. wg, w4, W,
I r X

| v

| v
+
\

| v
+
\

&
i

Reconfigurable Pipelined Datapaths 19

FIR Filter

A
7

X

Each number refers

X X X
Y - =2 - to the index of the

stream: e.g. wg, wy, W,

2

| v

| v
+
\

| v
+
\

&
i

Reconfigurable Pipelined Datapaths 20

FIR Filter

X X X Each number refers

Y - =2 - to the index of the

stream: e.g. wg, wy, W,

| v
| v

X
| v
+
\

Reconfigurable Pipelined Datapaths 21

Configuring the FIR Filter

+ Systolic pipeline implements overlapped vector products

4+ The array is configured to implement this computational pipeline
o Stages of the FIR pipeline are configured onto the datapath

Input Output
Stream Stream

Multiply Multiply Multiply Multiply

A el el

!
Reconfigur: 22

cr>»
cr>»
cr>»
Cl:>

Configuring Different Filters

+ Time-multiplexing: trade number of taps vs. sampling rate
© M taps assigned per multiplier
© Requires memory in datapath

+ Symmetric filter coefficients
© Doubles the number of taps that can be implemented
© Requires increased control

+ Followed by downsampling by M
© Number of taps increased by factor of M

Input Output

Memory Multiply Memory Multiply Memory Multiply Memory Multiply

Reconfigurable Pipelined Datapaths

Dynamic Control

+ A completely static pipeline is very restricted
& Virtually all applications need to change computation dynamically
& Dynamic changes are relatively small
» Initialize registers, e.g. filter coefficients
» Memory read/write
» Stream read/write
» Data dependent operations, e.g. MIN/MAX
» Time-multiplexing stage computation

4+ Solution: Make some of the configuration signals dynamic

4+ Problem: Where do these signals come from?

Reconfigurable Pipelined Datapaths 24

4+ Per-stage programmed control

Alternatives for Dynamic Control

L

i

L

L

L

L

Controller

Controller

Controller

Controller

Controller

Controller

& Similar to programmable systolic array/iWARP
© Very expensive, requires synchronization

+ VLIW/Microprogrammed control

UL ULRUL LR LR

Controller

© Very expensive, high instruction bandwidth
Reconfigurable Pipelined Datapaths

The RaP1D Approach

+ Factor out the computation that does not change
& Statically configure the underlying datapath
¢ Datapath is temporarily hardwired

+ Remaining control 1s dynamic
& Configure an instruction set for the application
& A programmed controller generates instructions
& Instruction is pipelined alongside the datapath
& Each pipeline stage “decodes” the instruction
& Instruction size is small: typically <16 bits

L

L

i

L

i

i

Controller

Decode

Decode

Decode

Decode

Decode

Decode

Reconfigurable Pipelined Datapaths

26

FIR Filter Control

DATA
Control stream contain CONTROL
dynamic control bits ...|0]01]0 . 0|0 ——

X[+ > | X

HF Al

| v
+
\
N 4
X
| v
+
\

A\ 4

Reconfigurable Pipelined Datapaths 27

FIR Filter Control

DATA
CONTROL
JoJo[oojo|——

»I_[: X2+ > X2+

0 . 0

Reconfigurable Pipelined Datapaths 28

FIR Filter Control

b

| v

DATA

CONTROL

.0

0

oo

b

8

0

A\ 4

| v

A\ 4

l

Reconfigurable Pipelined Datapaths

29

FIR Filter Control

DATA

CONTROL

.0

0

oflo]o

ki &

RN
i

0 0

8
i

A\ 4

b

| v

Reconfigurable Pipelined Datapaths

Summary of Control

4+ Hard control:

& Configures underlying pipelined datapath
& Changed only when application changes
& Like FPGA configuration

4+ Soft control:

& Signals that can change every clock cycle
» ALU function, multiplexer inputs, etc.
& Configurably connected to instruction decoder

4+ Only part of soft control may used by an application

% Static control
Soft control that is constant

% Dynamic control

Soft control generated by instruction

Reconfigurable Pipelined Datapaths

31

Soft Control Signals

4+ Static control:
& Connect control signal to 0/1

4+ Dynamic control:
& Connect control signal to instruction

Instruction

Reconfigurable Pipelined Datapaths

Data
busses

—— > MUX—

A A

A A A

o
YYVYY

YVYVYY Vi

Soft
Control
Signals

32

Rapid Programming Model

4+ Pipelined computations are complicated
& Use a Broadcast model
© Assumes data can propagate entire length of datapath in one cycle
© A “datapath instruction”:
» specifies computation executed by entire datapath in one cycle

» execution proceeds sequentially in one direction

Reconfigurable Pipelined Datapaths 33

Rapid-C Datapath Instruction

4+ Described using a loop

for (s=0; s < 3; s++) {
if (s==0) in[0] = streamX;
if (s==0) out = in[0] * WI[O];
else out = out + in[s] * WI[s];
if (s==3) stream¥Y = out;

streamX

streamY

S:0 S:1 S: 2 S:3
Reconfigurable Pipelined Datapaths 34

Pipelining RaP1D

+ The Rapid datapath 1s pipelined/retimed by the compiler
& One “datapath instruction” is really executed over multiple cycles
& Programmer always thinks in broadcast time

Pipeline
registers

streamX

streamY

Reconfigurable Pipelined Datapaths 35

Instructions are Broadcast

4+ Datapath instructions are executed in one cycle
& Control is broadcast
& Compiler pipelines control along with data

Y
Y
Y

X
| v
+
N

X
| v
+
N

| v
+
\

A\ 4

Reconfigurable Pipelined Datapaths

A\ 4

36

Instructions are Broadcast

4+ Datapath instructions are executed in one cycle

= Control 1s broadcast

& Compiler pipelines control along with data

X
| v
+
N

b

b

| v

b

| v
+
\

Y

Y

A\ 4

0

Reconfigurable Pipelined Datapaths

A\ 4

37

Data Communication in Rapid

4+ Predominately nearest-neighbor communication
& To the next stage (broadcast within an instruction)
& To the next instruction (within a stage)

& Across N instructions (through local memory)

. Datapath stages
Time

. I >
l ;

Reconfigurable Pipelined Datapaths

38

Rapid-C Process

4+ Each nested loop 1s a loop process

& The inner loop 1s a datapath instruction

Process

for (k=0; k < NX-NW; k++)

if (s==NW-1) streamY¥Y

for (s=0; s < NW-1; s++) {
if (s==0) in[0] = streamX;
if (s==0) out = in[O0]
else out = out + inl[s]

* W[O];
* W[sl;

Datapath
instruction

Reconfigurable Pipelined Datapaths

39

Rapid-C Programs

4+ Programs are comprised of several loop processes

4+ Processes can run sequentially
& One process starts when the previous process completes

4+ Processes can run concurrently
& Computations overlap
& Processes run in lock-step
» One inner loop execution per cycle
& Concurrent processes are synchronized via signal/wait
» One process waits for the other to send a signal

Reconfigurable Pipelined Datapaths 40

FIR Filter: Three Sequential Loop Processes

Pipe in[NW];
Reg WI[NW] ;

for (i=0; i < NW; i++)
for (s=0; s < NW; s++) {
if (s==0) in[0] = streamW;
if (i==NW-1) W[s] = in[s];

}

Load Weights

for (j=0; j < NW-1; j++)
for (s=0; s < NW; s++) {
if (s==0) in[0] = streamX;

}

for (k=0; k < NX-NW; k++)
for (s=0; s < NW-1; s++) {

if (s==0) in[0] = streamX;
if (s==0) out = in[0] * WI[O0];
else out = out + in[s] * W[s];

if (s==NW-1) streamY = out;

}

Reconfigurable Pipelined Datapaths

Fill Pipeline

Compute Results

41

FIR Filter Using Concurrent Loop Processes

for (i=0; i < NW; i++)

for (s=0; s < NW; s++) {

if (s==0) in[0] = streamW; Load Weights
if (i==NW-1) W[s] = inls];
}
PAR {
for (3j=0; j < NX; j++)
if (j==NW) signal (goAhead) ; Read input
for (s=0; s < NW; s++) { values
if (s==0) in[0] = streamX;
}
wait (goAhead); // Wait for enough inputs
for (k=0; k < NX-NW; k++)
for (s=0; s < NW-1; s++) {
if (s==0) out = in[0] * WI[O]; Compute
else out = out + inl[s] * W[s]; Results
if (s==NW-1) streamY = out;
}

Reconfigurable Pipelined Datapaths

Rapid-C Programs

4+ Processes are composed to make other processes

& Sequential composition
& Parallel composition

4+ The process structure 1s represented by a Control Tree

& Each node is a SEQ or PAR

SEQ

for (i=0; i < NW; i++)
for (s=0; s < NW; s++) {
if (s==0) in[0] = streamW;
if (i==NW-1) W[s] = in[s]l;

}

for (j=0; j < NX; j++)
if (j==NW) o
signal (goAhead); ="
for (s=0; s < NW; s++) {
if (s==0) in[0] =
streamX;

}

PAR

e

Reconfigurable Pipelined Datapaths

wait (goAhead) ;
for (k=0; k < NX-NW; k++)
for (s=0; s < NW-1; s++) {

if (s==0) out = in[0] * WI[O];
else out = out + in[s] * W[sl;

if (s==NW-1) streamY = out;

}

43

Executing a Rapid Control Tree

Instruction Generator

Microprogram

PC—>

Register File

g \j—ﬁ DEC

\ 4

Instruction
FIFOs

—

~ON=-350=350 5<% U

Reconfigurable Pipelined Datapaths

Instruction
Merge

Instruction To
FIFO Datapath

-

e

44

Matrix Multiply

'X#T*D* 1

Reconfigurable Pipelined Datapaths 45

Matrix Multiply

A

Reconfigurable Pipelined Datapaths 46

Matrix Multiply

A

Reconfigurable Pipelined Datapaths 47

Matrix Multiply

A

o

Reconfigurable Pipelined Datapaths 48

Matrix Multiply

A

L

Reconfigurable Pipelined Datapaths 49

Matrix Multiply

A

Reconfigurable Pipelined Datapaths 50

Matrix Multiply Program

4+ Three process
© Load B matrix
& Compute C values

% Output C values

Reconfigurable Pipelined Datapaths

for e=0 to M-1
for £=0 to N-1
for s=0 to N-1
...loading B matrix...
PAR {
for i=0 to L-1
for k=0 to M-1
if (k==M-1) signal (go);
for s=0 to N-1
...calculation..

for g=0 to L-1
wait (go);
for h=0 to N-1
..retire results..

Blocked Matrix Multiply

A

X

—>

]

1 X

Reconfigurable Pipelined Datapaths

q[j_

Program for Blocked Matrix Multiply

4+ Load initial B submatrix

+ Concurrently
% Load next B submatrix
© Compute/Accumulate C submatrix
© Output completed C submatrix

4+ Concurrent processes synchronize
© Swap double buffered B memories
@ Output C submatrix when completed

Reconfigurable Pipelined Datapaths

53

Compiling Rapid-C

+ Balance between programmer and compiler
> Programmer
» Specifies basic computation
» Specifies parallelism using RaPiD model of computation
» Partitions/schedules sub-computations
» Optimizes data movement

& Compiler
» Translates inner loops into a datapath circuit
» Pipelines/retimes computation to meet performance goal
» Extracts dynamic control information
> conditionals that use run-time information
» Constructs instruction format and decoding logic
» Builds datapath control program

Reconfigurable Pipelined Datapaths 54

Compiling Rapid-C

}

for (i=0; i < NW; i++)
for (s=0; s < NW; s++) {

if (s==0) in[0] = streamW;
if (i==NWw-1) W[s] = in[s];

/_\

PAR 5

_\

for (j=0;x < NX; j++)
if (j==NW))i

for (s=0;\€ < NW; s++) {
if (s==0} in[0] = streamX;

) \

); \// Wait for enough inputs
for (k=0; k < NX\NW; k++)
for/(s=0; s < NW-1; s++) {
if (s==0) out in[0] * WI[O0];
else out = out \+ in[s] * W[sl;
if (s==NW-1) stReamY = out;

}

\

Instruction To
Instruction FIFO D

Merge

_)|—|—|——|—| Stapath .

Reconfigurable Pipelined Datapaths

A\ 4

55

Synthesizing a Rapid Array

+ Generate Rapid datapath that “covers” all spec netlists
& Union of all function units
& Sufficient routing
» Busses with different bit widths
& Configurable soft control signals
& Wide enough instruction
& Enough instruction generators
» Max parallel processes

4+ Provide some “elbow-room”

Reconfigurable Pipelined Datapaths

56

Current Status

4+ Rapid meta-architecture well-understood

4+ Rapid-C programming language
& Programs for many applications

4+ Rapid-C compiler
& Verilog structural netlist
& Program for datapath controller

4+ Rapid Simulator
© Executes Verilog netlist and control program
& Visualization of datapath execution

4+ Place & Route

& Uses an instance of a Rapid datapath
& Places and routes datapath and control
& Pipelines/Retimes to target clock cycle

Reconfigurable Pipelined Datapaths

57

Future Work

4+ Synthesis of Rapid array netlist
© What is the best way to cover a set of netlists?
© How to provide additional elbow-room?

+ Synthesis of Rapid layout
& How much can industry tools do?
& Datapath generator
» Use standard blocks for functional units
> Library cells
> Synthesized cells
» Generate segmented bus structure from template
» Generate control structure from template
& Use standard block for datapath controller
» Parameterized

Reconfigurable Pipelined Datapaths

58

Future Work (cont)

+ Improvements

& Language features

» Custom functions
> Allow arbitrary operations, synthesize the hardware

» Escapes
» Pragmas
» Spatially sequential processes

& Compiler features
» Automatic time-multiplexing
» Optimized control

+ Multiple configuration contexts
o e.g. switch between data compression/decompression
& Use program scope to determine context

4+ System interface issues

Reconfigurable Pipelined Datapaths

59

Using Multiple Contexts

+ Sometimes computation phases are quite different
& Produces lots of dynamic control
o e.g. switch between motion estimation and 2-D DCT

4+ Solution: provide fast “context switch”
& Multiple configurations (hard and soft control)
& Datapath control selects the context
& Rapid context switch
& Context switch may be pipelined

4+ Programming multiple contexts
@ Scope in program determines context
& Compiler compiles different scopes independently
& Instruction now contains context pointer

Reconfigurable Pipelined Datapaths 60

The Rapid Research Team

4+ Students

& Darren Cronquist - architecture and compiler
& Paul Franklin - architecture and simulator

&> Stefan Berg - simulation, memory interface
& Miguel Figueroa - applications

+ Staff

& Larry McMurchie - place/route
& Chris Fisher - circuit design and layout

+ Funding: DARPA and NSF

Reconfigurable Pipelined Datapaths

61

Overview of Using Rapid

Generating a Rapid Array

Rapid-C
Programs

L

Rapid CompiIeD

v

Rapid Rapid Array

Architecture Netlist
Model l
Hardware
Synthesis
[]

Rapid Array
\ |

Programming a Rapid Array

New Rapid-C
Program

!

Gapid CompiIeD

Rapid Program
Netlist

Map
Place/Route

v

Configuration Control Program

]

Rapid Array
\ |

Reconfigurable Pipelined Datapaths

62

