
Rapid: A Configurable Architecture
for Compute-Intensive Applications

Carl Ebeling

Dept. of Computer Science and Engineering

University of Washington

2Reconfigurable Pipelined Datapaths

Alternatives for High-Performance Systems

✦ ASIC
➭ Use application-specific architecture that matches the computation
➭ Large speedup from fine-grained parallel processing
➭ Smaller chip because hardware is tuned to one problem
➭ Lower power since no extra work is done
➭ Little or no flexibility: problem changes slightly, design a new chip

➧ No economy of scale
➧ Long design cycle

✦ Digital Signal Processors
➭ Optimized to signal processing operations

➧ Simple, streamlined processor architecture
➧ Cheaper, lower power than GP processors

➭ Very flexible: just change the program
➭ Lower performance: small scale parallelism

3Reconfigurable Pipelined Datapaths

Motivation for Rapid

✦ Many applications require programmability
➭ Old standards evolve
➭ Multiple standards, protocols, technology

➧ Similar but different computation
➧ Reprogram for different context

➭ New algorithms give competitive advantage

✦ We need a “configurable ASIC”
➭ Application-specific architecture
➭ Reprogrammable

4Reconfigurable Pipelined Datapaths

What is a Configurable ASIC?

✦ Like an ASIC: Architecture tuned to application
➭ High performance/low cost

✦ But configurable:
➭ Datapath structure can be rewired via static configuration
➭ Datapath control can be reprogrammed

✦ Rapid approach
➭ Domain-specific architecture model

➧ Reconfigurable Pipelined Datapaths
➭ Well-suited to many compute-intensive applications

5Reconfigurable Pipelined Datapaths

Example: Programmable Downconverter

Analog LPFA/D
Bandpass Filter

(FIR)

Low Pass Filter
(FIR +

decimation)

Symmetric LPF
(FIR +

decimation)
Matched Filter Resampler

Post
Processing

Timing Recovery

Low Pass Filter
(FIR +

decimation)

Symmetric LPF
(FIR +

decimation)
Matched Filter Resampler

NCO

F

Analog input

Configurable ASIC
Custom Analog

Embedded
Controller

Custom
Macroblock

6Reconfigurable Pipelined Datapaths

Example: Programmable Downconverter

Analog LPFA/D128-tap FIR

16-tap FIR +
2X downsampling

32-tap Symmetric
FIR

Matched Filter Resampler

Post
Processing

Timing Recovery

16-tap FIR +
2X downsampling

32-tap Symmetric
FIR

Matched Filter Resampler

NCO

F

Analog input

Configurable ASIC
Custom Analog

Embedded
Controller

Custom
Macroblock

7Reconfigurable Pipelined Datapaths

Example: Programmable Downconverter

Analog LPFA/D2 stage IIR

32-tap FIR +
4x downsampling

16-tap FIR +
2x downsampling

16-tap FIR
Adaptive 8-

tap FIR

Post
Processing

Timing Recovery

32-tap FIR +
4x downsampling

16-tap FIR +
2x downsampling

16-tap FIR
Adaptive 8-

tap FIR

NCO

F

Analog input

Configurable ASIC
Custom Analog

Embedded
Controller

Custom
Macroblock

8Reconfigurable Pipelined Datapaths

Generating a Rapid Array

Netlist

Rapid Architecture
Model

Rapid-C
Program

Rapid Compiler

Netlist

Rapid-C
Program

Rapid Compiler

Netlist

Rapid-C
Program

Rapid Compiler

Netlist

Rapid-C
Program

Rapid Compiler

Rapid Array
Synthesis

Rapid Array
Netlist

Hardware
Synthesis

Rapid Array

9Reconfigurable Pipelined Datapaths

Programmable Downconverter ASIC

Rapid Array

Analog

Embedded
DSP

NCO

C
o
n
f
i
g
u
r
a
t
i
o
nDatapath

Control
Program

 Program

Memory for
programmable

control

10Reconfigurable Pipelined Datapaths

Reconfiguring the Rapid Array

 Rapid Array

Map
Place/Route

Configuration

 Rapid Array

Configurable ASIC
Description

Rapid-C
Program

Rapid Compiler

Netlist

Control Program

11Reconfigurable Pipelined Datapaths

Overview of Using Rapid

Generating a Rapid Array

Hardware
Synthesis

Rapid Array

Rapid-C
Programs

Rapid Compiler

Rapid
Architecture

Model

Rapid Array
Netlist

Rapid-C
ProgramsRapid-C

Programs

Map
Place/Route

Configuration

New Rapid-C
Program

Rapid Compiler

Rapid Program
Netlist

Control Program

 Rapid Array

Programming a Rapid Array

12Reconfigurable Pipelined Datapaths

How Configurable is Rapid?

✦ Experimental Rapid Array:
➭ 16-bit data, configurable long addition
➭ 16 Multipliers, 48 ALUs, 48 Memories, Registers
➭ Extensive routing resources
➭ Configurable control logic
➭ 100 Mhz
➭ ~100 mm2 in .6u technology

➧ Layout done for major components

13Reconfigurable Pipelined Datapaths

How Configurable is Rapid?

✦ Applications mapped to Experimental Array
➭ FIR filters

➧ 16 tap, 100MHz sample rate
➧ 1024 tap, 1.5 MHz sample rate
➧ 16-bit multiply, 32-bit accumulate
➧ Decimating filters

➭ IIR filters
➭ Matrix multiply

➧ Unlimited size matrices
➭ 2-D DCT
➭ Motion Estimation
➭ 2-D Convolution
➭ FFT
➭ 3-D spline generation

✦ Performance:
➭ > 3 BOPS (data multiplies and adds)

14Reconfigurable Pipelined Datapaths

Questions to be Answered

✦ How do you add configurability to an application-specific
architecture?
➭ Use a domain-specific meta-architecture: Rapid

➧ Fine-grained parallelism
➧ Deep computational pipelines
➧ High performance

✦ How do you program a Rapid array?
➭ Use a programming model tuned to the meta-architecture
➭ Concise descriptions of pipelined computations

✦ How do you compile a Rapid array?
➭ Generating a Rapid array from multiple source programs
➭ Reconfiguring Rapid from a source program

15Reconfigurable Pipelined Datapaths

RaPiD: Reconfigurable Pipelined Datapath

➭ Linear array of function units
➧ Function type determined by application

➭ Function units are connected together as needed using segmented buses
➭ Data enters the pipeline via input streams and exits via output streams

Memory

A
L
U

Multiply

A
L
U

Memory

Output
Streams

Input
Streams

A
L
U

Multiply

A
L
U

Custom
Function

16Reconfigurable Pipelined Datapaths

Section of a Sample Rapid Datapath

Programmable
registers

Word-based
data busses

Input
multiplexers Tri-state

output drivers

Bus connector: Open,
connected, or up to
three register delays

A
L
U

Multiply

A
L
U

Memory

17Reconfigurable Pipelined Datapaths

An Example Application: FIR Filter

✦ FIR Filter
➭ Given a fixed set of coefficient weights and an input vector
➭ Compute the dot product of the coefficient vector and a window of the

input vector
➭ Easily mapped to a linear pipeline

……x9……x8……x7……x6……x5……x4……x3……x2……x1……x0
* ** *

w0 w1 w2 w3

y6 = ΣΣΣΣ

18Reconfigurable Pipelined Datapaths

FIR Filter

7

0 X +

6

6

5

1 X +

4

5

3

2 X +

2

4

0123456789...XXXX
YYYY

WWWW

XXX
= ∑∑∑∑

Each number refers
to the index of the
stream: e.g. w0, w1, w2

7 210

19Reconfigurable Pipelined Datapaths

FIR Filter

8

0 X +

7

7

6

1 X +

5

6

3

2 X +

5

0123456789...XXXX
YYYY

WWWW

XXX
= ∑∑∑∑

Each number refers
to the index of the
stream: e.g. w0, w1, w2

7 210

4

20Reconfigurable Pipelined Datapaths

FIR Filter

9

0 X +

8

8

7

1 X +

6

7

4

2 X +

6

0123456789...XXXX
YYYY

WWWW

XXX
= ∑∑∑∑

Each number refers
to the index of the
stream: e.g. w0, w1, w2

7 210

5

21Reconfigurable Pipelined Datapaths

FIR Filter

10

0 X +

9

9

8

1 X +

7

8

5

2 X +

7

0123456789...XXXX
YYYY

WWWW

XXX
= ∑∑∑∑

Each number refers
to the index of the
stream: e.g. w0, w1, w2

7 210

6

22Reconfigurable Pipelined Datapaths

Configuring the FIR Filter
✦ Systolic pipeline implements overlapped vector products

✦ The array is configured to implement this computational pipeline
➭ Stages of the FIR pipeline are configured onto the datapath

M
U
L
T

A
L
U

A
L
U

A
L
U

A
L
U

M
U
L
T

M
U
L
T

M
U
L
T

Input
Stream

Output
Stream

Multiply

A
L
U

Multiply

A
L
U

Multiply

A
L
U

Multiply

A
L
U

23Reconfigurable Pipelined Datapaths

Configuring Different Filters
✦ Time-multiplexing: trade number of taps vs. sampling rate

➭ M taps assigned per multiplier
➭ Requires memory in datapath

✦ Symmetric filter coefficients
➭ Doubles the number of taps that can be implemented
➭ Requires increased control

✦ Followed by downsampling by M
➭ Number of taps increased by factor of M

Output
Streams

Input
Streams

Memory

A
L
U

Multiply

A
L
U

Multiply

A
L
U

Multiply

A
L
U

MultiplyMemory Memory Memory

24Reconfigurable Pipelined Datapaths

Dynamic Control

✦ A completely static pipeline is very restricted
➭ Virtually all applications need to change computation dynamically
➭ Dynamic changes are relatively small

➧ Initialize registers, e.g. filter coefficients
➧ Memory read/write
➧ Stream read/write
➧ Data dependent operations, e.g. MIN/MAX
➧ Time-multiplexing stage computation

✦ Solution: Make some of the configuration signals dynamic

✦ Problem: Where do these signals come from?

25Reconfigurable Pipelined Datapaths

✦ Per-stage programmed control

➭ Similar to programmable systolic array/iWARP
➭ Very expensive, requires synchronization

Controller Controller Controller Controller Controller Controller

✦ VLIW/Microprogrammed control

➭ Very expensive, high instruction bandwidth

Controller

Alternatives for Dynamic Control

26Reconfigurable Pipelined Datapaths

The RaPiD Approach

✦ Factor out the computation that does not change
➭ Statically configure the underlying datapath
➭ Datapath is temporarily hardwired

✦ Remaining control is dynamic
➭ Configure an instruction set for the application
➭ A programmed controller generates instructions
➭ Instruction is pipelined alongside the datapath
➭ Each pipeline stage “decodes” the instruction
➭ Instruction size is small: typically <16 bits

Controller Decode Decode Decode Decode Decode Decode

27Reconfigurable Pipelined Datapaths

0

FIR Filter Control

0

X +

1 2

X + X +

0123456789...

001000...

210

DATA

CONTROL

1 0

Control stream contain
dynamic control bits

28Reconfigurable Pipelined Datapaths

0

FIR Filter Control

0 X +

0 1

X + X +

0123456789...

001000...

210

DATA

CONTROL

10

20

29Reconfigurable Pipelined Datapaths

0

FIR Filter Control

0 X +

0 1

X + X +

0123456789...

001000...

210

DATA

CONTROL

10

2

1

01

0

30Reconfigurable Pipelined Datapaths

0

FIR Filter Control

0 X +

0 0

X + X +

0123456789...

001000...

210

DATA

CONTROL

0

1

1

12

0

2

2

1 0

31Reconfigurable Pipelined Datapaths

Summary of Control

✦ Hard control:
➭ Configures underlying pipelined datapath
➭ Changed only when application changes
➭ Like FPGA configuration

✦ Soft control:
➭ Signals that can change every clock cycle

➧ ALU function, multiplexer inputs, etc.
➭ Configurably connected to instruction decoder

✦ Only part of soft control may used by an application

� Static control
Soft control that is constant

� Dynamic control
Soft control generated by instruction

32Reconfigurable Pipelined Datapaths

Soft Control Signals

✦ Static control:
➭ Connect control signal to 0/1

✦ Dynamic control:
➭ Connect control signal to instruction

0

MUXData
busses

Soft
Control
Signals

Instruction

33Reconfigurable Pipelined Datapaths

Rapid Programming Model

✦ Pipelined computations are complicated
➭ Use a Broadcast model

➭ Assumes data can propagate entire length of datapath in one cycle

➭ A “datapath instruction”:

➧ specifies computation executed by entire datapath in one cycle

➧ execution proceeds sequentially in one direction

M
U
L
T

A
L
U

A
L
U

A
L
U

A
L
U

M
U
L
T

M
U
L
T

M
U
L
T

34Reconfigurable Pipelined Datapaths

for (s=0; s < 3; s++) {
 if (s==0) in[0] = streamX;
 if (s==0) out = in[0] * W[0];
 else out = out + in[s] * W[s];
 if (s==3) streamY = out;
 }

Rapid-C Datapath Instruction

✦ Described using a loop

M
U
L
T

A
L
U

A
L
U

A
L
U

M
U
L
T

M
U
L
T

M
U
L
T

In[0] In[1] In[2] In[3]

out out out out

streamX

streamY

S: 0 S: 1 S: 2 S: 3

W[0] W[1] W[2] W[3]

35Reconfigurable Pipelined Datapaths

Pipelining RaPiD

✦ The Rapid datapath is pipelined/retimed by the compiler
➭ One “datapath instruction” is really executed over multiple cycles

➭ Programmer always thinks in broadcast time

M
U
L
T

A
L
U

A
L
U

A
L
U

M
U
L
T

M
U
L
T

M
U
L
T

In[0] In[1] In[2] In[3]

streamX

streamY

Pipeline
registers

36Reconfigurable Pipelined Datapaths

Instructions are Broadcast

0

X +

1 2

X + X +

1

✦ Datapath instructions are executed in one cycle
➭ Control is broadcast
➭ Compiler pipelines control along with data

37Reconfigurable Pipelined Datapaths

X + X + X +

0

0 21

Instructions are Broadcast

✦ Datapath instructions are executed in one cycle
➭ Control is broadcast
➭ Compiler pipelines control along with data

38Reconfigurable Pipelined Datapaths

Data Communication in Rapid

✦ Predominately nearest-neighbor communication
➭ To the next stage (broadcast within an instruction)

➭ To the next instruction (within a stage)

➭ Across N instructions (through local memory)

Datapath stages
Time

39Reconfigurable Pipelined Datapaths

Rapid-C Process

✦ Each nested loop is a loop process
➭ The inner loop is a datapath instruction

for (k=0; k < NX-NW; k++)
 for (s=0; s < NW-1; s++) {
 if (s==0) in[0] = streamX;
 if (s==0) out = in[0] * W[0];
 else out = out + in[s] * W[s];
 if (s==NW-1) streamY = out;
 }

Process

Datapath
instruction

40Reconfigurable Pipelined Datapaths

Rapid-C Programs

✦ Programs are comprised of several loop processes

✦ Processes can run sequentially
➭ One process starts when the previous process completes

✦ Processes can run concurrently
➭ Computations overlap
➭ Processes run in lock-step

➧ One inner loop execution per cycle
➭ Concurrent processes are synchronized via signal/wait

➧ One process waits for the other to send a signal

41Reconfigurable Pipelined Datapaths

FIR Filter: Three Sequential Loop Processes

for (i=0; i < NW; i++)
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamW;
 if (i==NW-1) W[s] = in[s];
 }

for (j=0; j < NW-1; j++)
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamX;
 }

for (k=0; k < NX-NW; k++)
 for (s=0; s < NW-1; s++) {
 if (s==0) in[0] = streamX;
 if (s==0) out = in[0] * W[0];
 else out = out + in[s] * W[s];
 if (s==NW-1) streamY = out;
 }

Load Weights

Compute Results

Fill Pipeline

Pipe in[NW];
Reg W[NW];

42Reconfigurable Pipelined Datapaths

FIR Filter Using Concurrent Loop Processes
for (i=0; i < NW; i++)
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamW;
 if (i==NW-1) W[s] = in[s];
 }

for (j=0; j < NX; j++)
 if (j==NW) signal(goAhead);
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamX;
 }

wait(goAhead); // Wait for enough inputs
for (k=0; k < NX-NW; k++)
 for (s=0; s < NW-1; s++) {
 if (s==0) out = in[0] * W[0];
 else out = out + in[s] * W[s];
 if (s==NW-1) streamY = out;
 }

Load Weights

Compute
Results

Read input
values

PAR {

}

43Reconfigurable Pipelined Datapaths

Rapid-C Programs

✦ Processes are composed to make other processes
➭ Sequential composition
➭ Parallel composition

✦ The process structure is represented by a Control Tree
➭ Each node is a SEQ or PAR

SEQ

PAR

for (i=0; i < NW; i++)
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamW;
 if (i==NW-1) W[s] = in[s];
 }

for (j=0; j < NX; j++)
 if (j==NW)

signal(goAhead);
 for (s=0; s < NW; s++) {
 if (s==0) in[0] =
streamX;
 }

wait(goAhead);
for (k=0; k < NX-NW; k++)
 for (s=0; s < NW-1; s++) {
 if (s==0) out = in[0] * W[0];
 else out = out + in[s] * W[s];
 if (s==NW-1) streamY = out;
 }

44Reconfigurable Pipelined Datapaths

Executing a Rapid Control Tree

Instruction Generator
Microprogram

Register File

PC

DEC

IG

IG

IG

IG

S
y
n
c
h
r
o
n
i
z
e
r

Instruction
FIFO

Instruction
FIFOs

Instruction
Merge

To
Datapath

45Reconfigurable Pipelined Datapaths

Matrix Multiply

00
10
20
30

01
11
21
31

02
12
22
32

03
13
23
33

..

00
10
20
30

01
11
21
31

02
12
22
32

00
10
20
..

01
11
21
..

02
12
22
..

X =

A B C

00
10
20
30

X +

00

01
11
21
31

X +

02
12
22
32

X +

46Reconfigurable Pipelined Datapaths

Matrix Multiply

00
10
20
30

01
11
21
31

02
12
22
32

03
13
23
33

..

00
10
20
30

01
11
21
31

02
12
22
32

00
10
20
..

01
11
21
..

02
12
22
..

X =

A B C

00
10
20
30

X + 00

01

01
11
21
31

X + 01

02
12
22
32

X + 02

47Reconfigurable Pipelined Datapaths

Matrix Multiply

00
10
20
30

01
11
21
31

02
12
22
32

03
13
23
33

..

00
10
20
30

01
11
21
31

02
12
22
32

00
10
20
..

01
11
21
..

02
12
22
..

X =

A B C

00
10
20
30

X + 00

02

01
11
21
31

X + 01

02
12
22
32

X + 02

48Reconfigurable Pipelined Datapaths

Matrix Multiply

00
10
20
30

01
11
21
31

02
12
22
32

03
13
23
33

..

00
10
20
30

01
11
21
31

02
12
22
32

00
10
20
..

01
11
21
..

02
12
22
..

X =

A B C

00
10
20
30

X + 00

03

01
11
21
31

X + 01

02
12
22
32

X + 02

49Reconfigurable Pipelined Datapaths

Matrix Multiply

00
10
20
30

01
11
21
31

02
12
22
32

03
13
23
33

..

00
10
20
30

01
11
21
31

02
12
22
32

00
10
20
..

01
11
21
..

02
12
22
..

X =

A B C

00
10
20
30

X +

00

10

01
11
21
31

X +

02
12
22
32

X +

01 02

50Reconfigurable Pipelined Datapaths

Matrix Multiply

00
10
20
30

01
11
21
31

02
12
22
32

03
13
23
33

..

00
10
20
30

01
11
21
31

02
12
22
32

00
10
20
..

01
11
21
..

02
12
22
..

X =

A B C

00
10
20
30

X +

11

01
11
21
31

X +

02
12
22
32

X +

00 01

10 11 12

51Reconfigurable Pipelined Datapaths

Matrix Multiply Program

✦ Three process
➭ Load B matrix

➭ Compute C values

➭ Output C values

for e=0 to M-1

 for f=0 to N-1

 for s=0 to N-1

 ...loading B matrix...

PAR {

for i=0 to L-1

 for k=0 to M-1

if (k==M-1) signal(go);

 for s=0 to N-1

 ...calculation…

for g=0 to L-1

 wait (go);

 for h=0 to N-1

 ...retire results…

}

52Reconfigurable Pipelined Datapaths

Blocked Matrix Multiply

+ +

X

+

X

...

. . .

...

. . .

...

. . .

X =

A B C

X

53Reconfigurable Pipelined Datapaths

Program for Blocked Matrix Multiply

✦ Load initial B submatrix

✦ Concurrently
➭ Load next B submatrix
➭ Compute/Accumulate C submatrix
➭ Output completed C submatrix

✦ Concurrent processes synchronize
➭ Swap double buffered B memories
➭ Output C submatrix when completed

54Reconfigurable Pipelined Datapaths

Compiling Rapid-C

✦ Balance between programmer and compiler
➭ Programmer

➧ Specifies basic computation
➧ Specifies parallelism using RaPiD model of computation
➧ Partitions/schedules sub-computations
➧ Optimizes data movement

➭ Compiler
➧ Translates inner loops into a datapath circuit
➧ Pipelines/retimes computation to meet performance goal
➧ Extracts dynamic control information

 conditionals that use run-time information
➧ Constructs instruction format and decoding logic
➧ Builds datapath control program

55Reconfigurable Pipelined Datapaths

IG

IG

IG

IG

S
y
n
c
h
r
o
n
I
z
e
r

Instruction
FIFO

Instruction
FIFOs

To
Datapath

Compiling Rapid-C

0

X +

1 2

X + X +

1

for (i=0; i < NW; i++)
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamW;
 if (i==NW-1) W[s] = in[s];
 }

for (j=0; j < NX; j++)
 if (j==NW) signal(goAhead);
 for (s=0; s < NW; s++) {
 if (s==0) in[0] = streamX;
 }

wait(goAhead); // Wait for enough inputs
for (k=0; k < NX-NW; k++)
 for (s=0; s < NW-1; s++) {
 if (s==0) out = in[0] * W[0];
 else out = out + in[s] * W[s];
 if (s==NW-1) streamY = out;
 }

PAR {

}

Instruction
Merge

56Reconfigurable Pipelined Datapaths

Synthesizing a Rapid Array

✦ Generate Rapid datapath that “covers” all spec netlists
➭ Union of all function units
➭ Sufficient routing

➧ Busses with different bit widths
➭ Configurable soft control signals
➭ Wide enough instruction
➭ Enough instruction generators

➧ Max parallel processes

✦ Provide some “elbow-room”

57Reconfigurable Pipelined Datapaths

Current Status

✦ Rapid meta-architecture well-understood

✦ Rapid-C programming language
➭ Programs for many applications

✦ Rapid-C compiler
➭ Verilog structural netlist
➭ Program for datapath controller

✦ Rapid Simulator
➭ Executes Verilog netlist and control program
➭ Visualization of datapath execution

✦ Place & Route
➭ Uses an instance of a Rapid datapath
➭ Places and routes datapath and control
➭ Pipelines/Retimes to target clock cycle

58Reconfigurable Pipelined Datapaths

Future Work

✦ Synthesis of Rapid array netlist
➭ What is the best way to cover a set of netlists?
➭ How to provide additional elbow-room?

✦ Synthesis of Rapid layout
➭ How much can industry tools do?
➭ Datapath generator

➧ Use standard blocks for functional units
 Library cells
 Synthesized cells

➧ Generate segmented bus structure from template
➧ Generate control structure from template

➭ Use standard block for datapath controller
➧ Parameterized

59Reconfigurable Pipelined Datapaths

Future Work (cont)

✦ Improvements
➭ Language features

➧ Custom functions
 Allow arbitrary operations, synthesize the hardware

➧ Escapes
➧ Pragmas
➧ Spatially sequential processes

➭ Compiler features
➧ Automatic time-multiplexing
➧ Optimized control

✦ Multiple configuration contexts
➭ e.g. switch between data compression/decompression
➭ Use program scope to determine context

✦ System interface issues

60Reconfigurable Pipelined Datapaths

Using Multiple Contexts

✦ Sometimes computation phases are quite different
➭ Produces lots of dynamic control
➭ e.g. switch between motion estimation and 2-D DCT

✦ Solution: provide fast “context switch”
➭ Multiple configurations (hard and soft control)
➭ Datapath control selects the context
➭ Rapid context switch
➭ Context switch may be pipelined

✦ Programming multiple contexts
➭ Scope in program determines context
➭ Compiler compiles different scopes independently
➭ Instruction now contains context pointer

61Reconfigurable Pipelined Datapaths

The Rapid Research Team

✦ Students
➭ Darren Cronquist - architecture and compiler
➭ Paul Franklin - architecture and simulator
➭ Stefan Berg - simulation, memory interface
➭ Miguel Figueroa - applications

✦ Staff
➭ Larry McMurchie - place/route
➭ Chris Fisher - circuit design and layout

✦ Funding: DARPA and NSF

62Reconfigurable Pipelined Datapaths

Overview of Using Rapid

Generating a Rapid Array

Hardware
Synthesis

Rapid Array

Rapid-C
Programs

Rapid Compiler

Rapid
Architecture

Model

Rapid Array
Netlist

Rapid-C
ProgramsRapid-C

Programs

Map
Place/Route

Configuration

New Rapid-C
Program

Rapid Compiler

Rapid Program
Netlist

Control Program

 Rapid Array

Programming a Rapid Array

