
Slide 1Michael Flynn EE382 Winter/99

EE382
Processor Design

Winter 1999
Chapter 2 Lectures

Clocking and Pipelining

Slide 2Michael Flynn EE382 Winter/99

Topics

� Clocking
— Clock Parameters
— Latch Types
— Requirements for reliable clocking

� Pipelining
— Optimal pipelining
— Pipeline partitioning
— Asynchronous and self timed logic
— Wave Pipelining and low overhead clocking

Slide 3Michael Flynn EE382 Winter/99

Clock Parameters

� Parameters
— Pmax- maximum delay thru logic
— Pmin- minimum delay thru logic
— ∆t - cycle time
— tw - clock pulse width
— tg - data setup time
— td - register output delay
— C - total clocking overhead

tg –twPmaxtd

∆t

∆∆∆∆t = Pmax + C

Slide 4Michael Flynn EE382 Winter/99

Latch Types

� Cycle time depends
on clock parameters
and underlying latch
— edge- vs level-triggered
— single- vs dual-rank

Slide 5Michael Flynn EE382 Winter/99

Clock Overhead

Trigger/Rank Single Dual

Level tg+td 2(tg+td)

Edge tg+td tg+td +tw

Note: Parameter values vary with technology and implementation.
 E.g., set-up time tg will generally be less for level-trigger than edge-trigger latch in same technology

Slide 6Michael Flynn EE382 Winter/99

Reliable Clocking

� tw > minimum pulse width and tw > hold time
� ∆∆∆∆t > Pmax + clock overhead
� tw < Pmin for transparent latches

— can be avoided by
• edge triggered dual rank registers
• multiphase clock

Slide 7Michael Flynn EE382 Winter/99

Multiphase Clock

R1 R2 R3logic logic

CLK1

CLK2

CLK1

CLK2

� Alternate stages use different clock phases
� clock phases don’t overlap

Slide 8Michael Flynn EE382 Winter/99

Latching Summary

� Edge-Triggered, Single-Rank
+ Relatively simple to generate and distribute single clock
-- Hazard for fast paths if Pmin < clock skew

but easy, inexpensive to pad gates for very short paths
-- Cannot borrow time across latches

� Edge-Triggered, Dual-Rank
+ Safest, hazard-free clock
-- Biggest clock overhead

� Level-Triggered, Single Rank (Pulsed Latch)
+ Minimum clock overhead
+ Few, simple latches => reduces area and power
-- Hazard for fast paths
-- Difficult to distribute, control narrow pulses

� Level-Triggered, Dual-Rank
+ Relatively simple to generate and distribute clock
+ Simple to avoid hazards with non-overlapped phases
+ Can borrow time across latches
-- Larger clock overhead than single-rank

Slide 9Michael Flynn EE382 Winter/99

Skew

� Skew is uncertainty in the clock arrival time
� two types of skew

— depends on ∆t.....skew = k, a fraction of Pmax where Pmax

is the segment delay that determines ∆t
• large segments may have longer delay and skew
• Part of skew varies with Leff, like segment delay

— independent of ∆t....skew = δ
• Can relate to clock routing, jitter from environmental conditions, other

effects unrelated to segment delay

� effect of skew = k(Pmax) + δδδδ
— skew range adds directly to the clock overhead

Slide 10Michael Flynn EE382 Winter/99

Clocking Summary
� Overhead depends on clocking scheme and latch implementation

— Growing importance for microprocessors at frequencies > 300 MHz
— Tradeoffs must be made carefully considering circuit,

microarchitecture, CAD, system
— Common approach

• Distribute single clock to all blocks in balanced H-Tree
• Gate clock at each block for power savings
• Generate multiphase clocks for local circuit timing

— Other approaches
• Distribute single clock, but do not gate

Use clock for both phases with TSPC latch
• Distribute single clock, generate pulses locally for pulse latches (?)

— Resulting parameter C is used in pipeline tradeoffs
� Clock Skew has 2 components

— Variable component, factor k
• We will use this to stretch Pmax

— Constant (worst-case) factor δ
• We will fold this into clock overhead C

� And we have not even touched the issue of asynchronous design

Slide 11Michael Flynn EE382 Winter/99

Optimum Pipelining
� Let the total instruction execution without pipelining and

associated clock overhead be T
� In a pipelined processor let S be the number of

segments in the pipeline
� Then S - 1 is the maximum number of cycles lost due to

a pipeline break
� Let b = probability of a break
� Let C = clock overhead including fixed clock skew

Slide 12Michael Flynn EE382 Winter/99

Optimum Pipelining

P1 P2 P3 P4

T

suppose T = Σi Pmax i; without clock overhead

S = number of pipeline segments

C = clock overhead

T/S >= max (Pmax i) [quantization]

Pmax i = delay of the i th functional unit

Slide 13Michael Flynn EE382 Winter/99

∆t = T/S + kT/S + C = (1+k)T/S + C

Performance = 1/ (1+(S - 1)b) [IPC]

Thruput = G = Performance / ∆t [IPS]

G = (1 / (1+(S - 1)b) x (1 / ((1 + k)(T/S)) + C)

Finding S for

dG/ dS = 0

We get Sopt

Slide 14Michael Flynn EE382 Winter/99

Optimum Pipelining

Sopt = (1 − b)(1 + k)T
bC

Slide 15Michael Flynn EE382 Winter/99

Finding Sopt

� Estimate b and k....use k = 0.05 if unknown
— b from instruction traces

� Find T and C from design details
— feasibility studies

� Find Sopt

� Example

b k T (ns) C (ns) Sopt G (MIPS) f (MHZ) CPI
Clock

Overhead %

0.1 0.05 15 0.5 16.8 270 697 2.58 34.8%
0.1 0.05 15 1 11.9 206 431 2.09 43.1%
0.2 0.05 15 0.5 11.2 173 525 3.04 26.3%
0.2 0.05 15 1 7.9 140 335 2.39 33.5%

Clock Overhead = C/∆T

Slide 16Michael Flynn EE382 Winter/99

Quantization and Other Considerations

� Now, consider the quantization effects
— T cannot be arbitrarily divided into segments
— segments are defined by functional unit delays
— some segments cannot be divided; others can be divided

only at particular boundaries
� some functional ops are atomic
� (usually) can’t have cycle fractionally cross a function

unit boundary
� Sopt ignores cost (area) of extra pipeline stages
� the above create quantization loss
� therefore: Sopt is the largest S to be used

— and the smallest cycle to be considered is
∆t = (1+k)T/Sopt + C

Slide 17Michael Flynn EE382 Winter/99

Quantization

ti = execution time of ith unit or block
T = total instruction execution time w/o pipeline
S = no. pipeline stages
C = clock overhead
tm = ∆t - C = time per stage for logic

T = Σi ti = time for instruction execution w/o pipeline

S∆t = S(tm + C) = (ignore variable skew)

S∆t - T = S(tm + C) - T (pipeline length overhead)
 = [Stm - Σi ti] + SC [quantization overhead + clock overhead]

Vary # pipe stages => opposing effects of quantization/clock
overhead

See Study 2.2 page 78

Slide 18Michael Flynn EE382 Winter/99

Microprocessor Design Practice (Part I)

� Need to consider variation of b with S
— Increasing S results in additional and longer pipe delays

� Start design target at maximum frequency for
ALU+bypass in single cycle
— Critical to keep ALU+bypass in single clock for

performance on general integer code
� Tune frequency to minimize load delay through cache
� Try to fit rest of logic into pipeline at target frequency

— Simplify critical paths, sacrificing IPC modestly if
necessary

— Optimize paths with slack time to save area, power,
effort

Slide 19Michael Flynn EE382 Winter/99

Microprocessor Design Practice (Part II)

� Tradeoff around this design target
— Optimal in-order integer pipe for RISC has 5-10 stages

• Performance tradeoff is relatively flat across this range
• Deeper for out-of-order or complex ISA (like Intel Architecture)

— Use longer pipeline (higher frequency) if
• FP/multimedia vector performance are important and
• clock overhead is low

— Else use shorter pipeline
• especially if area/power/effort are critical to market success

Slide 20Michael Flynn EE382 Winter/99

Advanced techniques

� Asynchronous or self timed clocking
— avoids clock distribution problems but has its own

overhead.
� Multi phase domino clocking

— skew tolerant and low clock overhead; lots of power
required and extra area.

� Wave pipelining
— avoids clock overhead problems, but is sensitive to skew

and hence clock distribution.

Slide 21Michael Flynn EE382 Winter/99

Self-Timed Circuits

AA
AA

BB
BB

CC
CC

.

DoneDone

DDInputsInputs DoneDone

Completion DetectionCompletion Detection

ResetReset

FalseFalse

TrueTrue

InvalidInvalid

0000

0101

1010

1111

VddVdd

bb

EvalEval//
HoldHold

aa
aa

bb

Logic ValueLogic Value

Dual-Rail Logic GateDual-Rail Logic Gate

yy
yy

ANDAND

1 J. 1 J. RabaeyRabaey, Digital Integrated Circuits a Design Perspective, Prentice Hall 1996 , Digital Integrated Circuits a Design Perspective, Prentice Hall 1996 chch. 9.. 9.

2 T. Williams and M. 2 T. Williams and M. HorowitzHorowitz, “A zero-overhead self-timed 160nS 54-b CMOS divider,”, “A zero-overhead self-timed 160nS 54-b CMOS divider,”
IEEE Journal of Solid-State Circuits, IEEE Journal of Solid-State Circuits, volvol. 26, . 26, pppp.1651-1661, Nov. 1991..1651-1661, Nov. 1991.

Slide 22Michael Flynn EE382 Winter/99

Self-Timed Pipeline

DataData inin

DataData
outout

DD DD DD DD

CC CCCCCC

HoldHold EvalEval ResetReset ResetReset

ReqReq

AckAck AckAck

ReqReq
D

om
in

o
D

om
in

o
L

og
ic

L
og

ic

D
om

in
o

D
om

in
o

L
og

ic
L

og
ic

D
om

in
o

D
om

in
o

L
og

ic
L

og
ic

D
om

in
o

D
om

in
o

L
og

ic
L

og
ic

Slide 23Michael Flynn EE382 Winter/99

Evaluation process

� C output is high for eval/hold; low for reset
� previous stage submits data; then req for eval(uation)
� D(one) signal is asserted when data inputs are available.

This causes evaluation in this stage if its successor
stage has been reset and its “D” signal is low.

� Overhead includes “D” and “C” logic and two segments
of reset (precharge).

Slide 24Michael Flynn EE382 Winter/99

Self-Timed Circuit Summary

� Delay-Insensitive Technique (Both gate and
propagation delay)

� Can use fast Domino Logic
� Dual-rail logic implementation requires

more Area
� Significant Overhead on Cycle time.

Slide 25Michael Flynn EE382 Winter/99

Multi-Phase Domino Clock Techniques

� Uses Domino Logic for Data Storage
and Logical functions

� Reduces Clocking Overhead (Clock
Skew, Latch Setup and Hold, Time
Stealing)

� D. Harris and M. Horowitz, “Skew-Tolerant Domino Circuits,”
IEEE Journal of Solid-State Circuits, vol. 32, pp. 1702-1711,

Nov. 1997.

Slide 26Michael Flynn EE382 Winter/99

Domino Logic AND Gate

VddVdd

bb

ClkClk

aa
aa

bb

ClkClk

yy
yy

Slide 27Michael Flynn EE382 Winter/99

4-Phase Overlapped Clock

Phase 0Phase 0

Phase 1Phase 1

Phase 2Phase 2

Phase 3Phase 3

Eval Eval 00

Pre 0Pre 0

Eval Eval 00

Eval Eval 11

Eval Eval 22

Eval Eval 33 Eval Eval 11

Eval Eval 22

Eval Eval 33

Pre 0Pre 0

Pre 1Pre 1

Pre 2Pre 2

Pre 3Pre 3 Pre 1Pre 1

PmaxPmax

Skew ToleranceSkew Tolerance

Slide 28Michael Flynn EE382 Winter/99

Wave Pipelining

� The ultimate limit on ∆∆∆∆t
� Uses Pmin as storage instead of latches.

Slide 29Michael Flynn EE382 Winter/99

Wave Pipelining

Rs RD

Pmax

Pmin

ith segment

Slide 30Michael Flynn EE382 Winter/99

At time = t1 let data1 proceed into pipeline stage

It can be safely clocked at the destination latch at time t3
t3 = t1 + Pmax + C

t2 - t1

But new data2 can proceed into the pipeline earlier by an amount Pmin

say, at time t2, where t2 = t1 + Pmax + C - Pmin so that

= Pmax - Pmin + C

= ∆t

the minimum cycle time for this segment∆t =

Slide 31Michael Flynn EE382 Winter/99

minimum system ∆t = { max ∆ti }

over all i segments

For wave pipelining to work properly, the clock must be constructively

skewed so that the data wave and the clock arrive at the same time.

Note that data1 still must be clocked into the destination at t3

Slide 32Michael Flynn EE382 Winter/99

Let CSi = constructive clock skew for the i th pipeline stage

Then :

CSi = [Σj=1 (Pmax + C)j] mod ∆t, summed to the i th stage

the alternative is to force each stage to complete with the clock

by adding delay, K, to both Pmax and Pmin, so that

[Σj=1 (Pmax+ K + C)j] mod ∆t = 0 for all i stages

since K is added to both Pmax and Pmin, ∆t is unaffected

Slide 33Michael Flynn EE382 Winter/99

Example

Rs RD

Pmax = 12 ns

Pmin = 8 ns

C= 1 ns

CLK CS1

Slide 34Michael Flynn EE382 Winter/99

Wave and Optimum Pipelining

b in the above also acts as a limit on the usefulness of wave

pipelining, since only those applications with low b or large S

can effectively use the low ∆t available from wave pipelining.
These applications would include vector and signal processors.

Sopt = (1 − b)(1 + k)T

bC

Slide 35Michael Flynn EE382 Winter/99

Limits on Wave Pipelining

The limit on the difference, Pmax - Pmin , has two components

let v = Pmax - Pmin = f (α ,β)

α is the static design variation and β is the environmental variance

typically α = Pmax / Pmin is controllable to 1.1. Ignoring C this

allows 10 “waves” of data in a pipeline. But usually β is a more

constraining limit. Unless on-chip compensation (thru the power
supply) is used the limit on β = Pmax / Pmin is only 2 or even 3

limiting the improvement on ∆t to 3 or 2 times the conventional ∆t

Slide 36Michael Flynn EE382 Winter/99

Summary

� Minimizing clock overhead is critical to high
performance pipeline design

� Exploring limits for optimal pipelines can bound design
space and give insight to tradeoff sensitivity

� Vector pipeline frequency is limited by variability in
delay, not max delay
— Performance (throughput or frequency) improves as

much from increasing minimum delay as from reducing
max delay

— Wave pipelining and similar techniques may prove
practical

� Rest of course will assume conventional clocking with
cycle time set by max delay and clock skew

