
5/11/01

VLIW Architectures

• Very Long Instruction Word Architecture
⇒One instruction specifies multiple operations

⇒All scheduling of execution units is static
→Done by compiler

⇒Static scheduling should mean less control, higher clock
speed. Less control means more room for execution units.

• Currently very popular architecture in embedded
applications
⇒DSP, Multimedia applications

⇒No compiled legacy code to support, all code libraries in
some form of high level language

5/11/01

Keeping Execution Units Busy

• Execution units are 2-input, 1-output blocks (typically)

• Each clock cycle, need to read 2N operands, write N
results for N Execution Units

Register
File

EU

EU

EU

EU

5/11/01

Multi-Ported Register File Design has Limits

• Area of the register file grows approximately with the
square of the number of ports
⇒Typically routing limited, each new port requires adding

new routing in both X and Y direction

Write1

Read1A

Read1B

Dout1BDout1A

Write2

Read2A

Read2B

Dout2BDout2A Dout1BDout1A

Write1

Read1A

Read1B

1 write Port
2 Read Ports

2 write Ports
4 Read Ports

Bit Cell Bit Cell

5/11/01

Multiported Register Files (cont)

• Read Access time of a register file grows
approximately linearly with the number of ports
⇒Internal Bit Cell loading becomes larger

⇒Larger area of register file causes longer wire delays

• What is reasonable today in terms of number of ports?
⇒Changes with technology, 15-20 ports is currently about the

maximum (read ports + write ports)

⇒Will support 5-7 execution units simultaneous operand
accesses from register file

5/11/01

Solving the Register File Bottleneck

• Create partitioned register files connected to small
numbers of Executions units (perhaps as many as one
register file per EU)

Register
File

EU

Register
File

EU

Register
File

EU

Global Bus

5/11/01

Register File Communication
• Architecturally Invisible

⇒Partitioned RFs appear as one large register file to the
compiler

⇒Copying between RFs is done by control

⇒Detection of when copying is needed can be complicated;
goes against VLIW philosophy of minimal control overhead

• Architecturally Visible, have Remote and Local
versions of instructions
⇒Remote instructions have one or operands in non-local RF

⇒Copying of remote operands to local RFs takes clock cycles

⇒Because copying is ‘atomic’ part of remote instruction,
execution unit is idle while copying is done => performance
loss.

5/11/01

Register File Communication (cont).

• Architecturally Visible, have explicit copy operations
⇒Separation of copy and execution allows more flexible

scheduling by compiler

move r1, r60 (r60 in another RF)
independent instr a (cycles for copy to complete)
independent instr b (cycles for copy to complete)
add r2, r1, r3

5/11/01

Instruction Compression

• Embedded Processors often put a premium on code
size
⇒Uncompressed VLIW instructions are wide (of course!)

Opc Dst Src1 Src2 Opc Dst Src1 Src2 Opc Dst Src1 Src2 Opc Dst Src1 Src2

 Operation 1 Operation 2 Operation 3 Operation 4

• How we reduce word length?
⇒NOPs are common, use only a few bits (2-3) to represent a

NOP

5/11/01

When are instructions decompressed?

• On Instruction Cache (ICache) fill
⇒Cache fill is a slow operation to begin with; limited by speed

of external memory bus

⇒Compression algorithm can be more complicated because
have more time to perform the operation

⇒ICache has to hold uncompressed instructions - limits cache
size

• On instruction fetch
⇒ICache holds compressed instructions

⇒Decompression in critical path of fetch stage, may have to
add one or more pipeline stages just for decompression

5/11/01

Importance of the Compiler

• The quality of the compiler will determine how much
of the potential performance of a VLIW architecture is
actually realized.
⇒When MFLOP figures are specified for VLIW architectures,

these are usually for the theoretical performance of the
architecture. Actual performance can be quite lower.

• Because of the dependence of the compiler on the
hardware, new versions of the architectures can force
major rewrites of the compiler - very costly

• Often the user has to place hints in the high-level code
(‘pragmas’) that help the compiler produce more
optimal code.

5/11/01

TMS320C6X CPU
• 8 Independent Execution units

⇒Split into two identical datapaths, each contains the same
four units (L, S, D, M)

• Execution unit types:
⇒L : Integer adder, Logical, Bit Counting, FP adder, FP

conversion

⇒S : Integer adder, Logical, Bit Manipulation, Shifting,
Constant, Branch/Control, FP compare, FP conversion, FP
seed generation (for software division algorithm)

⇒D : Integer adder, Load-Store

⇒M : Integer Multiplier, FP multiplier

• Note that Integer additions can be done on 6 of 8 units!
⇒Integer addition/subtraction is a very common operation!

5/11/01

TMS320C6X CPU (cont).

• Max clock speed of 200 Mhz
⇒Not too impressive compared to Intel - my guess is process

limitations rather than design limitations

• Each datapath has a 16 x 32 Register file
⇒10 Read ports, six Write ports

⇒Can transfer values between the two register files

16 x 32
RF

 L S M D

16 x 32
RF

Global Bus

 L S M D

5/11/01

Instruction Encoding

• Internal Execution path is 256 bits
⇒Each operation is 32 bits wide => 8 operations per clock

⇒A fetch packet is a group of instructions fetched
simultaneously. Fetch packet has 8 instructions.

⇒A execute packet is a group of instructions beginning
execution in parallel. Execute packet has 8 instructions.

• Instructions in ICache have an associated P-bit
(Parallel-bit).
⇒Fetch packet expanded to 1 to 8 Execute packets depending

on P-bits

5/11/01

Fetch Packet to Execute Packet Expansion

A|B|C|D|E|F|G|H

0|0|0|0|0|0|0|0

Fetch Packet

P-bits, A-H executed
serially

n|n|A|n|n|n|n|n

n|B|n|n|n|n|n|n

n|n|n|n|n|C|n|n

n|n|n|n|n|D|n|n

n|n|n|E|n|n|n|n

F|n|n|n|n|n|n|n

n|n|n|n|n|n|G|n

n|n|n|n|n|n|n|H8 instructions

Execute Packet

64 instructions

5/11/01

Fetch Packet to Execute Packet Expansion (cont.)

A|B|C|D|E|F|G|H

1|1|0|1|0|0|1|0

Fetch Packet

P-bits

A||B||C, D||E, F, G||H

n|B|A|n|n|C|n|n

n|n|n|E|n|D|n|n

F|n|n|n|n|n|n|n

n|n|n|n|n|n|G|H

P-bit String of ‘1’s followed by
‘0’ means those execute in
parallel. String starting with ‘0’
indicates sequential execution.

Execute Packet

40 instructions

5/11/01

Fetch Packet to Execute Packet Expansion (cont.)

A|B|C|D|E|F|G|H

1|1|1|1|1|1|1|1

Fetch Packet

P-bits

A||B||C||D||E||F||G||H

P-bit String of ‘1’s followed by
‘0’ means those execute in
parallel. String starting with ‘0’
indicates sequential execution.

Execute Packet

8 instructions

A|B|C|D|E|F|G|H

5/11/01

Pipeline
• Fetch - four phases

⇒PG - program address generate

⇒PS - program address send

⇒PW - program access ready (cache access) - Memory stall is
the only stall case in the pipeline

⇒PR - program fetch packet receive

• Decode - two phases
⇒ DP - instruction dispatch, convert fetch packet to execute

packet expansion, routed to decode of functional units
(functional units do multiple operations)

⇒DC - instruction decode

5/11/01

Pipeline (cont)
• Execute - maximum of 10 phases

⇒ 90% of the instructions only use first 5

⇒ double precision FP add/mults use last 5

• Result Latency: number of execute phases used by an
operation (most only use 1)

• Delay slots: Result Latency minus 1. If zero, then
result is available for next execute packet.
⇒If non-zero, then independent operations must scheduled in

the delay slots

• Functional Unit Latency (repetition rate of Functional
Unit)
⇒Either 1, 2 or 4. (1 for common operations and LD/Stores)

5/11/01

5/11/01

Guidelines for Software Development Efficiency on the TMS320C6000
VelociTI Architecture

Because the C6000 is highly parallel and flexible, the task of
scheduling code in an efficient way is best completed by the TI
code generation tools (compiler and assembly optimizer) and not
by hand. This results in a convenient C framework to maintain
code development on current products as well as reuse the same
code on future products (C code, C with TI C6000 Language
Extensions, and the Linear Assembly source can all be reused on
future TI C6000 DSPs).

The final territory of programming is the hand-scheduled assembly
language. At this level, the programmer is literally scheduling the
assembly code to the DSP pipeline. Depending on the
programmer's ability, she may achieve results similar to those
achieved by the C6000 tools; however, she risks “man-made”
pipeline scheduling errors that can cause functional errors and
performance degradation. In addition, scheduled code may not be
reusable on future C6000 family members, unlike the three levels
of C6000 source code. Consequently, avoid the hand-coded
assembly level “Limited Reuse” programming if at all possible.

5/11/01

5/11/01

5/11/01

 Phillips TM 1000
Multimedia Processor

5/11/01

Trimedia TM-1000 (cont)

• Pipeline Basic Stages => Fetch, Decompression,
Register-Read, Execute, Write-Back

• All instruction types share fetch, decompress, reg.read
⇒Alu, Shift, Fcomp

→Exe, Reg.Write

⇒DSPAlu
→Exe1, Exe2, Write

⇒ FPAlu, FPMul
→Exe1, Exe2, Exe3, Write

⇒Load/Store
→Address Compute, Data Fetch, Align/Sign Ext or Store update, write

⇒Jump
→Jmp Addr compute and condition check, fetch

5/11/01

Trimedia TM-1000

• Multimedia processor with a VLIW CPU core

• Five Execution Units, each EU is multi-function
⇒27 functions total

⇒Five Execution Units => Five operations per clock issued

• 15 Read and 5 Write Ports on register File
⇒Need 15 read ports for 5 Execution Units because each

operation requires two operands and a guard operand.

⇒Guard operand makes each operation conditional based upon
value of LSB of the guard operand

→Guard operand reduces number of branches needed, helps fill up
branch delay slots.

⇒128 Registers (r0, r1 always 0)

5/11/01

Trimedia TM-1000 (cont)

⇒Data fetched one cache line at a time (64 bytes),
concatenated with left over data from previous fetch

⇒Multiple instruction sizes
→ 2 bits for NOP, 26 bits, 34 bits, and 44 bits.

→The current instruction actually has some bit information about the
next instruction in order to simply decompression.

5/11/01

5/11/01

More
Operations

