VLIW Architectures

* Very Long Instruction Word Architecture
—=One 1nstruction specifies multiple operations

—All scheduling of execution units is static
—Done by compiler

—Static scheduling should mean less control, higher clock
speed. Less control means more room for execution units.
e Currently very popular architecture in embedded
applications
—=DSP, Multimedia applications

—=No compiled legacy code to support, all code libraries in
some form of high level language

5/11/01

Keeping Execution Units Busy

« Execution units are 2-1nput, 1-output blocks (typically)

« Each clock cycle, need to read 2N operands, write N
results for N Execution Units

Register

Y | File

L

Hil

5/11/01

Multi-Ported Register File Design has Limits

« Area of the register file grows approximately with the
square of the number of ports

—Typically routing limited, each new port requires adding

new routing in both X and Y direction

Writel Writel
ReadlA Readl A
ReadlB ReadlB

Write2

. Doutl A DoutlB
1 write Port Read2A

2 Read Ports Read2B

2 write Ports
s/11/01 4 Read Ports

Dout2A Dout2B DoutlA DoutlB

Multiported Register Files (cont)

* Read Access time of a register file grows
approximately linearly with the number of ports
—Internal Bit Cell loading becomes larger
—Larger area of register file causes longer wire delays

* What is reasonable today in terms of number of ports?

—Changes with technology, 15-20 ports 1s currently about the
maximum (read ports + write ports)

—=Will support 5-7 execution units simultaneous operand
accesses from register file

5/11/01

Solving the Register File Bottleneck

» Create partitioned register files connected to small
numbers of Executions units (perhaps as many as one

vy

register file per EU)
< 1 Global B 1 1
< ‘l obal Bus ‘l J
Register Register Register
File File File

< < <
5/11/01

Register File Communication
« Architecturally Invisible

—=Partitioned RFs appear as one large register file to the
compiler

—=Copying between RFs 1s done by control
—=Detection of when copying is needed can be complicated;
goes against VLIW philosophy of minimal control overhead
« Architecturally Visible, have Remote and Local
versions of instructions
—Remote instructions have one or operands in non-local RF
—=Copying of remote operands to local RFs takes clock cycles

—Because copying 1s ‘atomic’ part of remote instruction,
execution unit 1s idle while copying 1s done => performance
loss.

5/11/01

Register File Communication (cont).

 Architecturally Visible, have explicit copy operations

—=Separation of copy and execution allows more flexible
scheduling by compiler

move rl, 160 (r60 in another RF)
independent instr a (cycles for copy to complete)

independent instr b (cycles for copy to complete)
add r2,rl, r3

5/11/01

Instruction Compression

 Embedded Processors often put a premium on code
S1Ze

—Uncompressed VLIW 1nstructions are wide (of course!)

Opc Dst Srcl Src2 Opc Dst Srcl Src2 Opc Dst Srcl Src2 Opc Dst Srcl Src2

Operation 1 Operation 2 Operation 3 Operation 4

 How we reduce word length?

—=NOPs are common, use only a few bits (2-3) to represent a
NOP

5/11/01

When are instructions decompressed?

* On Instruction Cache (ICache) fill

—Cache fill 1s a slow operation to begin with; limited by speed
of external memory bus

—Compression algorithm can be more complicated because
have more time to perform the operation

—ICache has to hold uncompressed instructions - limits cache
S1ze
* On mstruction fetch
—ICache holds compressed instructions

—Decompression in critical path of fetch stage, may have to
add one or more pipeline stages just for decompression

5/11/01

Importance of the Compiler

e The quality of the compiler will determine how much
of the potential performance of a VLIW architecture 1s
actually realized.

—When MFLOP figures are specified for VLIW architectures,
these are usually for the theoretical performance of the
architecture. Actual performance can be quite lower.

* Because of the dependence of the compiler on the
hardware, new versions of the architectures can force
major rewrites of the compiler - very costly

« Often the user has to place hints in the high-level code
(‘pragmas’) that help the compiler produce more
optimal code.

5/11/01

TMS320C6X CPU

« 8 Independent Execution units
=Split into two 1dentical datapaths, each contains the same
four units (L, S, D, M)
« Execution unit types:

=L : Integer adder, Logical, Bit Counting, FP adder, FP
conversion

=S : Integer adder, Logical, Bit Manipulation, Shifting,
Constant, Branch/Control, FP compare, FP conversion, FP
seed generation (for software division algorithm)

=D : Integer adder, Load-Store
—M : Integer Multiplier, FP multiplier

* Note that Integer additions can be done on 6 of 8 units!

—Integer addition/subtraction 1s a very common operation!

5/11/01

TMS320C6X CPU (cont).
* Max clock speed of 200 Mhz

—Not too impressive compared to Intel - my guess 1s process
limitations rather than design limitations

» Each datapath has a 16 x 32 Register file
—10 Read ports, six Write ports

—Can transfer values between the two register files

5/11/01

< 'y T >

< i l > Global Bus
16 x 32 16 x 32
RF RF

) v

T

ki

Instruction Encoding

 Internal Execution path 1s 256 bits
—FEach operation 1s 32 bits wide => 8 operations per clock

= A fetch packet 1s a group of instructions fetched
simultaneously. Fetch packet has 8 instructions.

— A execute packet 1s a group of instructions beginning
execution 1n parallel. Execute packet has 8 instructions.

* Instructions in ICache have an associated P-bit
(Parallel-bit).

—=Fetch packet expanded to 1 to 8 Execute packets depending
on P-bits

5/11/01

Fetch Packet to Execute Packet Expansion

Fetch Packet Execute Packet
A|B|C|D|E|F|G|H nin/A\nninin|n
nBlnnnninin
0|0|0|0|0|0|0|O
nnnnn/Cinin
P-bits, A-H executed nin|n|n|n|[D[n|n
Serially nnnElnninin
Flnnnnnnin
nnnnnnGin
8 1nstructions Tnlalalnlalals

64 1nstructions

5/11/01

Fetch Packet to Execute Packet Expansion (cont.)

Fetch Packet Execute Packet
A|B|C|D|E|F|G|H n|B|A|n|n|C|n|n
E D
1|1|0|1|0|0|1|0 nnmn n nn
Finlnnlnnin|n
P-bits n|ln|ln|n|n|n|G|HE

AlB||C, DE, F, G|H 40 1nstructions

P-bit String of ‘1’s followed by
‘0’ means those execute in
parallel. String starting with ‘0’
indicates sequential execution.

5/11/01

Fetch Packet to Execute Packet Expansion (cont.)
Fetch Packet Execute Packet

A|B|C|D|E|F|G|H A|B|C|D|E|F|G|H

1|1|1|1|1|1|1]1

8 1nstructions
P-bits

Al[BJ|C||DJE[[F||G[[H

P-bit String of ‘1’s followed by
‘0’ means those execute in
parallel. String starting with ‘0’
indicates sequential execution.

5/11/01

Pipeline
* Fetch - four phases
—PG - program address generate

—=PS - program address send

—=PW - program access ready (cache access) - Memory stall is
the only stall case in the pipeline

—=PR - program fetch packet receive

* Decode - two phases

= DP - instruction dispatch, convert fetch packet to execute
packet expansion, routed to decode of functional units
(functional units do multiple operations)

= DC - instruction decode

5/11/01

Pipeline (cont)

* Execute - maximum of 10 phases
= 90% of the instructions only use first 5
= double precision FP add/mults use last 5

* Result Latency: number of execute phases used by an
operation (most only use 1)

* Delay slots: Result Latency minus 1. If zero, then
result 1s available for next execute packet.

—If non-zero, then independent operations must scheduled in
the delay slots

* Functional Unit Latency (repetition rate of Functional
Unit)
—=FEither 1, 2 or 4. (1 for common operations and LD/Stores)

5/11/01

Figure 1. TMS320C6000 Code Reuse Efficiency Diagram

ANSI C Code

Less Development Effort AONSI C with TI “C” Reuse
‘ ptimizations
Reduced Project (e.g. intrinsics)

Cycle Time

TI C6000 Linear Linear Assembly
Assembly Code Reuse

Scheduled o
More Development Effort Assembly Code Limited

Longer Project Reuse
Cycle Time

Object “Binaries”

Guidelines for Software Development Efficiency on the TMS320C6000
VelociTI Architecture

Because the C6000 is highly parallel and flexible, the task of
scheduling code in an efficient way is best completed by the TI
code generation tools (compiler and assembly optimizer) and not
by hand. This results in a convenient C framework to maintain
code development on current products as well as reuse the same
code on future products (C code, C with TT C6000 Language
Extensions, and the Linear Assembly source can all be reused on
future TI C6000 DSPs).

The final territory of programming is the hand-scheduled assembly
language. At this level, the programmer is literally scheduling the
assembly code to the DSP pipeline. Depending on the
programmer's ability, she may achieve results similar to those
achieved by the C6000 tools; however, she risks “man-made”
pipeline scheduling errors that can cause functional errors and
performance degradation. In addition, scheduled code may not be
reusable on future C6000 family members, unlike the three levels
of C6000 source code. Consequently, avoid the hand-coded
assembly level “Limited Reuse” programming if at all possible.

5/11/01

Table 8-3. TMS320C6x C Compiler Intrinsics (Continued)

C Compiler Intrinsic

Assembly
Instruction

Description

Devicet

uint _Imbd(uint src, uint src2):

LMBD

Searches for a leftmost 1 or 0 of src2
determined by the LSB of src1. Returns
the number of bits up to the bit change.

int _mpy(int srct, int src2);

int _mpyus(uint src1, int src2);
int _mpysu(int src1, uint src2);
uint _mpyu(uint src1, uint src2);

MPY
MPYUS
MPYSU
MPYU

Multiplies the 16 LSBs of src1 by the 16
LSBs of src2 and returns the result.
Values can be signed or unsigned.

int _mpyh(int src1, int src2);

int _mpyhus(uint srct, int src2);
int _mpyhsu(int src1, uint src2);
uint _mpyhu(uint sre1, uint src2);

MPYH
MPYHUS
MPYHSU
MPYHU

Multiplies the 16 MSBs of src1 by the 16
MSBs of src2 and returns the result.
Values can be signed or unsigned.

int _mpyhl(int src1, int src2);

int _mpyhuls(uint src1, int src2);
int _mpyhslu(int src1, uint src2);
uint _mpyhlu(uint src1, uint src2);

MPYHL
MPYHULS
MPYHSLU
MPYHLU

Multiplies the 16 MSBs of src1 by the 16
LSBs of src2 and returns the result.
Values can be signed or unsigned.

int _mpylh(int srct, int src2);

int _mpyluhs(uint src1, int src2);
int _mpylshu(int srct, uint src2);
uint _mpylhu(uint src1, uint src2);

MPYLH
MPYLUHS
MPYLSHU
MPYLHU

Multiplies the 16 LSBs of src1 by the 16
MSBs of src2 and returns the result.
Values can be signed or unsigned.

5/11/01

Table 8-3. TMS320C6x C Compiler Intrinsics (Continued)

Assembly Devicet

C Compiler Intrinsic Instruction Description

int _sadd(int src1, int src2); SADD Adds src1 to src2 and saturates the

long _Isadd(int src1, long src2): result. Returns the result.

int _sat(long src2); SAT Converts a 40-bit long to a 32-bit signed
int and saturates if necessary.

uint _set(uint src2, uint csta, uint cstb); SET Sets the specified field in src2 to all 1s
and returns the src2 value. The begin-
ning and ending bits of the field to be set
are specified by csta and cstb, respec-
tively.

unit _setr(unit src2, int src1); SET Sets the specified field in src2 to all 1s
and returns the src2 value. The begin-
ning and ending bits of the field to be set
are specified by the lower ten bits of src1.

int _smpy(int src1, int sr2); SMPY Multiplies src1 by src2, left shifts the

int _smpyh(int src1, int sr2); SMPYH result by one, and returns the result. If

int _smpyhl(int src1, int sr2); SMPYHL the result is 0x80000000, saturates the

int _smpylh(int src1, int sr2); SMPYLH result to Ox7FFF FFFF.

uint _sshl(uint src2, uint src1); SSHL Shifts src2 left by the contents of src1,

saturates the result to 32 bits, and re-
turns the result.

5/11/01

Phillips TM 1000

Multimedia Processor

CCIRB01/656
YUV 4:2:2
38 MHz (19 Mpix/sec)

Stege-l:r digital audio
IS DC-100 kHz

2/4/6/8 Eh. digital audio
IS DC~-100 kHz

I°C bus to
camera, etc.

Huffman decoder
- Slice-at-a-time
MPEG-1 &2

CCIR601/656

™ VUV 4:2:2
80 MHz (40 Mpix.sec)

V.34 or ISDN
n e Front End

Down & up scaling

-1~ YUV — RGB
50 Mpix/sec

SDRAM
Main Memory
Interface
a
. VLD
=¥ Videoln Coprocessor
— Audio In Video Out
== Audio Out Timers
Synchronous
-4—1 |2C Interface Serial
Interface
3|2$K Image |
VLIW
CPU [16K Coprocessor
D$ l
TM1000 PCI Interface

?’ PCI (32 bits, 33 MHz)

Trimedia TM-1000 (cont)

* Pipeline Basic Stages => Fetch, Decompression,
Register-Read, Execute, Write-Back

« All mnstruction types share fetch, decompress, reg.read
—Alu, Shift, Fcomp
—Exe, Reg. Write
—DSPAIlu
—Exel, Exe2, Write
= FPAIu, FPMul
—Exel, Exe2, Exe3, Write
—Load/Store
—Address Compute, Data Fetch, Align/Sign Ext or Store update, write

=Jump

—Jmp Addr compute and condition check, fetch
5/11/01

Trimedia TM-1000
e Multimedia processor with a VLIW CPU core

* Five Execution Units, each EU 1s multi-function
—27 functions total
—=F1ve Execution Units => Five operations per clock 1ssued

* 15 Read and 5 Write Ports on register File
—Need 15 read ports for 5 Execution Units because each
operation requires two operands and a guard operand.

—QGuard operand makes each operation conditional based upon
value of LSB of the guard operand

—Guard operand reduces number of branches needed, helps fill up
branch delay slots.

=128 Registers (10, r1 always 0)

5/11/01

Trimedia TM-1000 (cont)

—Data fetched one cache line at a time (64 bytes),
concatenated with left over data from previous fetch

—Multiple instruction sizes
— 2 bits for NOP, 26 bits, 34 bits, and 44 bits.

—The current instruction actually has some bit information about the
next instruction in order to simply decompression.

5/11/01

5/11/01

Table 4-1. Custom Operations Listed by Function

Type
Function Custom Op Description
DSP dspiabs Clipped signed 32-bit absolute
absolute value
value dspidualabs Dual clipped absolute values
of signed 16-bit halfwords
DSP add | dspiadd Clipped signed 32-bit add
dspuadd Clipped unsigned 32-bit add
dspidualadd Dual clipped add of signed 16-
bit halfwords
dspuquadaddui | Quad clipped add of unsigned/
signed bytes
DSP dspimul Clipped signed 32-bit multiply
multiply dspumul Clipped unsigned 32-bit multi-
ply
dspidualmul Dual clipped multiply of signed
16-bit halfwords
DSP dspisub Clipped signed 32-bit subtract
subtract ['ysosub Clipped unsigned 32-bit sub-
tract
dspidualsub Dual clipped subtract of signed

16-bit halfwords

More
Operations

5/11/01

Sum of ifir16 Signed sum of products of
products signed 16-bit halfwords
ifir8ii Signed sum of products of
signed bytes
ifir8iu Signed sum of products of
signed/unsigned bytes
ufirté Unsigned sum of products of
unsigned 16-bit halfwords
ufir8uu Unsigned sum of products of
unsigned bytes
Merge, mergelsb Merge least-significant bytes
pack mergemsb Merge most-significant bytes
packi16lsb Pack least-significant 16-bit
halfwords
pack16msb Pack most-significant 16-bit
halfwords
packbytes Pack least-significant bytes
Byte quadavg Unsigned byte-wise quad aver-
averages age
Byte guadumulmsb | Unsigned quad 8-bit multiply
multiplies most significant
Motion umeaii Unsigned sum of absolute val-
estimation ues of signed 8-bit differences
umesuu Unsigned sum of absolute val-

ues of unsigned 8-bit differ-
ences

