
Final Project ReportFinal Project ReportFinal Project ReportFinal Project Report

Synchronous Implementation of 8-bit Square
Root Computer

ECE 510
Synthesis and Verification of Finite State Machines

by

Liong-Huat Lim (Leon)

with supervision from

Professor Alan Mishchenko

Problem Discussion
Synchronous Square Root Computing Machine

Background

Computing square root of a real number is a fundamental mathematical operation. Before the
invention of calculator and computer, people would use method such as bisection and
Newtonian algorithm to manually calculate square root. Today, a few buttons pushed, we get
the result in no time. In this paper we will discuss the implementation of a synchronous
square root machine using a simple algorithm. In addition, we will compare the result of
different implementations.

Square Root Algorithm

1) Split the given number into groups, each containing two digits,
starting from the least significant bit. (In our example, these
groups will be "89", "34", and "3".)

2) Find the largest number, which when multiplied by itself does not
exceed the number, created by the first two-digit group. Write down
this number as the first digit of the result. (In our case, the
first two-digit number is "3" and the number, which when multiplied
by itself does not exceed "3", is "1".)

3) Subtract the square of this number from the number given by the
first two digits and concatenate this number with the next two
digits from the initial number. (In our case, we have to subtract "1
x 1 = 1" from "3" and then concatenate it with "34". As a result, we
get 234.)

4) Multiply by two (for binary numbers, it will be just a shift!)
the number, which constitutes the result computed so far, and
concatenate it with the largest digit, which satisfies the following
condition: the product of this digit and the number resulting from
concatenation does not exceed the number received at the previous
step. (In our case, the result computed so far is "1"; multiplied by
two it will be "2", and the digit to be selected is "8" because "28
x 8 = 224 < 234", while "29 x 9 = 261 > 234".)

5) Write down the digit, which we have just found (in our case, "8")
as the next digit of the result.

2

6) Subtract 224 from 234 and concatenate it with the next group of
numbers. In our case it is "1089".

7) If the resulting number (in our case it is "1089") is equal to 0
(the square root is extracted exactly), stop. Else go to step 4.

If the square root cannot be extracted exactly, algorithm should be
stopped at step 7 when we have found enough digits belonging to the
floating-point part of the result.

To implement this machine we will need shift registers, a subtractor, a comparator, and a few
registers to hold intermediate values. Of course, we will also need a FSM to controller the
flow of the data.

Implementation

There are several major modules in the design: ResultReg, Subtractor, Comparator, IntReg,
InputReg, FSM and a 3-bit counter. Please refer to Appendix for the block diagram. The FSM
is clock at the rising edge of the clock whereas the registers are clock on the falling edge. This
is done to provide maximum setup and hold time for the changing signals.

ResultReg

The ResultReg is a 8-bit shift register. However, only 6 of the bits are used to store result since
only 4 is needed for the whole number result, the other 2 bits are used to store the binary point
part of the result. There are three control signal going into this module: SelOne, LdResultReg
and Concat1. SelOne simply selects whether a ‘1’ or ‘0’ is to be loaded into the shift register.
LdResultReg is the Clock Enable that allows data to be loaded into the register. Concat1 is a
special control signal that concatenate a ‘1’ to the left shifted (multiply by 2) result. The result
register is not really shifted to multiply by 2. Instead, I take bit [5..0], concatenate it with “01”
and send the resulting vector to comparator and subtractor.

IntReg

This is the intermediate registers that holds the remainder of the subtractor. It has two control
signals: LdIntReg, SelAdder. LdIntReg is the clock enable signal that allows data to be loaded
into the registers. SelAdder selects whether to load subtractor output or previvious IntReg
output into the registers.

3

SubstractorSubstractorSubstractorSubstractor

This is a 8-bit subtractor. It is purely combinational logic.

Comparator

This is a 8-bit comparator. Its output Smaller is HIGH when input B is smaller than input B.
This is also a combinatorial logic.

InputReg

This is a 8-bit shift register that can shift two position in one clocking period. It has two
control signal: LdIO and ShiftData. LdIO simply loads the input data from external system
during initial state. ShiftData allows shift register to shift two position at a time.

FSM

The FSM has 9 states. Please refer to Appendix for STG. The outputs are purely Moore type
implementation. The inputs to the FSM are Reset, Start, IsZero, Smaller and Ready. Reset
will put the FSM into the initial state and Start will kick-start the computation process. IsZero
tells the FSM whether the most significant two bits are zero. If it is, it simply goes into a wait
state until they are not zero. This is done to save a few cycles when the input contains leading
zeros. Smaller tells the FSM whether the number found satisfy the requirement mentioned in
step 4 of the algorithm. Ready tells the FSM that it has computed the result. Ready comes
from a counter.

4

Results and Analysis

In this section we will compare the synthesis result of implementation of the SquareRoot
machine.

Synchronous Implementations

OneHot Encoding

Primitive reference count:
Number of flip-flops 40
CARRY 11
DFFE 40
INV 1
LUT 44
LUT_CARRY 11

Clocks:

 Required Estimated
Period Rise Fall Freq Freq Signal
(ns) (ns) (ns) (MHz) (MHz)
...
 40 0 20 25.00 -1.00 default
 -1 -1 -1 -1000.00 33.47 Clock

Binary Encoding

Primitive reference count:
Number of flip-flops 35
CARRY 11
DFFE 35
INV 1
LUT 53
LUT_CARRY 11

5

Clocks:

 Required Estimated
Period Rise Fall Freq Freq Signal
(ns) (ns) (ns) (MHz) (MHz)
...
 40 0 20 25.00 -1.00 default
 -1 -1 -1 25.00 26.23 Clock

Asynchronous Implementation

Primitive reference count:
Number of flip-flops 0
CARRY 19
INV 6
LUT 26
LUT_CARRY 17

Timing Path Groups:

 Required Estimated
 Delay Delay
From To (ns) (ns)
..
(I) (O) 40.00 57.12

Conclusions

The implementation of the square root algorithm using FSM and synchronous logic was
successful. I was able to download the design into an Altera FPGA evaluation board and
demonstrate the design to the class. One way to improve the circuitry is to combine the
comparator with the subtractor. The new subtractor must have an underflow indicator. This
signal can be used by FSM to determine which number is greater.

6

Appendix

	Synchronous Square Root Computing Machine
	Background
	Square Root Algorithm
	ResultReg
	IntReg
	Substractor
	Comparator

	OneHot Encoding
	Binary Encoding

