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1. Abstract 
 

Image processing is a computationally intensive operation and is typically done in software 

using CPU processing power that is readily available these days. However, even with the 

advances in computing technology today, software based image processing requires expensive 

and powerful CPUs to perform real-time image processing, making it out of reach for most 

robotic applications. This is where a low cost FPGA based image processing solution becomes 

useful. This eliminates the need for powerful CPUs and at the same time can achieve real-time 

processing relatively easily. This project implements such an image processing solution in 

hardware, using a FPGA at its core.  The high level goal is to retrieve an image from an image 

source, detect the presence of a desired object based on color and calculate its parameters like 

area and centroid, while displaying the image on a VGA monitor. This report outlines the 

implementation of the project in two phases. First phase describes the process of displaying an 

image on a VGA monitor using SRAM as the video memory. The second phase describes the 

implementation of a blob detection algorithm based on sequential connected component 

labeling algorithm. A modified version of the labeling algorithm is implemented, which enables 

the processing of an entire image in a single pass through the image. The design enables the 

processing step to be inserted in the pixel data path from the image source to the video 

memory.  

2. Introduction 
 

We adopted a divide and conquer policy to achieve the high level goal of image processing 

using FPGA.  Hence the work is organized into two phases. First phase consists of FPGA 

implementation of basic building blocks like VGA controller for display and memory controller 

for SRAM based video memory. The second phase consists of development of the image 

processing algorithm.  The entire work is explained as Phase1 and Phase2 in this report.  

Although Image acquisition is an important building block for the project, it requires the 

development of a complete camera interface unit. We decided to do it as the third phase of the 

project due to time constraints.  This is an undergoing venture and the details are not in this 

current report. However, we need an image source for the rest of the project development. 

Hence we decided to use the memory that comes with FPGA - BLOCK RAM as the image source.  

Specifically the Block RAM available in Xilinx Spartan 3 boards is used for this purpose. The 

advantage is that we can initialize the Block RAM with an image using Xilinx ISE software.  The 

image in Block RAM is transferred to the SRAM first and then displayed using the timing signals 

generated by the VGA controller module. The Spartan 3 FPGA development board has 1 MB 

SRAM in it and a memory controller is developed specifically for this board memory. FSMs are 
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developed to implement the memory controller and to communicate between video controller 

and the memory controller to display the image on the monitor. 

Second phase involved the development of sequential connected components labeling 

algorithm for blob detection. The classic algorithm requires two passes through an image. We 

present an algorithm that allows the connected components to be analyzed in a single pass by 

gathering data on the regions as they are built. The scheme only requires a Line buffer and a 

Blob Table. This avoids the need for huge buffering requirements of the image, making it ideally 

suited for processing streamed images on the FPGA or other embedded system with limited 

memory. 

Section 3 explains the hardware and software used for the project. Section 4 describes the 

FPGA implementation of the building blocks. First subsection explains the usage of block RAM 

and the default 3-bit color VGA interface available on the Spartan 3 board. Later we built a 

circuit board that has R2R ladder network to enhance the display with 16bit color output.   

Section 5 describes the sequential connected component algorithm and HDL implementation. 

3. Hardware and Software 
 

The Spartan 3 FPGA Development board from Digilent is used for the project. An additional 

circuit board with R2R ladder network is built to get 16bit VGA display.  ModelSim is used for 

RTL simulation. Xilinx ISE is used for synthesis. The impact tool that comes with Xilinx ISE is used 

for downloading the bit stream into the Spartan 3 FPGA.   

Figure 1. shows the Spartan 3 FPGA board. A few specific parts of the board that are of interest 

to us include dedicated VGA port, three 40-pin expansion ports, four seven segment LED 

displays, eight slide switches, four momentary-contact push button switches and eight LEDs. 

There is an on-board voltage regulation to provide 3v, 2.5v and 1.2v. The board contains 1MB 

of Fast Asynchronous SRAM (10 ns SRAMs in two 256K*16 configuration) and 50 MHz oscillator 

on the back of the board 
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Figure 1: Spartan 3 FPGA Development Board from Digilent 
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4. Phase 1:  FPGA Implementation of VGA Display with SRAM as Video 

Memory  
 

The various development steps for this phase are listed below.  Each part is explained in detail 

in the following sections. 

 Design and implementation of VGA Controller 

 Implement Bitmap generation logic using Block RAM. 

 Design and Implementation of SRAM controller. 

 Implementation of the Bitmap generation logic using SRAM as the video Memory. 

 

4.1  VGA Controller Design 

As our project is based on image processing, we thought to have a display mechanism first of all 

for efficient debugging. Our approach to the design is as follows:  

1. Understanding the VGA Controller functionality. 

2. Generation of VGA Synchronization signals. 

3. Programming VGA Controller in Verilog. 

4. Understanding the Interfacing details with FPGA. 

5. Implementation, testing and results. 

6. Expected additions in the Future. 

 

4.1.1 Introduction to VGA Controller 

A simple block diagram of a video controller is shown in Figure 2. A video controller generates 

the synchronization signals and outputs data pixels serially through the VGA port of the FPGA 

board. The synchronization signals generator circuit (vga_sync) generates the timing and 

control signals.  The hsync and vsync signals control the horizontal and vertical scans. The 

pixel_x and pixel_y signals specify the current location of the pixel.  The vga_sync circuit 

generates the video_on signal to indicate whether to enable or disable the display. The Pixel 

generation circuit generates the three video signals which are collectively referred to as the rgb 

signal. 



9 
 

 

Figure 2: VGA Controller Block Diagram 

 

4.1.2 VGA Signal Timing 

The following discussions are based on a 640-by-480 VGA screen. Detailed timing diagram of 

one horizontal scan is shown in Figure 3 and the timing diagram of the vertical scan is shown in 

Figure 4. The refresh rate for the display is fixed at 60 Hz, which is the typical value used in 

monitors. In order to achieve this refresh rate on a 640x480 pixel screen, the pixel rate 

calculation is done as follows: 

Pixel Rate = (Total Horizontal Pixels * Total Vertical Lines *Number of screens / second) 

      = 800 * 525 * 60 = 25 MHz 
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Figure 3: Timing Diagram of Horizontal scan. 
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Figure 4: Timing Diagram of a Vertical scan 

 

4.1.3 HDL Implementation of the VGA Controller 

 The implementation of a simple VGA controller is fairly straight forward and is described 

extensively as examples in various FPGA text books. The following steps summarize the 

implementation details: 

 The sync signal can be obtained by a special mod-800 counter and a decoding circuit. 

We intentionally start the counting from the beginning of the display region so that the 

counter output can be used as the horizontal (x-axis) coordinate. This output constitutes 

the pixel_x signal. 

 The vsync signal can be obtained by a special mod-525 counter and a decoding circuit. 

This output constitutes the pixel_y signal. 

 video_on signal is used to indicate whether the current vertical coordinate is in the 

displayable region. It is asserted when the line count is smaller than 480. 

 50MHz board clock is used as the system clock. 

 The pixel clock is half of the system clock.  A mod-2 counter is used to generate 25MHz 

pixel clock signal.  

 The pixel tick should be routed via port as output signal to pixel generation circuit to 

extract the pixel content at the same rate. 
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 The values of the various regions of the horizontal scans and vertical scans are defined 

by the constants. 

 To avoid glitches, the output buffers are inserted for the hsync and vsync signals. 

 The Verilog HDL code is shown in in Appendix A. 

 

4.1.4 Understanding the Interfacing details with FPGA 

The Spartan 3 FPGA board that we used for this project has a built-in VGA port with five active 

signals as, hsync, vsync, and video signals - red, green, blue.  The video signal for VGA is an 

analog signal, and so a typical video controller uses a D-A converter. However, in the S3 FPGA, 

only 1 bit is used per color. So it does not require a D-A converter. There are three video color 

signals available, so we can have eight different colors which can be displayed on screen. For 

that we need to give proper binary input combinations to VGA port. Following table shows the 

different possible color combinations.  

 

Red (R) Green (G) Blue (B) Resulting Color 

0 0 0 Black 

0 0 1 Blue 

0 1 0 Green 

0 1 1 Cyan 

1 0 0 Red 

1 0 1 Magenta 

1 1 0 Yellow 

1 1 1 White 
Table 1: Three Bit VGA Combinations 

 

4.1.5 Sync Signal Generation, Testing and Results 

The VGA controller module is synthesized using Xilinx Spartan3 board. The Board details are 

included in Appendix B Section 1. Xilinx ISE Web Pack is used for the synthesis and the Impact 

tool that comes with the web pack is used to download the bit stream  onto the FPGA Board. 

To verify the operation of the synchronization circuit, the rgb signal is connected to the three 

switches. The entire visible region is turned on with a single color.  The eight possible 

combinations are verified. The HDL code is shown in Appendix A.  The Figure 5 shows the 

experiment results. 
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Figure 5: VGA Synch Signal generator Test Results - Screen bitmapped to unique color input read from Switches 

 

4.1.6 Bitmap generation logic using Block RAM 

The pixel generation circuit generates the 3-bit rgb signal for the VGA port. The external control 

and data signals specify the content of the screen, and the pixel_x and pixel_y signals from the 

vga_sync circuit provide the current co-ordinates of the pixel. In a bit-mapped scheme, a video 

memory is used to store the data to be displayed on the screen. Each pixel of the screen is 

mapped directly to a memory word, and the pixel_x and pixel_y signals form the address. The 

display processing circuit continuously reads the video memory and routes the data to the rgb 

signal. 

There are 310k pixels in a 640-by-480 screen. This translates to 930k bits for color displays. For 

S3 board memory is available from external SRAM chips and FPGA’s embedded block RAM. A 

brief explanation about the block RAM configuration is presented in the following section. 

Detailed explanation of the SRAM memory controller and the interfacing details are given in  0. 

Using Block Ram as Video Memory to display Image on VGA Monitor  

A block RAM is a special memory module embedded in FPGA device separated from regular 

logic cells. It can be thought of as a fast SRAM wrapped by a synchronous configurable 

interface. Hence no additional memory controller is required. It can be configured as either 
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single ported or dual ported.  Each block RAM consists of 16K by 1 to 512 by 32. The Spartan 3 

XC3200 device has 12 block RAMs, totaling 192K data bits. 

 

 

Figure 6: Block RAM as a Component - Interface Diagram 

 

The Xilinx provided utility program, known as Core Generator (Coregen) is used to generate 

single ported Block RAM. In this application a small 128-by-128 area of the screen is only 

utilized for Bitmapped scheme. The screen has 16K pixels in this area and requires a 16K-by-3 

video memory for color display which is configured using Block RAM.  The image size selection 

is limited by the availability of the Block RAM memory.  
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Figure 7: Configuring Block RAM 

 

COE generation steps 

A 24-bit sample picture is taken. It is converted to a 3bit format which can be used with S3 

FPGA board. The code snippet is shown in Appendix A. The bit file is converted to .coe file 

format which can be used to initialize the block RAM.  

1. Identified and downloaded a sample picture from the net. 

2. Opened it in MsPaint and saved it as a 128x128 size image in 24bit RGB format. This is a 

standard format that has 8 bits for R, G & B. 

3. Ran the application (COE generation app). 

    a. The application uses the built in Bitmap class in C# to open and read each pixel of the 

bitmap 

    b. For each pixel, look at the MSB of the R, G & B values and write them to a text file. 

   c. Add appropriate commands to the text file to make it in .coe file format. 

The Verilog code for the VGA sync signals generator module and the bit map generator module 

using Block RAM as video memory are shown in Appendix A. 
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4.1.7 Testing and results 

The Verilog code for the testing circuit is shown in Appendix A. The vga_synch unit generates 

the timing and control signals. The bitmap generation circuit is written in such a way that the 

VGA monitor is continuously refreshed at 60 Hz with the image embedded in the Block RAM. 

The resulting display is shown in Figure 8. 

 

Figure 8:  Image from FPGA Block RAM 

 

4.1.8 Generating 16-bit VGA Color Output 

The VGA port on the Spartan 3 board provides only 1 bit each for R, G and B color. This allows 

for only 8 possible color combinations which results in the displayed picture appearing very 

different from the original source. Hence we decided to create a custom VGA port with 

increased color depth. Most video controller hardware typically supports at least 16 bits of 

color and so we decided to keep the color depth of the custom VGA port to be 16 bits. The 16 

bit color is represented in the RGB565 format, which appears to be a common image format for 

hardware representation. In this representation, Red is presented by 5 MSB bits, followed by 6 

bits of Green and 5 LSB bits representing Blue. Hence the RGB 565 naming of the format. 

VGA DAC 
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The RGB signal accepted by the color monitor is an analog signal, one for each color, in the 

range 0V to 0.7V according to the VGA spec. So the digital color signal generated by the video 

controller should be converted to an analog signal. A Digital-To-Analog Convertor (DAC) 

convertor is to be used for this purpose. In the built-in VGA port of the Spartan 3 board, there is 

no need for a separate DAC circuit since there is only one bit per color. The only thing to be 

done there is to convert the 3.3V logic signal to the voltage range acceptable to VGA. The 

Spartan 3 board uses a 270 ohm series resistor for each of the color signals. This resistor forms 

a voltage divider circuit in combination with the 75 ohm load resistance of the VGA monitor. 

The voltage divider circuit keeps the voltage across the 75 ohm resistance in the 0.7V range 

required by the VGA spec. 

Increasing the color depth of each color to anything higher than 1 requires a separate DAC 

circuit to convert the digital color values to the analog VGA color signal. We decided to use a 

simple R-2R ladder circuit as the DAC. R-2R ladder was chosen as it is easy to build, cheaper and 

simpler to interface compared to dedicated DAC chips. A general 8 bit R-2R ladder circuit is 

shown in Figure 9 

 

Figure 9: General R2R ladder circuit 

Each bit of digital output contributes to the total output of the circuit with a weightage 

depending on the position of the bit. For example, the MSB will contribute half the voltage 

output when it is turned on, the next bit gives 1/4th of the voltage and so on. The formula for 

output voltage thus would be as shown in Figure 10 

 

Figure 10: Digital to analog conversion formula using the R2R ladder network 

Typical R-2R ladder DAC circuits like the one shown in Figure 9 contain a voltage buffer at the 

output so that the output voltage is not affected by load resistance. This is done by adding an 

operational amplifier circuit in the output stage. However, this brings in an additional design 

complexity. Since the VGA circuit is operating at a 25 MHz pixel rate, the color values will 
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change at that rate. So any op-amp connected here should be able to switch that fast – in a 

matter of a few nanoseconds. General purpose op-amps available in the market have switch 

times in the range of a few milliseconds and so cannot be used. This calls for extremely fast 

amplifiers or dedicated DAC chips which complicate the design. 

The need for an output amplifier in the R-2R DAC in this application can be eliminated by 

utilizing the fact that the load resistance of the VGA monitor/cable is known to be 75 ohms. So 

if we pick the resistor values of the R-2R network accordingly, the desired output voltage can be 

generated across the 75 ohm load resistor.  

Project Implementation of 16 bit VGA output  

Hardware 

The color output from our new VGA controller design in the FPGA chip has 5 bits for Red, 6 bits 

for Green and 5 bits for Blue. These are connected to available pins in the expansion connector 

B1 of the Spartan 3 board by specifying the appropriate net list in the user constraints file for 

the project (UCF file). The Hsync and Vsync signals are also brought to this connector the same 

way. An external circuit assembled on a prototype PCB board, as shown in Figure 11, contains 

the R-2R ladder for each color – a 5 leg ladder for Red, a 6 leg ladder for Green and a 5 leg 

ladder for Blue. It has a 40-pin male header connector on one end and a VGA connector on the 

other end. This prototype board can be plugged in directly to the B1 connector using the 40-pin 

header as shown in Figure 11 

 

Figure 11:   Circuit board - Custom built 16bit VGA port 

The calculation of the resistor values for R and 2R is based off the same requirement from the 

VGA spec that the voltage of each color signal should be in the 0V to 0.7V range. The logic high 

voltage on the FPGA IO pins is 3.3V. So the maximum voltage output of the R-2R network is 

3.3V when all bits are high. In order to make this 3.3V output divided down to 0.7 V across the 

75 ohm resistor, the effective resistance of the R-2R network should be 270 ohms, as we saw in 

the 3 bit VGA case (where each bit was directly connected to the VGA port using a 270 ohm 
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resistor). Effective resistance of a R-2R network is R, so we get the value of R as 270 ohm and 2R 

as 540 ohm.  

Note: It was difficult to procure 540 ohm resistor, so a 520 ohm resistor was used in its place. 

The measured voltage output did not make a big difference to make it a problem. 

HDL Implementation changes 

Switching from 3 bit VGA output to 16 bit output requires a few changes in the HDL code as 

well, apart from the external DAC circuit. The following are the changes: 

1. A new Block RAM needs to be generated, which is 16 bits wide. Now that each pixel is 

16 bits wide, we cannot accommodate a 128x128 pixel image in the block RAM available in 

Spartan 3. Given that the total BRAM is 192K bits, the maximum image size is now reduced to 

128x96 pixels, with each pixel being 16 bits wide. So a new block RAM is generated to be of 16 

bits wide and 12288 deep (128 * 96), totaling 128*96*16 = 192K bits. 

2. The RGB port and the associated register variables of the pixel generation module is 

expanded to 16 bits wide. 

3. The user constraints file is modified to connect the appropriate bits of R, G and B signals, 

along with Hsync and Vsync signal to the B1 expansion port of the FPGA board. 

The output from circuit is shown in Figure 27 and Figure 28. This shows the output with SRAM 

as video memory as the SRAM controller was already developed by the time the external DAC 

board was built. 
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4.2 Memory Controller 

The second major work of our project is the implementation of SRAM memory controller for 

the S3 FPGA board. First, the specification of the onboard memory is studied to build a memory 

controller. The following Figure 12 shows the interface of SRAM memory with FPGA and the 

interfacing signals.   

 

Figure 12: Interface between SRAM memory and FPGA 

The Spartan S3 FPGA board has a megabyte of fast asynchronous SRAM, which is surface 

mounted.  It has two 256K*16 SRAM devices. These devices shares common write-enable 

signal, output-enable signal and address signal. But each has a separate chip select. The address 

bus is 18 bits and I/O signal bus is 16 bits. Chip enable, output enable, write enable are active 

low signals. 

4.2.1 Role of SRAM Memory Controller 

A memory controller has been designed for the SRAM chips on the Spartan 3 board. As the 

timing characteristics of each RAM devices are different, the controller is applicable only to this 

particular device. Memory controller is used as an interface, which takes commands from main 
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system synchronously and then generates properly timed signals to access SRAM. The 

controller makes memory access appear like synchronous operation by protecting the main 

system from the detailed timing. Performance of a memory controller is measured by number 

of memory access that can be completed in a given time. Designing a simple memory controller 

is straightforward but achieving optimal performance is very difficult as it involves many timing 

issues. 

 

Figure 13: Role of SRAM as Memory Controller 

The role of memory controller and its I/O signals are shown in Figure 13. The signals to main 

system side are:  

 mem: is asserted to 1 to initiate a memory operation. 

 rw: specifies whether the operation is a read (1) or write (0) operation. 

 data_f2s: is the 16-bit data to be written to SRAM (the _f2s suffix stands for FPGA to 

SRAM). 

 data_s2f_r: is the 16-bit registered data retrieved from SRAM (the _s2f suffix stands for 

SRAM to FPGA). 

 data_s2f_ur: is 16-bit unregistered data retrieved from SRAM. 
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 ready: is a status signal indicating whether the controller is ready to accept a new 

command. This signal is needed since a memory operation may take more than one clock 

cycle. 

 ce_n (chip enable): disable or enable the chip 

 we_n (write enable): disable or enables write operation. 

 Oe_n (output enable): disables or enables the output. 

 Lb_n (lower byte enable): disable or enable lower byte of the data bus. 

 Ub_n (upper byte enable): disables or enables the upper byte of the data bus. 

 Those signals with ‘_n’ are active low signals. 

 

4.2.2 Block Diagram of Memory Controller 

The memory controller basically provides a synchronous wrap around the SRAM. When the 

main system wants to access memory, it places the address and data (for write operation) on 

the bus and activates the command (i.e. the mem and rw signals). At the rising edge of the 

clock, all signals are sampled by memory controller and the desired operation is performed 

accordingly. For a read operation, the data becomes available after one or two clock cycles.

 

Figure 14: Block diagram of a memory controller 
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The block diagram of the memory controller is shown in Figure 14. Data path contains one 

address register, which stores the address and the two data registers, which stores the data 

from each direction. Since dio is a bidirectional signal, a tri-state buffer is needed. The control 

path is an FSM, which follows the timing diagram to generate the proper control sequence. 

4.2.3 Timing Requirement 

The timing diagram and parameters of a read operation and write operation are shown in 

Figure 15 and Figure 16 respectively. 

 

Figure 15: Timing parameters of Read operation 
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Figure 16: Timing parameters of a write operation 

The control sequences are discussed below.  

Read Cycle  

The we_n should be deactivated during the entire operation. Its basic operation sequence is: 

1) Place the address on ad bus and activate the oe_n signal. These two signals must be 

stable for the entire operation 

2) Wait for at least tAA. The data from SRAM becomes available after this interval. 

3) Retrieve the data from dio and deactivate the oe_n signal. 

 

Write Cycle 

We use the we_n controlled write cycle in our design. The basic operation sequence is: 

1) Place the address on the bus and data on the dio bus and activate the we_n signal. 

2) Wait for at least tPWE1. 

3) Deactivate the we_n signal. The data is latched to SRAM at the 0-1 transition edge. 
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4) Remove the data from dio bus.  

 

4.2.4 Design 1: Safe Design – Back-to-back memory access time 60ns. 

ASMD CHART OF SRAM CONTROLLER 

 

Figure 17: ASMD chart of SRAM Controller 

The FSM has five states and is initially in the idle state. In this state oe_n =1, we_n = 1, tri_n = 1, 

ready = 0. 

Read Operation 

FSM moves to rd1 state. The memory address, addr is sampled and stored in the addr_register 

at this transition. Oe_n signal is activated in the rd1 and rd2 states. At the end of read cycle, 

FSM returns to the idle state. For write operation, the FSM moves to the wr1 state. The 

memory address addr, and data, data_f2s are sampled and stored in the addr_reg and 

data_f2s_reg registers at the transition. The we_n and tri_n signals are both activated in the 

wr1 state. The latter enables the tri-state buffer to put the data over the SRAM dio bus. When 

FSM moves to wr2 state, we_n is deactivated but tri_n remain asserted. This ensures that the 
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data is properly latched to the SRAM when we_n changes from 0 to 1. At the end of write cycle, 

the FSM returns to the idle state and tri_n is deactivated to remove data from dio bus. This FSM 

meets the above mentioned timing requirements.  HDL Implementation is given in Appendix A. 

 As this is a safe design, back to back memory access takes 3 clocks or 60ns with 50MHz board 

clock which makes memory operation very slow. Another approach is used to get a fast clock to 

reduce memory operation timing. 

4.2.5 Design 2: Using Xilinx ISE DCM for Faster Access Time 

The safe design initially discussed works with 50MHz clock. Basically, an FSM cannot generate a 

control sequence finer than the period of its clock. An effective design with much less back to 

back memory access operation i.e. 20 ns can be used instead. DCM (digital clock manager) 

circuit of the Spartan-3 can be used as a solution to the problem. DCMs provide advanced 

clocking capabilities to Spartan 3 FPGA applications.  There are 8 digital clock managers in a 

Spartan 3 FPGA device. DCM frequency synthesizer is used in our design to generate a 200 MHz 

clock. A basic block diagram of the DCM is shown in Figure 18. Now each clock cycle is only 5ns. 

This requires additional states in the read and write operations to meet the timing 

requirements. The new ASMD chart is given in Figure 21. 

 

 

Figure 18:  Block diagram of a Digital clock Manger 
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Spartan 3 provides 3 independent frequency synthesis functions. Among the three, a frequency 

synthesizer (CLKFX, CLKFX180) for generating a completely new frequency from an incoming 

clock frequency is used.  Functional diagram of various clock synthesis options using the DCM is 

given in Figure 19 

Figure 19  

 

Figure 19: Clock Synthesis Options with DCM 

     

In our application 50MHz board clock is used as input frequency. CLKFX_MULTIPLY  value is set 

as 4 and CLKFX_DIVIDE value is set as 1 to generate 200 MHz clock. 

To simplify applications using DCMs, the Xilinx ISE development software includes a software 

wizard that provides step-by-step instructions for configuring DCM. As shown in Figure 20 DCM 

wizard generates vendor specific logic synthesis file instantiating the DCM in either verilog or 

VHDL syntax. Similarly, DCM wizard also generates a user constraints file for the specific 

implementation. Finally all user specifications are saved in the Xilinx Architecture Wizard (XAW) 

settings file. 
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Figure 20: DCM as a component: Interface details 
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Figure 21: Improved Design with 200MHz clock satisfying timing constraints 

 

 

4.2.6 Testing and Results 

A basic circuit is used to test SRAM controller. It manually tests a single read and write 

operation.  In addition to the SRAM I/O signals, the circuit has the following signals. 

sw:  8bit wide and used as data. 

led: 8bit wide and used to display the retrieved data. 
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btn[0] : when this button is pressed, the switch status is read as the data to be written onto 

SRAM. 

btn[1] :  When it is asserted, the current value of the switch is written to a hardcoded address in 

the memory. 

btn[2] : When it is asserted, the controller uses the value of the address specified as the read 

address and performs a read ooperation. The read data is routed to the led signal. 

The code for the basic SRAM testing circuit is given in Appendix A. 

Experimental Results 

 

 

Figure 22: SRAM controller test results 
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The switch inputs data is read during first button press. The second button press initiates the 

write operation and the the third button press caused the read operation. The read data is 

displayed in the leds. The results are shown in Figure 26 

4.3 Complete Display System Design  

The individual modules are designed and tested. The next step is to combine them to build the 

complete system. An overview of complete display system is shown in Figure 23. The FPGA 

development board has the clock frequency 50MHz. The DCM takes in the board clock and 

generates 200MHz clock. This high speed clock is applied to Block RAM as well as Memory 

Access Module. This implies that the SRAM write operation from Block RAM to on board SRAM 

memory and SRAM read operation from SRAM to VGA happens at a high clock speed of 200 

Mhz. As we discussed earlier, it is now entirely possible to have a back to back memory 

operation of 20ns.  

 
 

Figure 23: Display with SRAM as Video Memory 

 
This design involves two finite state machines which are explained in detail in the following 
sections. The image is initialized into the Block RAM. First FSM that copies the image from 
block RAM to SRAM memory, waits for user input: ‘BTN press’ to initiate the process. When 
the image transfer process is complete, a flag ‘TransferComplete’ is raised. The second FSM 
that displays the image from video memory starts running as soon as it receives the 
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TransferComplete signal.  
 
HDL Implementation: Transferring Image from Block RAM to SRAM  

Initially the FSM is in idle state. The write cycle starts whenever the button press event 
happens in idle state. The FSM state transition takes place at 200 MHz frequency which 
translates to 5ns for each state in the finite state machine. The core unit of the memory access 
module is the memory controller. Write1, write2, write3, write4 states of this FSM 
corresponds to the four memory write cycles of the memory controller. During write 1 state, 
the memory write operation is initiated by setting up the SRAM memory write control signals. 
The control signals are reset when it reaches the write2 state. These four states all together 
account for a back to back memory write operation of 20ns and satisfies all SRAM write timing 
constraints that we discussed earlier. In write4 state all the address manipulation takes place. 
If image transfer is complete, FSM sets the transfer complete flag and move to idle state. If the 
process is incomplete, it goes back to write1 state to transfer next pixel to SRAM. 

 

 
Figure 24  FSM for transferring image from Block RAM to SRAM 

 

HDL Implementation: Displaying image from SRAM  

The FSM that performs the display operation gets activated on ‘transfer complete’ signal raised 

by the previous FSM. If there is a valid pixel clock at that time and video_on signal from the 

video controller is high, the FSM moves to read state where one pixel value is read from the 
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video memory and displayed on monitor. Once the FSM is in READ state, it continuously feeds 

the display module. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Block diagram for Displaying image from SRAM 

 

4.3.1 Experiment Results 

The VGA monitor is continuously refreshed at 60 Hz with the image embedded in the Block 

RAM. The resulting display is shown in Figure 26 and Figure 27 
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Figure 26: Image displayed from Block RAM with 3bit color resolution 

 

 

Figure 27: Image displayed from SRAM with 16 bit resolution 
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Figure 28: Close up of the Image displayed using the 16 bit custom VGA adapter 
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5. Image Processing 
 

The main objective of this section is to develop and simulate an algorithm for Blob detection. 

Sequential Connected Component Algorithm was chosen for blob detection. Connected 

component analysis typically requires four stages in any algorithm. First, the input (color or 

grayscale) image is preprocessed through filtering and thresholding to segment the objects 

from the background. The preprocessed image is usually binary. Next, each connected group of 

pixels is assigned a unique label, enabling the distinct objects to be distinguished. In the third 

stage, each region is processed (based on the label) to extract a number of features of the 

object represented by the region. In the final stage, these features are used to classify each 

region into one of the two or more classes. The classic connected component labeling algorithm 

requires two passes through an image. But the algorithm implementation discussed in the 

following sections allows the connected components to be analyzed in a single pass. 

Section 5.1 lists the challenges faced by image processing implementations that gave 

motivation for us to come up with an effective algorithm implementation.  The basic concept of 

blob detection and calculation of the desired parameter is described in section 5.2. The 

sequential component labeling process is explained in section 5.3. After the labeling process, 

the blob parameter calculation with the help of Blob Parameter table is explained in section 

5.4. Section 5.5 lists the simulation results. 

 

5.1. Design Considerations 

 

 

Figure 29: Memory Contention 

All the traditional image processing algorithms are sequential in nature with multiple stages. 

This makes the real time image processing really tough. All the robotics applications require 

extremely fast detection processing and response.  We also focused at reducing the huge image 
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storage demand. The traditional processing requires storage for source image, processed image 

and for the intermediate image.  The algorithm should also work around the memory access 

latency. The key focus is to reduce the memory contention. In any image processing 

application, the image source requests memory access for storage. The processing blocks 

accesses the memory for each pixel processing. Simultaneously the Display module accesses 

the memory at very high pixel rate for displaying the processed image. We can see that 

memory is heavily strained and any algorithm design should be optimized to minimize the 

scheduling issues.  Taking into account all the above mentioned design constraints, we chose to 

come up with an algorithm that has minimum storage demand and minimum number of passes 

for processing. 

 

5.2. Basic Concept of Blob Analysis 

 

A blob (binary large object) is an area of touching (connected) pixels with the same logical state. 

A picture frame might contain multiple blobs and they are said to be in foreground state. All 

other pixels are in background state. All pixels in the background have values equal to zero 

while every nonzero pixel is part of a binary object. In this project one particular color filter is 

used to separate blob.  In the following discussion we assume that we got a preprocessed (color 

filtered) binary image and the algorithm is applied on this image. The objective is to calculate 

only two blob parameters – area and centroid. The formula for calculation is listed below. 

   

 

�̅� = 
∑ ∑          

   
 
     

 
 

�̅� = 
∑ ∑          

   
 
     

 
 

After the labels merging process, total count of pixels with the same label gives the area of the 

blob. B[i,j] represent the non-zero valid pixel that is been labeled. In short, the algorithm is 

designed to identify connected blobs, calculate the area and centroid of each detected blob. 

 

5.3 Sequential Component Algorithm 

 

Let ‘ROWS’ be the number of rows and ‘COLUMNS’ is the number of columns of the image 

under consideration. Hence the overall ‘DEPTH’ of the array is ROWS * COLUMNS.  The 

Area =  ∑ ∑ 𝐵 𝑖 𝑗 𝑚
 =1

𝑛
 =1  
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algorithm is applied to every pixel starting from the first to last pixel in a sequential nature. In 

general if the pixel is zero, the pixel label is zero. If the pixel value is one, the pixel should be 

labeled.  Hence for a current pixel four values are required for labeling 

1. North Neighbor value 

2. North Neighbor Label  

3. West  Neighbor value 

4. West  Neighbor Label  

 

Figure 30: Kernel defined for labeling 

The Pseudo code for sequential component algorithm is shown in Figure 31 and an example is 

illustrated in Figure 32. 
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Figure 31: Pseudo code for Sequential Component Algorithm 

 

Current label is calculated based on the North, West Neighborhood values and label based on 

the rules define by the above listed pseudo code.  According to the above logic, after each pixel 

is labeled, an additional flag will be raised indicating the need for merging labels. How this 

update is implemented makes the implementation part optimal as far as this design is 

concerned. The optimized design is explained in the following section   
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Figure 32: Example of CCL Algorithm 

 

5.4 Merging and Blob Parameter calculation 

 

 

Figure 33: Blob Detection Module 

 

The algorithm implementation only requires the following. 

 Line size FIFO referred to as LINE FIFO for intermediate label storage.  

 Blob Table. 
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The usage of the LINE FIFO and the Blob table management for blob parameter calculation 

makes this scheme different from the traditional schemes which are explained in detail in 

the following sections.  It should be noted that with the availability of these extra FIFO and 

Table, each pixel is labeled on its way from image source and most of the blob parameters 

are already calculated by the time single pass is completed. The basic idea is shown in 

Figure 35. 

 

LINE FIFO Usage  

 

 

Figure 34: LINE FIFO Usage Example 

 

The line FIFO has a circular queue based implementation. It is a register file with a write pointer 

and a read pointer. The write pointer points to the head of the queue and the read pointer 

points to the tail of the queue. The pointer advances one position for each write and read 

operation. The FIFO HDL code is available in the Appendix.  
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Consider an image with a line of 3 pixels. Hence the LINE FIFO size is also 3 bits wide. Let the 

incoming pixel stream be ABCDEFGHI… as shown in figure.   LINE FIFO Utilization is explained 

below. 

Defining Neighborhood 

A: First Pixel of the image. Hence all neighbor values as well as labels are zeroes 

B, C: Members of the first line and their North Neighbor values are zero. Hence the North 

neighbor labels are also zeroes. Just require west labels  

D, G, J: First Pixel of the rest of the rest of the lines. West neighbor is Zero . But there exists 

valid North Neighbor. 

E, F, H, I, K, L: Middle pixels with all valid neighbors. 

Operation 

Cycle 0: Pixel A arrives -> the labeling unit labels the pixel and the new Labeled pixel  ‘LA’ is 

obtained. The new label LA is written into LINE FIFO and stored into Destination buffer. It 

should be noted that this acts as west label for the next arriving pixel. Hence it is saved as West 

Label in a temporary storage.  

Cycle 1: LB obtained. Stored in LINE FIFO as well as in Destination buffer.  

Cycle 2: LC obtained. Stored in LINE FIFO as well as in Destination buffer.  

Cycle 3: LINE FIFO is full in this case. For pixel D, label 'LA' is taken from LINE FIFO and 

processed. The processed label 'LD' is again fed back to LINE FIFO as well as into Destination 

buffer.  

Cycle 4: LINE FIFO is full in this case. For pixel E, label 'LB' is taken from LINE FIFO and 

processed. The processed label 'LE' is again fed back to LINE FIFO as well as into Destination 

buffer.  

This kind of LINE FIFO utilization reduces the intermediate storage requirement. 

 

BLOB Table Usage 

 

Blob Table is a collection of one dimensional arrays indexed by the label value defined as 

follows: 

1. Merge Table – described in the next section 

2. Area Counter – a running counter of number of pixels in each label 
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3. Sigma Xbar Counter – a running counter of the sum of X coordinate of each pixel 

4. Sigma Ybar Counter – a running counter of the sum of Y coordinate of each pixel 

5. Centroid X (calculated by the divider). 

6. Centroid Y (calculated by the divider) 

A high level picture of blob table utilization is shown in Figure 35.  The HDL description 

in section  5.4 explains the details of Blob Table update and how the table is used for 

blob parameter calculation. 

 

Figure 35: Blob detection using Connected Component Algorithm 

 

Merge Table Usage 

Though MergeTable is a part of the overall Blob Table described above, its design and usage 

require additional description. This is because the design and correct usage of the MergeTable 

is a key factor that enables the labeling to be done in a single pass. 

Initially, the MergeTable is initialized as follows: 

MergeTable[index] = index; 

When a merge occurs as per the algorithm/pseudo code defined in Section X, the merge table is 

updated as follows: 
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MergeTable[LabelToMerge] = CurrentLabel 

For example, consider the pixel in row 5, column 4 in the picture below. In this case, label 3 is 

going to be merged with label 1 as per the algorithm, since NorthLabel = 1 and WestLabel = 3. 

The merge table will be updated as: 

MergeTable[3] = 1 

 

Figure 36: Intermediate Labeled Pixel array 

The running counters of Area, SigmaXbar and SigmaYbar is updated at each labeled pixel as 

follows, taking into account that a label could have been merged earlier: 

LabelIndex = MergeTable[CurrentLabel];  

// The label at the current index is the “merged” label 

AreaTable[LabelIndex] = AreaTable[LabelIndex] + 1 

SigmaXbarTable[LabelIndex] = SigmaXbarTable [LabelIndex] + X 

SigmaYbarTable[LabelIndex] = SigmaYbarTable [LabelIndex] + Y 

This logic makes sure that once a label has been merged, the running counters are updated only 

at the merged label index in the corresponding tables. 

Lastly, the running counters are updated when a merge happens, as follows 

AreaTable[CurrentLabel] = AreaTable[CurrentLabel] + AreaTable[LabelToMerge]] 

AreaTable[LabelToMerge] = 0; // needed to avoid double counting. 

 

Calculating the Centroid Values 

The centroid calculation requires dividing the SigmaXbar and SigmaYbar values of a label with 

the Area associated with that label. Division is a non-trivial operation in hardware. A serial 
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divider module taken from OpenCores.org website is utilized for this purpose. This divider 

module is fully parameterizable module that generates 1 bit of quotient output per clock cycle. 

Since we are not interested in the remainder values, the number of clock cycles can be reduced 

to the number of bits for each centroid value. Two instances of the serial divider module is 

instantiated so that the X and Y centroid of each label can be calculated in parallel. 

The centroid calculation is done after the labeling is completed for the entire image. Centroid 

calculation does not require access to the stored image since it only accesses the BlobTable for 

its calculation. The number of cycles needed for completing the centroid calculation phase is 

dependent upon the size of the image and the number of blobs. For example, a 8x8 image 

requires 4 clock cycles to calculate the centroid of each blob. Similarly, a 320x240 would require 

9 clock cycles – calculated by the number of bits required to represent the max centroid value – 

for each blob. This requirement of additional clock cycles for centroid calculation of each blob is 

negligible compared to the total number of cycles it takes for labeling the image itself (example, 

76800 cycle for a 320x240 image – one per pixel), and so the centroid calculation is not 

considered a second pass on the image. 

 

5.5 HDL Implementation for Simulation 

 

The heart of the implementation is the Finite state machine that sequentially runs through four 

main Phases – Initialization, labeling, Centroid calculation and storing the processed registers. 

The algorithms mainly  uses the data structures – Source register, Process register, LINE FIFO 

and Blob table. The initialization phase, storage stage and the use of source registers are only 

for simulation. In real hardware implementation the image comes from the camera and only 

the labeling stage and LINE FIFO is required.  Each incoming pixel is labeled according to the 

position of the pixel. States are defined for the special cases such as first pixel of the image, first 

line of image and not first pixel, first pixel but not the first line and any middle pixel case. The 

neighborhood is defined in each state and a Get Label task is called to find out the label. After 

the label calculation, the merging of the labels takes place if needed Merged labels are used to 

index into rest of the blob table array such as area and x/y bar counters and the update is 

performed as described in the previous section. The FSM incorporates additional wait states  

required for the divider to produce a valid result.  

For simulation and demonstration purpose only, a second pass is performed on the processed 

image after all blob parameter calculation is done. In this pass, all the pixels are re-labeled 

according to the Merge Table values, so that correct operation of the Merge logic can be 

verified. The HDL description is shown in listing x Appendix. 
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5.6 ModelSim Simulation Results 

The transcript window after the simulation of the algorithm is shown below: 

# Reading C:/Modeltech_pe_edu_10.1a/tcl/vsim/pref.tcl  
# Loading project CCA2 
vsim -gui work.CCL_PROC 
-gui work.CCL_PROC  
# Loading work.CCL_PROC 
# Loading work.fifo 
# Loading work.serial_divide_uu 
run 
#                    0Completed Initialization of FIFO 
# BlobTables AFTER INITIALIZATION 
# ---------------------------------- 
# MergeTable AreaTable SigmaXBARTable SigmaYBARTable CenterXTable CenterYTable 
# 
============================================================================== 
#          0         0              0              0            0            0 
#          1         0              0              0            0            0 
#          2         0              0              0            0            0 
#          3         0              0              0            0            0 
#          4         0              0              0            0            0 
#          5         0              0              0            0            0 
#          6         0              0              0            0            0 
#          7         0              0              0            0            0 
#  
# Initialized Source Array 
#  
# ============================= 
# 0  0  0  0  0  0  0  0   
# 0  1  1  1  0  1  1  0   
# 0  0  1  1  0  0  1  0   
# 0  0  0  1  0  0  1  0   
# 0  0  1  1  0  0  1  0   
# 0  0  1  1  0  0  1  0   
# 0  1  1  1  1  1  1  0   
# 0  0  0  0  0  0  0  0   
# ======================================== 
#  
#  
#  
# Initialization Complete. Start Processing Pass 1 
#  
run 
# Processing Pass 1 complete. 
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#  
# Calculating Centroids 
#  
# The Intermediate labelled ARRAY after Pass 1 
#  
# ============================================== 
# 0  0  0  0  0  0  0  0   
# 0  1  1  1  0  2  2  0   
# 0  0  1  1  0  0  2  0   
# 0  0  0  1  0  0  2  0   
# 0  0  3  1  0  0  2  0   
# 0  0  3  1  0  0  2  0   
# 0  4  3  1  1  1  1  0   
# 0  0  0  0  0  0  0  0   
#  
#  
# BlobTables AFTER Pass 1 
# ---------------------------------- 
# MergeTable AreaTable SigmaXBARTable SigmaYBARTable CenterXTable CenterYTable 
# 
============================================================================== 
#          0         0              0              0            0            0 
#          1        22            102            102       0            0 
#          1         0              0              0            0            0 
#          1         0              0              0            0            0 
#          1         0              0              0            0            0 
#          5         0              0              0            0            0 
#          6         0              0              0            0            0 
#          7         0              0              0            0            0 
#  
# Centroid calculation done 
#  
# MergeTable AreaTable SigmaXBARTable SigmaYBARTable CenterXTable CenterYTable 
# 
============================================================================== 
#          0         0              0              0            0            0 
#          1        22            102            102       4            4 
#          1         0              0              0            0            0 
#          1         0              0              0            0            0 
#          1         0              0              0            0            0 
#          5         0              0              0            0            0 
#          6         0              0              0            0            0 
#          7         0              0              0            0            0 
#  
run 
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run 
#  
# Processing Pass 2 complete. 
#  
# Final Labeled array after Pass 2 
# ================================= 
# 0  0  0  0  0  0  0  0   
# 0  1  1  1  0  1  1  0   
# 0  0  1  1  0  0  1  0   
# 0  0  0  1  0  0  1  0   
# 0  0  1  1  0  0  1  0   
# 0  0  1  1  0  0  1  0   
# 0  1  1  1  1  1  1  0   
# 0  0  0  0  0  0  0  0   
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