
11/1/2014 Median of medians - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Median_of_medians 1/5

Median of Medians
Class Selection algorithm

Data structure Array

Worst case performance

Best case performance

Worst case space complexity auxiliary

Median of medians
From Wikipedia, the free encyclopedia

In computer science, the median of medians algorithm
is a selection algorithm based on the quickselect
algorithm, and is optimal, having worst-case linear time
complexity for selecting the kth largest element. The
algorithm consists of an algorithm to find an approximate
median in linear time – this is the key step – which is
then used as a pivot in quickselect. In other words, it uses
an (asymptotically) optimal approximate median-
selection algorithm to build an (asymptotically) optimal
general selection algorithm.

The approximate median-selection algorithm can also be used as a pivot strategy in quicksort, yielding an
optimal algorithm, with worst-case complexity O(n log n). Although this approach optimizes quite well, it
is typically outperformed in practice by instead choosing random pivots, which has average linear time for
selection and average linearithmic time for sorting, and avoids the overhead of computing the pivot. Median
of medians is used in the hybrid introselect algorithm as a fallback, to ensure worst-case linear
performance: introselect starts with quickselect, to obtain good average performance, and then falls back to
median of medians if progress is too slow.

The algorithm was published in Blum et al. (Tarjan), and thus is sometimes called BFPRT after the last
names of the authors. In the original paper the algorithm was referred to as PICK, referring to quickselect
as "FIND".

Contents

1 Outline
2 Algorithm
3 Properties of pivot
4 Proof of O(n) running time
5 Analysis
6 References
7 External links

Outline

Quickselect is linear-time on average, but it can require quadratic time with poor pivot choices. This is
because quickselect is a decrease and conquer algorithm, with each step taking O(n) time in the size of the
remaining search set. If the search set decreases exponentially quickly in size (by a fixed proportion), this
yields a geometric series times the O(n) factor of a single step, and thus linear overall time. However, if the

https://en.wikipedia.org/wiki/Selection_algorithm
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Selection_algorithm
https://en.wikipedia.org/wiki/Quickselect
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Introselect
https://en.wikipedia.org/wiki/Decrease_and_conquer
https://en.wikipedia.org/wiki/Geometric_series

11/1/2014 Median of medians - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Median_of_medians 2/5

search set decreases slowly in size, such as linearly (by a fixed number of elements, in the worst case only
reducing by one element each time), then a linear sum of linear steps yields quadratic overall time
(formally, triangular numbers grow quadratically). For example, the worst case occurs when pivoting on the
smallest element at each step, such as applying quickselect for the maximum element to already sorted data
and taking the first element as pivot each time.

If one instead consistently chooses "good" pivots, this is avoided and one always gets linear performance
even in the worst case. A "good" pivot is one for which we can establish that a constant proportion of
elements fall both below and above it, as then the search set decreases at least by a constant proportion at
each step, hence exponentially quickly, and the overall time remains linear. The median is a good pivot –
the best for sorting, and the best overall choice for selection – decreasing the search set by half at each step.
Thus if one can compute the median in linear time, this only adds linear time to each step, and thus the
overall complexity of the algorithm remains linear.

The median-of-medians algorithm does not actually compute the exact median, but computes an
approximate median, namely a point that is guaranteed to be between the 30th and 70th percentiles (in the
middle 4 deciles). Thus the search set decreases by a fixed proportion at each step, namely at least 30% (so
at most 70% left). Lastly, the overhead of computing the pivot consists of recursing in a set of size 20% the
size of the original search set, plus a linear factor, so at linear cost at each step, the problem is reduced to
90% (20% and 70%) the original size, which is a fixed proportion smaller, and thus by induction the overall
complexity is linear in size.

Algorithm

The Select algorithm divides the list into groups of five elements. (Left over elements are ignored for now.)
Then, for each group of five, the median is calculated. Select is then called recursively on this sublist of n/5
elements to find their true median. Finally, the "median of medians" is chosen to be the pivot.

 // returns the index of the median of medians.
 // requires a variant of select, "selectIdx"
 // which returns the index of the selected item rather than the value
 function medianOfMedians(list, left, right)
 numMedians = ceil((right - left) / 5)
 for i from 0 to numMedians
 // get the median of the five-element subgroup
 subLeft := left + i*5
 subRight := subLeft + 4
 if (subRight > right) subRight := right
 // alternatively, use a faster method that works on lists of size 5
 medianIdx := selectIdx(list, subLeft, subRight, (subRight - subLeft) / 2)
 // move the median to a contiguous block at the beginning of the list
 swap list[left+i] and list[medianIdx]
 // select the median from the contiguous block
 return selectIdx(list, left, left + numMedians - 1, numMedians / 2)

Properties of pivot

The chosen pivot is both less than and greater than half of the elements in the list of medians, which is
around n/10 elements (½×n/5) for each half. Each of these elements is a median of 5, making it less than 2
other elements and greater than 2 other elements outside the block. Hence, the pivot is less than 3(n/10)

https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/Percentile
https://en.wikipedia.org/wiki/Decile

11/1/2014 Median of medians - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Median_of_medians 3/5

elements outside the block, and greater than another 3(n/10) elements inside the block. Thus the chosen
median splits the elements somewhere between 30%/70% and 70%/30%, which assures worst-case linear
behavior of the algorithm. To visualize:

One iteration on a randomized set of 100 elements from 0 to 99
12 15 11 2 9 5 0 7 3 21 44 40 1 18 20 32 19 35 37 39
13 16 14 8 10 26 6 33 4 27 49 46 52 25 51 34 43 56 72 79

Medians 17 23 24 28 29 30 31 36 42 47 50 55 58 60 63 65 66 67 81 83
22 45 38 53 61 41 62 82 54 48 59 57 71 78 64 80 70 76 85 87
96 95 94 86 89 69 68 97 73 92 74 88 99 84 75 90 77 93 98 91

(red = "(one of the two possible) median of medians", gray = "number < red", white = "number > red")

5-tuples are shown here sorted by median, for clarity. Sorting the tuples is not necessary because we only
need the median for use as pivot element.

Note that all elements above/left of the red (30% of the 100 elements) are less, and all elements below/right
of the red (another 30% of the 100 elements) are greater.

Proof of O(n) running time

The median-calculating recursive call does not exceed worst-case linear behavior because the list of
medians is 20% of the size of the list, while the other recursive call recurses on at most 70% of the list. Let
T(n) be the time it takes to run a median-of-medians Quickselect algorithm on an array of size n. Then we
know this time is:

where

the T(n·2/10) part is for finding the true median of the n/5 medians, by running an (independent)
Quickselect on them (since finding the median is just a special case of selecting a k-largest element)
the O(n) term c·n is for the partitioning work to create the two sides, one of which our Quickselect
will recurse (we visited each element a constant number of times, in order to form them into n/5
groups and take each median in O(1) time).
the T(n·7/10) part is for the actual Quickselect recursion (for the worst case, in which the k-th element
is in the bigger partition that can be of size n·7/10 maximally)

From this, using induction one can easily show that

Analysis

11/1/2014 Median of medians - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Median_of_medians 4/5

The key step is reducing the problem to selecting in two lists whose total length is shorter than the original
list, plus a linear factor for the reduction step. This allows a simple induction to show that the overall
running time is linear.

The specific choice of groups of five elements is explained as follows. Firstly, computing median of an odd
list is faster and simpler; while one could use an even list, this requires taking the average of the two middle
elements, which is slower than simply selecting the single exact middle element. Secondly, five is the
smallest odd number such that median of medians works. With groups of only three elements, the resulting
list of medians to search in is length n/3 (33 1/3%), and reduces the list to recurse into to length 2n/3 (66
2/3%), since it is greater than 1/2 × 2/3 = 1/3 of the elements and less than 1/2 × 2/3 = 1/3 of the elements.
Thus this still leaves n elements to search in, not reducing the problem sufficiently. The individual lists are
shorter, however, and one can bound the resulting complexity by the Akra–Bazzi method, but it does not
prove linearity.

Conversely, one may instead group by g = seven, nine, or more elements, and this does work. This reduces
the size of the list of medians to n/g, and the size of the list to recurse into asymptotes at 3n/4 (75%), as the
quadrants in the above table approximate 25%, as the size of the overlapping lines decreases proportionally.
This reduces the scaling factor from 10 asymptotically to 4, but accordingly raises the c term for the
partitioning work. Finding the median of a larger group takes longer, but is a constant factor (depending
only on g), and thus does not change the overall performance as n grows.

If one instead groups the other way, say dividing the n element list into 5 lists, computing the median of
each, and then computing the median of these – i.e., grouping by a constant fraction, not a constant number
– one does not as clearly reduce the problem, since it requires computing 5 medians, each in a list of n/5
elements, and then recursing on a list of length at most 7n/10. As with grouping by 3, the individual lists are
shorter, but the overall length is no shorter – in fact longer – and thus one can only prove superlinear
bounds. Grouping into a square of lists of length is similarly complicated.

References

Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E. (August 1973). "Time bounds for selection"
(http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf). Journal of Computer and System Sciences 7 (4): 448–461.
doi:10.1016/S0022-0000(73)80033-9 (http://dx.doi.org/10.1016%2FS0022-0000%2873%2980033-9).

External links

"Lecture notes for January 30, 1996: Deterministic selection
(http://www.ics.uci.edu/~eppstein/161/960130.html)", ICS 161: Design and Analysis of Algorithms,
David Eppstein

Retrieved from "http://en.wikipedia.org/w/index.php?title=Median_of_medians&oldid=629013975"

Categories: Selection algorithms

https://en.wikipedia.org/wiki/Category:Selection_algorithms
https://en.wikipedia.org/wiki/Akra%E2%80%93Bazzi_method
https://en.wikipedia.org/wiki/Manuel_Blum
https://en.wikipedia.org/wiki/Robert_Floyd
https://en.wikipedia.org/wiki/Vaughan_Pratt
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Robert_Tarjan
http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1016%2FS0022-0000%2873%2980033-9
http://www.ics.uci.edu/~eppstein/161/960130.html
https://en.wikipedia.org/w/index.php?title=Median_of_medians&oldid=629013975
https://en.wikipedia.org/wiki/Help:Category

11/1/2014 Median of medians - Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Median_of_medians 5/5

This page was last modified on 10 October 2014 at 04:56.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a
registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

