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Abstract 

This paper focuses on a scheme for automated tumor 
recognition using images acquired during endoscopic 
sessions. The proposed recognition system is based on 
multi-layer Jeed forward neural networks (MFNNs) and 
uses texture information encoded with corresponding 
statistical measures that are fed as input to the MFNN. 
Experiments were performed for recognition of different 
types of tumors in various images and also a number of 
sequentially acquired frames. The recognition of a 
polvpoid tumor of the colon in the original image, which 
were used for training was very high. The trained network 
was also able to recognize satisfactory the tumor in a 
sequence of video frames. The results of the proposed 
approach were very promising and seem that it can be 
efficiently appliedfor tumor recognition. 

1. Introduction 

Medical imaging covers a major application area 
providing significant assistance in medical diagnosis. The 
development of these systems leads to valuable diagnostic 
tools that may largely assist physicians in the 
identification of tumors or malignant formations. 

Systems capable to discriminate among various tumor 
categories, aim to improve experth ability to identify 
abnormal (e.g. cancerous regions) in tissue while 
decreasing the need for aggressive intervention and 
enhancing the capability to make accurate diagnosis. 
Furthermore, with these techniques it is possible to 
examine a larger area, studying living tissue in vivo, 
possibly at a distance [I], and thus minimize the 
shortcomings of biopsies, such as discomfort for the 
patient, delay in diagnosis, and limited number of tissue 
samples. In this context, the potentials of new imaging 
principles, such as fluorescence imaging or laser scanning 
microscopy, are very high. 

The main clinical idea behind these developments is 
early detection of malignant lesions, particularly in stages 
were local endoscopic therapy is possible. The need for 
more effective methods of early detection such as those 
using intelligent systems for medical imaging is obvious. 
Although advanced technical developments in this field 
are in progress and seem very promising, however, as yet, 
clinical results are still pending and ongoing and upgraded 
research is indispensable to promote the technologies in 
question and clarify their real potential for clinical use. 

In this paper, we present an approach that will result 
in detection of tumors during an endoscopic procedure. 
The presented approach is based on the texture 
information that is estimated for different image regions. 
This kind of information is represented using 
corresponding textual features, which are then fed to the 
MFNN for recognition and characterization purposes. The 
recognition capability of the proposed approach has been 
extensively tested in still images and also in a sequence of 
frames. 

In section 2 of this paper, there is a description of the 
textual analysis used. The recognition system is described 
in section 3. In section 4, we present the results of 
experiments performed for various still endoscopic 
images. In section 5, we present the results of experiments 
performed with a sequence of frames and finally in 
section 6 the main conclusions are summarized. 

2. Texture analysis 

2.1 Texture analysis using statistical descriptors 

CO-occurrence matrices [2][3], represent the spatial 
distribution dependence of the gray levels within an area. 
Each (i,j)th entry of the matrices, represents the 
probability of going from one pixel with gray level 0 to 
another with a gray level ci> under a predefined distance 
and angle. More matrices are formed for specific spatial 
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distances and predefined angles. From these matrices, sets 
of statistical measures are computed (called feature 
vectors) for building different texture models. We have 
considered four angles, namely 0, 45 ', 90 ', 135 as well 
as a predefined distance of one pixel in the formation of 
the co-occurrence matrices. Therefore, we have formed 
four co-occurrence matrices. Among the 14 statistical 
measures, originally proposed by Haralick [2][4], that are 
derived from each co-occurrence matrix we have 
considered only four. Namely, angular second moment, 
correlation, inverse difference, moment and entropy. 

Energy -Angular Second Moment 

i j  

Correlation 

cx a 

Inverse Difference Moment 

Entropy 

We have experimentally found that these measures 
provide high discrimination accuracy, which can be only 
marginally increased by adding more measures in the 
feature vector. Thus, using the above mentioned four co- 
occurrence matrices we have obtained 16 features 
describing spatial distribution in each window 
corresponding to a region in which an original image is 
divided in order to apply the proposed image indexing 
scheme. The image is raster scanned with sliding 
windows of M x M dimensions. For each such window 
we perform analysis based on the co-occurrence matrices. 

2.2 Texture analysis based on Discrete Wavelet 
Transform 

The problem of texture classification, aiming at 
discriminating among various texture classes, is 
considered in both the time and the wavelet domain, since 
it has been demonstrated that discrete wavelet transform 
(DWT) can lead to better texture modeling [17]. Thus, we 
can better exploit the well-known local information 
extraction properties of the wavelet signal decomposition 

as well as features of wavelet denoising procedures [IO].  
It is expected that this kind of information considered in 
the wavelet domain should be smooth due to the time- 
frequency localization properties of the wavelet 
transform. It is interesting, that only the 2-D Haar wavelet 
transform, which is considered as a simple one compared 
with the other wavelet bases, exhibited the expected and 
desired properties. We have performed a one-level 
wavelet decomposition of the images, thus resulting in 
four wavelet channels. As already mentioned, among the 
three channels 2, 3, 4 (frequency index) the one whose 
histogram presents the maximum variance, which is the 
channel that represents the most clear appearance of the 
changes between the different textures, has been selected 
for further processing. 

The subsequent step in the proposed methodology is 
to obtain image windows from the selected wavelet 
channel and the original image of dimensions MtM and 
2Mx2M respectively. Feature extraction is conducted by 
using the information that comes from the co-occurrence 
matrices [2]. Among the 14 statistical measures, 
originally proposed by Haralick [3], that are derived from 
each co-occurrence matrix we have considered only four 
of them. Namely, angular second moment, correlation, 
inverse difference moment and entropy as these have been 
described in a previous paragraph. 

These measures, as experiments indicated, provide 
high discrimination accuracy that can be only marginally 
increased by adding more measures in the feature vector. 
Using the above mentioned co-occurrence matrices 16 
features describing spatial distribution in each window in 
the wavelet domain have been obtained. For each window 
in the image of the selected wavelet channel, a feature 
vector containing 16 features that uniquely characterizes 
it in the wavelet domain has been formed. For each such 
window a set of four features has been obtained by 
calculating the above four mentioned statistical measures. 
Finally, these 48 component feature vectors form the 
input vector of the neural classifier. 

3. Texture discrimination using artificial 
neural networks 

Scientific interest in models of neuronal networks or 
artificial neural networks (ANNs) mainly arises from their 
potential ability to perform interesting computational 
tasks. Nodes, or artificial neurons, in neuronal network 
models are usually considered as simplified models of 
biological neurons, i.e. real nerve cells, and the 
connection weights between nodes resemble to synapses 
between neurons [5]. 

Advances in ANNs may contribute to the design and 
development of new computational tools to analyze 

424 



multidimensional and multimodal medical images. This 
holds also in the case of images obtained through 
minimally invasive imaging procedures, especially when 
therapy is guided by these images (video-surgery, 
interventional radiology, guided radiotherapy, etc.). 

In medical imaging, ANNs leaming from data sets 
encounters several difficulties, since these sets may be 
characterized by incompleteness (missing parameter 
values), incorrectness (systematic or random noise in the 
data), sparseness (few andor non-representable records 
available from the patient), and inexactness (inappropriate 
selection of parameters for the given task). In principle, 
ANNs are able to handle these data sets and are mostly 
used for their pattern matching capabilities and their 
human-like characteristics (generalization, robustness to 
noise), in order to assist medical decision-making [ 11,141. 
Furthermore, it is acknowledged that ANNs contribute to 
the improvement of imaging information and to the 
development and spread of intelligent systems in medical 
imaging [6-IO], [ 12-1 61. ANN-based intelligent systems 
strongly depend on the existence of technology that 
provides computers with high computing performance for 
processing large amount of information in reasonable 
time. 

The most popular ANN is the so-called multi-layer 
feed-forward neural network (MFNN). In a MFNN, 
whose I-th layer contains nodes, (I = I ,  ...,A4), artificial 
neurons operate according to the following equations: 

where nei, is, for the j-th neuron in the I-th layer ( j = 

I ,  ..., N , ) ,  the sum of its weighted inputs. The weights for 
connections from the i-th neuron at the (2-1) layer to thej- 
th neuron at the I-th layer are denoted by y: is the 
output of thej-th neuron that belongs to the I-th layer, and 
the logistic functionflnei,)=( 1 +exp(-nei,))-' is the j-th's 
neuron non-linear activation function. 

Training a MFNN to recognize abnormalities in image 
regions is typically realized by adjusting the network 
weights through a gradient descent method following an 
error correction strategy. In a MFNN this operation 
corresponds to minimizing the network's leaming error: 

where (v?,,~ - $,p)2 is the squared difference between the 
actual output value at the j-th output layer neuron, for an 
input samplep, and the target output value; p is an index 
over input-output patterns, After training, the ANN is able 

to discriminate between normal and abnormal texture 
regions by forming hyperplane decision boundaries in the 
pattem space. 

A three-layer FNN with 16 linear inputs and 2 
nonlinear outputs were used for the experiments described 
in this paper. Several variations on hidden IayerS non 
linear neurons, ranging from 10 to 50, were tested. Best 
results were achieved with a 20-neuron configuration, 
which is used for the experiments that follow. 

4. Experiments on endoscopic images 

A number of experiments were conducted using the 
images illustrated in Fig. IA, 1B and 1C. Feature 
extraction was performed using windows of different size 
32x32 and 64x64 pixels on each image. The feature set 
for different experiments was chosen using co-occurrence 
matrices (1  6 features) and the DWT (48 features). Figure 
2, shows the proportion of normal tissue compared to 
abnormal tissue data for the images inFig. IA, I B and IC 
respectively. 

A B C 
Fig. 1. Endoscopic images presenting different tumors. 

A number of vectors (approx. 400), randomly 
acquired from each image, were used for the training of 
various configurations of a three-layer FNN. These 
variations was of the form I-X-2, where I = { 16, 48 ] 
inputs and the number of neurons of the hidden layer XE 
[ IO,  401. Test data from each image acquired using a 
raster scanning sliding window technique. Tables 1, 2a, 
2b, 3a, 3b, 4a and 4b contain some of the most interesting 
results of the experiments. Maximum number of training 
epochs was set to 40000. 

Normal I Abnormal Proportion 

Fig.2. Distribution of normal and possibly abnormal 
tissues illustrated in fig. lA,  1B and 1C. 

The results show that the 3-layer FNN configuration 
that performs better, contains 25-30 neurons in the hidden 
layer. Also, the last image Fig.1C) seems to be 
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recognized better than the second (Fig.1B) and the first 
(Fig.1 A). The reconstructed images built using the FNNS 
output according to the corresponding success rates 
described in Table4a, are illustrated in Fig.3. 

Average Recognition 
Success (%) 
Target Classification 
Error (%) 
X (neurons) 
Training Epochs 
Function Evaluations 
Image A Success (YO) 

Fig. 3. The images of Fig.1 reconstructed, given the 
output of the FNN in Table 4a. 

Comparing the feature sets and the corresponding 
success rates (Fig.4) achieved using DWT and the co- 
occurrence features for 64x64 windows is worth noticing 
that the wavelet transformation results with slightly better 
performance. It is also worth to notice that the FNN can 
be trained by one order of magnitude faster using the 
wavelets (Fig.5). In general, features based on 32x32 
windows can possibly perform worse. So, the rest of our 
experiments are focused on the use of 64x64 window- 
size. 

93.3 

1 

30 
2936 
5776 
92.95 

Table 1. Success rates using co-occurrence matrices 
and 32x32 windows. 

~~ 

Image B Success (%) 
Image C Success (YO) 

I 92.18 
I 93.07 

Table 2a. Success rates using co-occurrence matrices 
and 64x64 windows. 

Co-occurrence - Window 64x64 

X (neurons) 
23779 

90.18 
92.13 

Table 2b. Success rates using co-occurrence matrices 
and 64x64 windows, for Table-1% settings. 

DWT - Window 32x32 

Table3a. Success rates using DWT and 32x32 
windows. 

Table 3t B. Success rates using DWT and 
windows, for Table-1% settings. 

32x32 

Table 4a. 

DWT- Window 64x64 

Image B Success (YO) 
Image C Success (YO) 

Success rates using DWT and 64x64 

I 92.89 
1 94.07 

windows. 
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I DWT- Window 64x64 I 

Table 4b. Success rates using DWT and 64x64 
windows, for Table-1S settings. 

92 
91 

93 
63 

63 

87 

e6 
85 

e4 

Fig.4. Comparison between the success rate of 
different feature sets for the FNN in table 1. 

Fig.5. The number of epochs and function evaluations 
for needed for the training of the FNN in table 
1, using different feature sets. 

5. Experiments on sequences of endoscopic 
images 

VHS-type videotapes exhibiting colonoscopic 
examinations, were used for the acquisition of the 
sequences of frames as shown in Figs6 and 7. The 
window size was defined at 64x64 pixels, as this has been 
concluded by previous study. It is important to notice that 
these frames have not been through any pre-processing 
procedure, in order to study MFNNB performance in 
conditions closer to reality. 

4 5 6 

Fig.6. Sequence of 7 frames illustrating a polypoid 
tumor of the colon. Frames 2 and 3 where used 
for training the MFNN. 

Fig.7. Sequence of frames illustrating another 
polypoid tumor of the colon. Frames 1 and 2 
where used for training theMFNN. 

The first experiment was performed using co- 
occurrence features on the frames illustrated in Fig.6. 
Abnormal to normal proportion in the in the training 
sample was approximately 1/10. The architecture of the 
network that tried was comprised by a 3-layer FNN with 
20 neurons in the hidden layer. The area defined as tumor 
to the FNN had a round shape as outlined in frame-l 
(Fig.6). Tests were performed using all frames from 1 to 7 
and these corresponded to different training classification 
error goals of the MFNN as these are shown in Fig.8 
(upper). When the network was trained using the pattems 
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existed in second frame (Fig. 6.2), then the MFNN 
resulted to percentage of 97.5% of success, but the 
success percentage recognizing the rest of frames was 
tolerable. The overall performance exceeded 89%. 
Interesting results also occurred using a training set 
consisted of textures from both frames 2 and 3. As it can 
be seen in Fig.8 (lower), success rate distribution has been 
significantly differentiated. 

90 

85 

80 75 

7" 

1 2 3 4 5 6 7  

Fmme Numkr 

m 3% 
100 

95 

90 

85 

80 

75  

1 2 3 4 5 6 7  

Fmnn Numkr 

Fig. 8. Percentage of successfully recognized patterns 
per frame, after training the MFNN with 
frame-2 (upper) and with frame 2 and 3 
(lower), for various target classification 
errors. 

The overall performance achieved can be evaluated as 
satisfactory by the experts since that tumorS size was 
very small compared to the window size used for feature 
extraction (approximately double compared to window 
size). The statistical information that acquired from 
abnormal areas is possibly insufficient. Additionally, 
illumination conditions could significantly influence the 
statistical information extracted from each image and 
degrading MFNNS ability to recognize the tumor in 
different frames. 

Another experiment was performed using the wavelet 
transformation for the frames illustrated in Fig.7. Once 
again the 48-20-2 MFNNS structure has given the highest 
success rates. Training with patterns coming from frame-I 
(Fig. l.l), and setting the target classification error at 
1.2%, the recognition success for each frame of Fig.7 
respectively, is illustrated in Fig.9. The same distribution 
of recognition success was being repeated in almost all 
the experiments for various MFNN structures and training 
classification errors. It is also worth to notice that the 
success rates increased uniformly not only for frame-I but 
also for the rest of the frames, as the target classification 
error during training decreased. 

Fl.".""m." 

Fig. 9. Percentage of successfully recognized patterns 
per frame, after training the MFNN with 
frame-1 (upper) and with frame 1 and 2 for 
(lower), for various target classification errors. 

The behavior of the 3-layer FNN configurations that 
have been trained with both frames 1 and 2, was almost 
the same, and the network was able to recognize those 
frames better. The highest results achieved using 25 
hidden neurons, for a target classification error of 0.8%, 
as illustrated inFig.9 (lower). 

6.  Conclusions 

In general, the results obtained indicate that the 
proposed scheme is capable of detecting successfully 
various types of tumors in single images and in sequences 
of frames with a success rate in recognition that is 
accepted by the experts. Current results appear to be 
promising and several pre-processing techniques and 
MFNN configurations are being tested to optimize overall 
recognition performance for sequences of frames. Major 
improvements on the techniques will be focused on the 
preprocessing stages in order to eliminate influences 
coming from the illumination conditions during the 
endoscopic procedure. The different appearance of the 
normal tissues as well as the variations on the possible 
abnormal tissues will be studied by extensive 
experimentation using data from different sources. A 
database is being built as a reference tool in which the 
user will be able to maintain the various cases. Such cases 
will then be used for the training of the system. A major 
target is to setup a system that will be guided by the 
expert during the endoscopy. It will be capable to warn 
the doctors for small regions that correspond to suspicious 
tissues. 



7. References 

[I]  Delaney, PM, Papworth, GD, King, RG. Fibre optic 
confocal imaging (FOCI) for in vivo subsurface 
microscopy of the colon. In: Preedy VR and Watson RR, 
eds. Methods in disease: Investigating the 
Gastrointestinal Tract. London: Greenwich Medical 
Media, 1998. 

[2] Haralick, R. M., Shanmugam, K. and Dinstein, 1. (1973). 
Textural Features for Image Classification IEEE Trans. 
Systems, Man and Cybernetics, 3 ,  6,610-621. 

[3] Gotlieb C.C., Kreyszig Texture descriptors based on co- 
occurrence matrices. Comp. Vision, Graph. and Image 
Proc. 1990; 5 1 : 70-86. 

[4] Haralick, R. M. (1979). Statistical and structural 
approaches to texture. IEEE Proceedings, 67,786-804. 

[SI Durbin R, Miall C, Mitchison G. The Computing Neuron. 
Reading: Addison-Wesley, 1989. 

[6] Coppini G, Poli R, Valli G. Recovery of the 3-D shape of 
the left ventricle from echocardiographic images. IEEE 
Transactions on Medical Imaging 1995; 14: 301-317. 

[7] Hanka R, Harte TP, Dixon AK, Lomas DJ, Britton PD. 
Neural networks in the interpretation of contrast- 
enhanced magnetic resonance images of the breast. In: 
Proceedings of Healthcare Computing. Harrogate: UK, 
1996: 275-283. 

[8] Ifeachor EC, Rosen KG, eds. Proceedings of the 
International Conference on Neural Networks and Expert 
Systems in Medicine and Healthcare. Plymouth: UK, 
1994. 

[9] Innocent PR, Barnes M, John R. Application of the fuzzy 
ARTIMAP and MinMaxIMAP neural network models to 
radiographic image classification. Artif: Intell. in Med. 
1997; El: 241-263. 

[IO] Karkanis S, Magoulas GD, Grigoriadou M, Schurr M. 
Detecting abnormalities in colonoscopic images by 
textural description and neural networks. In: Proc. of 
Work. on Mach. Learn. in Med. Appl., Advance Course in 
Artif: Intell.-ACAI99. Chania: Greece, 1999: 59-62. 

[ I  I] Lim CP, Harrison RF, Kennedy RL. Application of 
autonomous neural network systems to medical pattern 
classification tasks. Artificial Intelligence in Medicine 
1997; 11: 215-239. 

[I21 Miller AS, Blott BH, Hames TK. Review of neural 
network applications in medical imaging and signal 
processing. Medical and Biological Engineering and 
Computing 1992; 30: 449464. 

[I31 Phee SJ, Ng WS, Chen IM, Seow-Choen F, Davies BL. 
Automation of colonoscopy part 11: visual-control 

aspects. IEEE Engineering in Medicine and Biology 
May/June 1998: 81-88. 

Reategui EB, Campbell JA, Lea0 BF. Combining a 
neural network with case-based reasoning in a diagnostic 
system. Artificial Intelligence in Medicine 1996; 9: 5-27. 

Veropoulos K, Campbell C, Learmonth G. Image 
processing and neural computing used in the diagnosis of 
tuberculosis. In: Colloq. Intelligent Meih. in Health. and 
Med. Appl. York: UK, 1998. 

[I61 Zhu Y, Yan H. Computerized tumor boundary detection 
using a Hopfield neural network. IEEE Tr. on Medical 
Imaging 1997; 16: 55-67. 

[ 171 Meyer Y ., Wavelets: Algorithms and Applications, 
Philadelphia: SIAM, 1993. 

429 


