Homework 2

Convolution and Edge Detection
Using the Sobel Operator

Eric Liskay
ECE 590
Spring 2012

Objective
The objective of this homework is to Sobel edge detection and how it can be

implemented in VHDL. The ultimate goal is to use this in my final project, the SIMD
Image Processor.

Algorithm

-1 0+1] (-1 -2 -1]

G,=|-20+2(* A G,={0 0 O*A

-1 0+1 +1 +2+1
G =+ GG,

The above figure! shows how Sobel edge detection is done mathematically. The
Sobel operator uses two 3x3 kernels which are convolved with a 3x3 array of pixels
from the image, denoted as A. Gx and Gy are the derivatives of the convolution. Gy is for
horizontal changes and Gy is for vertical changes. The * denotes the 2-dimesional
convolution operation.

The output G, the gradient magnitude, is obtained by squaring Gx and Gy, adding
them, and then taking the square root of the resulting sum. The approximate magnitude
can also be computed by just adding the absolute values of Gx and Gy. This may be
less accurate, but is faster to compute.

1 http://en.wikipedia.org/wiki/Sobel operator

http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Sobel_operator

Implementation in VHDL

In my design, | will compute the derivatives, Gx and Gy, by multiplying the values
at the corresponding indices in each matrix and adding the results. The VHDL code for
this can be seen below. Since | am working with color images, | will simplify operations
by only looking at the red channel. inputA is an array of pixels with x and y representing
the indices and 0 to select the red channel.

variable Gx, Gy : signed(15 downto @) := (others=> '0');
variable Gu : unsigned(15 downto @);
variable Gsqd : unsigned(31 downto @);

constant Sobelx : kernel := ((-1,0,1),(-1,0,2),(-1,0,1));
constant Sobely : kernel := ((-1,-2,-1),(0,0,0),(1,2,1));

Gx := (others=>'0");
Gy := (others=>'0");
for y in @ to 2 loop
for x in @ to 2 loop
Gx := x + conv_signed((conv_integer(unsigned(inputA(x,y)(@))) * Sobelx(x,y)),16);
Gy := Gy + conv_signed((conv_integer(unsigned(inputA(x,y)(@))) * Sobely(x,y)),16);
end loop;
end loop;

| used a temporary variable to hold the output of the sums of G« and G,2.

Gsqd := conv_unsigned((conv_integer(Gx)**2) + (conv_integer(Gy)**2),32);

| then use the functior? below to calculate the square root to find G.
Gu := sqrt(Gsqd);

function sqgqrt (d : UNSIGNED) return UNSIGNED is
variable a : unsigned(31 downto @):=d; --original input.
variable g : unsigned(1l5 downto @):=Cothers => 'Q'); --result.
variable left,right,r : unsigned(17 downto @):=(Cothers => '0');
variable i : integer:=0;

begin
for i in @ to 15 loop
right(@):="1";
right(1):=r(17);
right(17 downto 2):=q;
left(1l downto @):=a(31 downto 30);
left(17 downto 2):=r(15 downto 0);
a(31 downto 2):=a(29 downto @); --shifting by 2 bit.
if C r(17) = "1") then
r := left + right;
else
r := left - right;
end if;
q(15 downto 1) := q(14 downto @);
q(@® := not r(17);
end loop;
return q;
end sqrt;

Once | have the magnitude, G, | then have to cap the maximum value that can
be held in 8-bits, the size of the channel. | do this by assigning all 1’s to the magnitude if
it is currently larger than 255. | then assign the lower 8 bits to the center pixel of the
output image. Each channel is assigned the same value which will make the image
display in grayscale.

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

2 http://vhdiguru.blogspot.com/2010/03/vhdI-function-for-finding-square-root.html

http://vhdlguru.blogspot.com/2010/03/vhdl-function-for-finding-square-root.html
http://vhdlguru.blogspot.com/2010/03/vhdl-function-for-finding-square-root.html

Results(Images with edges highlighted by Sobel)

Original mage Sobel Processed Image

-
N e

=] [RYAEE

(5 —_’35

Sobel Processed Image

Original Image

Original Image Sobel Processed Image

Sobel Processed Image

| Image

igina

Or

