
Copyright 1997/8/9, KJH, 545_3, 4/20/01

1

Sequential Statements

Prof. K. J. Hintz

Department of Electrical

and

Computer Engineering

George Mason University

Copyright 1997/8/9, KJH, 545_3, 4/20/01

2

Sequential Statements

� If Statements

� Case Statements

� Null Statements

� Loop Statements

� Assertion & Report Statements

Copyright 1997/8/9, KJH, 545_3, 4/20/01

3

If Statements

� Value of a Boolean Expression Determines
Which Statements Are Executed
– Expression must evaluate to TRUE or FALSE

Copyright 1997/8/9, KJH, 545_3, 4/20/01

4

If Statements Syntax

[if_label :] if Boolean_expression

 then sequential_statement

 { elsif Boolean_expression

 then sequential_statement }

[else sequential_statement]

end if [if_label] ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

5

If Statement Entity, e.g.,

entity NiCadCharger is

 port (Voltage , Current : in real ;

AC : in bit ;

Charged , Recharge : out bit

) ;

end entity NiCadCharger ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

6

If Statement Architecture, e.g.,

architecture ChargerArch1 of NiCadCharger is

 begin

 Charger_A: process (Voltage ,

 Current , AC) is

 begin

 if Voltage >= 9.6 then

 Charged <= ‘1’ ;

 Recharge <= ‘0’ ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

7

If Statement, e.g

 elseif (AC = ‘1’ and Current < 0.5)
 then

 Charged <= ‘0’ ;

 Recharge <= ‘1’ ;

 else

 Charged <= ‘0’ ;

 Recharge <= ‘0’ ;

end process Charger_A ;

end architecture ChargerArch1 ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

8

Case Statement

� Particular Value of an Expression
Determines Which Statements Are
Executed

Copyright 1997/8/9, KJH, 545_3, 4/20/01

9

Case Statement Syntax

[case_label :] case expression is

 (when choices =>

 { sequential_statement })

 { ... }

end case [case_label] ;

choices <=

(simple_expression | discrete_range

| element_simple_name | others)

 { | ... }

Copyright 1997/8/9, KJH, 545_3, 4/20/01

10

Choices in Case Statements

� Locally Static, Determined During
Analysis Phase

� Exactly One Choice for Each Possible
Value of Selector Expression

� More Than One Choice Can Be Listed for
Each “When”

Copyright 1997/8/9, KJH, 545_3, 4/20/01

11

Choices in Case Statements

� Case Specification Alternatives
– Enumerate specific value(s)

– Discrete Range

– Subtype

� others
– Keyword Which Precedes the Alternative to

Be Used If All Other Case Alternatives Fail

Copyright 1997/8/9, KJH, 545_3, 4/20/01

12

Case Statement, e.g.,

entity Multiplexer is

 port (

 MuxSelect : in subtype MuxType is

 positive range 0 to 3 ;

 In_0 , In_1 , In_2 , In_3 : in bit ;

 MuxOut : out bit) ;

end entity Multiplexer ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

13

Case Statement, e.g.,

4_to_1_MUX :

 case MuxSelect is

 when 0 =>

 MuxOut <= In_0 ;

 when 1 =>

 MuxOut <= In_1 ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

14

Case Statement, e.g.,

 when 2 =>

 MuxOut <= In_2 ;

 when 3 =>

 MuxOut <= In_3 ;

end case 4_to_1_MUX ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

15

Null Statement Syntax

� Need Method of Specifying When No
Action Is to Be Performed, e.g., In Case
Statement

 [null_label :] null ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

16

Null Statement, e.g.,

� Use As “Stub” for Code to Be Written

FlirFocus : process (range , aperture)

 begin

 null ;

 end process FlirFocus ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

17

Loop Statements

� Used for Repeated Execution of Sequential
Statements

� Alternatives
– Infinite

» Single or multi-phase clock

» Whole system turned on

Copyright 1997/8/9, KJH, 545_3, 4/20/01

18

More Loop Statements

– Exit on condition

– Inner & Outer Loops

– Next

– While

– For

Copyright 1997/8/9, KJH, 545_3, 4/20/01

19

Loop Statement Syntax

[loop_label :] loop

 { sequential_statement }

end loop [loop_label] ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

20

Infinite Loop Entity, e.g.,

entity 2_Phase_Clock is

 port (Clk : in bit ;

 Phase_1 , Phase_2 : out bit) ;

end entity 2_Phase_Clock ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

21

Infinite Loop Architecture, e.g.,

architecture 2PC of 2_Phase_Clock
 begin
 variable P1 : bit ;
 loop
 wait until Clk = ‘1’
 if P1 = ‘0’ then
 Phase_1 <= ‘0’ ;
 Phase_2 <= ‘1’ ;
 P1 := ‘1’ ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

22

Infinite Loop Architecture, e.g.,

 else
 Phase_1 <= ‘1’ ;

 Phase_2 <= ‘0’ ;

 P1 := ‘0’ ;

 end if ;

 end loop 2PC ;

end architecture 2PC ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

23

Exit on Condition, e.g.,

variable String_Length : positive := 0 ;

constant String_Max : positive := 80 ;

StringFill : loop

 wait until Char_In ;

 String_Length := String_Length + 1 ;

 exit when String_Length = String_Max ;

end loop StringFill ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

24

Inner & Outer Loops

for Row_Index in 1 to Row_Max
 Outer_Loop: loop
 Inner_Loop: loop
 exit Outer_Loop when Pixel_In = EOF ;
 New_Image (Row_index, Col_Index) :=
 Pixel_In ;
 end loop Inner_Loop ;
 end loop OuterLoop ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

25

Next Loops

� The Next Statement Terminates Execution
of the Current Iteration and Starts the
Subsequent Iteration

� If There Is a Loop Label the Statement
Applies to That Loop

� If There Is No Loop Label, the Statement
Applies to the Inner-Most Enclosing Loop

Copyright 1997/8/9, KJH, 545_3, 4/20/01

26

Next Loop, e.g.,

loop_1: loop

 loop_2: loop

 something ;

 next loop_1 when String_Length = 0 ;

 more_something ;

 end loop loop_2 ;

end loop loop_1 ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

27

While Loop, e.g.,

� The Loop Only Executes, and Continues to
Execute, If the Boolean Expression
Evaluates to True, and Continues to Be
Evaluated As True.

While String_Length <= String_Max
 String1: loop
 String_Length := String_Length + 1 ;
end loop String1 ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

28

For Loops

� The Loop Variable Is of Type Constant and
Hence It Cannot Be Modified Within the
Loop

� The Loop Variable Is a Strictly Local
Constant

Copyright 1997/8/9, KJH, 545_3, 4/20/01

29

For Loop, e.g.,

for String_Index in 1 to String_Max

 String_Reverse : loop

 My_String (String_Index) :=

 Buffer (String_Max - String_Index +1);

end loop String_Reverse ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

30

Assertion Statements

� Assertion Statements Check Expected
Conditions at Their Location in the
Program.

� Assertion Statements Are Not “If”
Statements Since They Test for the Correct,
Expected Results Rather Than an Error.

Copyright 1997/8/9, KJH, 545_3, 4/20/01

31

Assertion Statement Syntax

[assertion_label :] assert

 Boolean_expression

[report expression]

[severity expression] ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

32

Assertion Statements

� Expression Must Evaluate to String

� If Other Than the Expected Condition, the
Report and Severity Expressions Are
Executed

Copyright 1997/8/9, KJH, 545_3, 4/20/01

33

Uses of Assertion Statements

� Simulation
– notify user when statement is executed

– optionally print report expression

– optionally print severity e.g., (note, warning,
error, failure)

– determine whether to continue

Copyright 1997/8/9, KJH, 545_3, 4/20/01

34

Uses of Assertion Statements

� Synthesis
– Value in assertion statement is assumed and

circuit optimized on that value

� Verification
– Determine that the assertation statement is true

for all possible values based on all possible
routes to the statement

Copyright 1997/8/9, KJH, 545_3, 4/20/01

35

Report Statement

� A Note Is Printed Whenever the Expression
Occurs

� Report Always Produces a Message

� Useful for Tracing Values or Paths During
Execution

� Expression Must Evaluate to String

Copyright 1997/8/9, KJH, 545_3, 4/20/01

36

Report Statement Syntax

[report_label :] report expression

[severity_expression] ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

37

HW 2-11

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE Clock_2_11_pkg IS
 COMPONENT Clock_2_11
 --GENERIC () ;
 PORT (ClockOut : out bit := '0');
 END COMPONENT ;
END Clock_2_11_pkg ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

38

HW 2-11

ENTITY Clock_2_11 IS

 -- GENERIC ();

 PORT (ClockOut : out bit := '0');

END Clock_2_11 ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

39

HW 2-11

ARCHITECTURE KJH_Clock OF Clock_2_11 IS
BEGIN
clock_gen : PROCESS
 BEGIN
 ClockOut <= '1'; WAIT FOR 10 ns ;
 Clockout <= '0'; WAIT FOR 10 ns ;
 END PROCESS clock_gen ;
END KJH_Clock ;

Copyright 1997/8/9, KJH, 545_3, 4/20/01

40

End of Lecture

