ESA Coding Standards

Prof. K. J. Hintz

Department of Electrical and Computer Engineering George Mason University

ESA Modeling Guidelines

- European Space Research and Technology Center
- September 1994
- Based on VHDL-93
- Applicability
 - Documentation
 - Simulation
 - Not logic synthesis

Basic Language

English

- Documentation
- Identifiers
- Comments
- Messages
- File names
- *etc.*

Readability Standards

- Consistent Writing Style
- Consistent Naming Conventions
- Reserved Words
 - Uniform casing (all lc or uc)
- Identifiers
 - Mixed case
 - Recommended < 15 chars, max of 28</p>

Readability Standards

- Concise
- No Unused Code
- No More Than One Statement per Line
- Maximum of 80 chars/line
- Consistent Indentation
 - No Tab
 - Fixed number of spaces (e.g., 3)

Readability Standards

- Group Related Constructs
 - Separate groups using
 - » blank lines
 - » dashed lines
- Vertically Align
 - Comments
 - Identifiers

Naming Conventions

- Documented in Each File
 - Meaningful
 - Non-cryptic
 - No Extended Identifiers
- Same as Actual Hardware
- Active Low Clearly Indicated in Name, e.g.,
 - Reset_N
 - Enable_Bar

Naming Conventions

- Indicate Purpose, Not Type
 - PC Counter

not

- Eight_Bit_Reg

Comments

- Explain Function of Module to Other Designers
- Explanatory, Not Just Restatement of Code
- Locate Close to Code Described
 - Put near executable code, not just in header

Required File Header

- Name of Design Unit(s) in File
- File Name
- Purpose of Code
- Description of Hardware Modeled
- Limitations of Model
- Known Errors
- Intended Design Library of Compiled Code

Required File Header

- List of Analysis Dependencies
- Author and address
- Environment
 - Simulator
 - Version
 - Platform
- Change List

Subprogram Description

- Description of Function Immediately Precedes Declaration
- Include
 - Assumptions
 - Limitations
 - Parameters
 - Results

Port and Generic Clauses

- One Signal Declaration per Line
- Immediately Follow Each With Descriptive Comment
 - Do not group comments

Types

- MSB = = Leftmost Bit
- Allow for Type Change w/o Changing Behavior of Simulation by avoiding
 - Default initialization
 - Relying on the number of type values in a type declaration
 - Dependencies on the order in a type declaration

Literals

Real

Only use decimal format

Radix

- 2, 8, 10, 16 Only
- No exponent
- No underscores in radix 10

Hexadecimal

Uppercase only

Files

- Only One Allowed File Type
 - Std. Textio. Txt
- When Used as Input to VHDL, Fully Document Format in VHDL Code
- Line Length
 - 80 recommended
 - 255 max

Signals

■ If Possible

 Same signal name throughout all levels of hierarchy

If Not

- Derive signal names from base name
- Ordering of Vectors Matches Device Data Sheet

Ports

Logical Ordering

- Order by mode recommended
 - » in, bidirectional, out
- Order by function allowed
 - » order by mode within each function
- Port Maps
 - Only named association

Assertion Statements

- Avoid Insignificant Events
- Should Provide
 - Clear description of reason for assertion
 - Hierarchical path to instance or package
 - Identify relevant signals

Assertions Severity Levels

Failure

Errors in the model itself

Error

- Timing violations affecting state of model
- Invalid data affecting state of model

Assertions Severity Levels

Warning

- Timing violations not affecting state of model
- Invalid data not affecting state of model

Note

Other Essential information

Declarations

- Descriptive Label for All Processes
- Sensitivity List
 - Use if only one wait statement
- Use Matching Identifier at End
- Avoid Using a Procedure Which Modifies Parameters Not Passed to It

Declarations

■ Top-level Entity Should Have Same Name as Device Modeled

Configurations

- No Configuration Specifications within Architectures
- Explicit Configurations Should be Used in Testbenches

Packages

- Use IEEE Approved Packages if Available
- Package Modules by Functionality, *e.g.*,
 - Timing parameters
 - Timing subprograms
- Same Order of Declarations in Both Package Declaration and Package Body
- Non-IEEE Packages Must be Verified

Design Libraries

- Separate Design Library for Each Model
- Named After Device with _**Lib** appended
- Contains All Design Units Used by the Model except
 - IEEE std
 - Common packages
- Testbenches in Their Own Library
 - Contains all components except DUT

- No Model Intercommunication Through Files
- All Resolution Functions Must Be
 - Commutative [a*b = b*a]
 - Associate $[a^*(b^*c) = (a^*b)^*c]$
- Shared Variables
 - If used, must be proved to be deterministic

- Floating Point Values
 - Conversions
 - Comparisons
- Operating System Dependent Features
- Absolute Path Names for Files
- Absolute Addressing with Implicitly Declared Index, *e.g.*, string
 - Use predefined attributes

- Renaming Subprograms by Encapsulating Them in Subprograms with Different Names
- Hiding Signals, Variables, Constants, Subprograms, or Components by Declaring Another Object with the Same Name
 - Overloading OK

- Redefine Anything Which is Predefined
- References to the **Work** Library

Verification

- Performed by Someone Not Involved in the Creation of the Module
- Compare with Results of Other Models if Available
- Performed Completely in VHDL Using No Simulator Specific Features
- Execute Every Line of the Model

Verification

- Exercise All Assertion and Report Statements
- Verification of Subcomponents Does Not Obviate the Need to Test Them in Complete Model
- Verify All Boundaries and Singularities

Deliverables

Electronic Format

- Separate file for each design unit
- File name same as design unit
- ASCII
- QIC-150 tape cartridges
- Restore on Sun Sparc using tar
- Fiducial information and how to restore written on tape label

Specific Model Requirements

- Component Level Simulation
- Board Level Simulation
- System Level Simulation

Component Simulation Model

- Purpose
 - Verify by simulation before manufacture
- Must have Correct Timing Characteristics
- Not Necessarily Synthesizable
- Either Gate Level or RTL
- Suggested to Not Mix Structural and Behavioral Descriptions in Same Architecture

Allowed Types

Prefer

- -Bit
- -Bit_Vector
- Boolean
- Integer
- IEEE.Std_Logic_1164 package

Component Model Interface

- Digital Signals for Model Interface
 - Preferred
 - » Std_Logic
 - » Std_Logic_Vector
 - Allowed (no others)
 - » Bit
 - » Bit_Vector
- Analog: Real type suggested

Component Model Signals

- No Global Signals
- All Signals in Port Clause, Even for Unmodeled Functions
- Power Pins Not Required
- No User-defined Types in Port Clause

Purpose

- Verification of a Board Using One or More Components
- RTL or Higher Level
 - Gate-level netlist not acceptable
- Full functionality
 - Manufacturing test need not be implemented

- Interface Signals
 - Correct Digital Waveforms
 - Correct Timing
- Coded for Simulation Speed
 - Minimum number of processes, signals, and signal assignment statements
 - Maximum use of variables
 - Use more abstract types

- Avoid Reading Files
- Accompanying User's Manual with
 - Block diagram
 - Interconnecting signals
 - Sufficient details to allow another VHDL designer to develop models to perform board level simulations without needing original VHDL code

Board Level Model Interface

- Digital Signals for Model Interface
 - Preferred
 - » Std_Logic
 - » Std_Logic_Vector
- Analog: Real type suggested
- Pull-up/Pull-down Must be Modeled
- No Global Signals

- Naming
 - Top-level entity name should be BoardLevel
- All Signals in Port Clause, Even for Unmodeled Functions
- Power Pins Not Required
- Unknown Values Only Need Be Reported Using Assertion Statements

Board Level Model Timing

- All Inputs Must be Checked w.r.t.,
 - Period
 - Pulse width
 - Setup Time
 - Hold Time
- Only Timing Violations Affecting Simulation Behavior Should be Asserted

Board Level Model Timing

Outputs

- All outputs assigned delays
- Timing correctly modeled w.r.t. input signals and internal delays

Board Level Timing Parameters

- Timing Parameters Selectable Among
 - Worst case: lowest voltage, highest temperature, slowest execution speed
 - Typical case: nominal voltage, temperature, execution speed
 - Best case: highest voltage, lowest temperature, fastest execution speed
- Specified in Separate Package

Board Level Timing Parameters

- Parameters Expressed in Integer Number of ns
- Model Must Allow Timing Disabling Using Generics
 - TimingChecksOn : Boolean := False
- Timing Paramers Should Use Names Compliant with Vital Model Development Specification

Board Level Verification

- Automatically Performed Using Testbench
- Verify Using All Values of Std_Logic
 Type

System Level Simulation

Purpose

- Provide the functionality of a board, subsystem, algorithm, or protocol with a simulation speed allowing trade-offs to be performed
- No Similarity to Hardware is Required
- Coded for Efficient Simulation
- Interface
 - Use most suitable types

System Level Simulation

- Verification
 - Automated using testbench

End of Lecture

