Packages and Aliases
I N

Prof. K. J. Hintz

Department of Electrical
and
Computer Engineering
George Mason University

Packages
I N

= Method for Grouping Related Declarations
Which Serve a Common Purpose

— Set of subprograms to operate on particular
data type

— Set of declarations for particular model
— Separate interface from implementation
— Reusable

Packages
I N

— Unclutter rest of model
— Allows declaration of “global” signals, e.g.,

clocks.

» Not a generally good since behavior can change
through means other than signals declared in entity
Interface

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Packages
I N

= Design Unit Similar to Entity Declarations
and Architecture Bodies

— Can be put in library and made accessible to
other units

— Access to items declared in the package Is
through using its Sel ect ed Nane

| 1 brary nane. package_nane.item nane

— Aliases can be used to allow shorter names for
accessing declared items

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Packages
I N

= Two Components to Packages
— Package declaration
— Package body

Package Declaration
I N

= Subprograms Using Header,
Implementation Is Hidden

— “Information hiding”

m Constants, Do Not Need to Be Initialized In
Declaration

— “Information hiding”

Package Declaration
I N

= Types, Must Be Completely Specified
— Can have variable size arrays

= Signals Must Be Completely Specified

Package Declaration Syntax
[LI [[[[shll

package i1dentifier iIs
{ package declarative item}
end [package | [i1dentifier | ;

Package Declaration Example*
| [P [[[[[spl

package dp32 types is
constant unit _delay : Tine := 1 ns ;
type bool to bit table is
array (boolean) of bit ;

*Ashenden VHDL cookbook

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Package Declaration Example*
| [P [[[[[spl

function bits to I nt

(bits : Iin bit _vector) return integer ;
function bits to _natural

(bits : In bit _vector) return natural ;
procedure int _to bits

(int : in integer ;

bits : out bit vector) ;
end dp32 types ;

*Ashenden VHDL cookbook

10

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Package Body
[LI [[[[s[l

m Not Necessary If Package Declaration Does
Not Declare Subprograms

= May Contain Additional Declarations
Which Are Local to the Package Body

— Cannot declare signals in body

11

Package Body

| | 1 1 1 | | [S§

Declared Subprograms Must Include the
~ull Declaration As Used in Package

Declaration

— Numeric literals can be written differently if
same value

— Simple name may be replaced by a selected
name provided it refers to same item

12

Package Body Syntax
I N E R

package body identifier iIs
{ package body declarative item}
end [package body | [i1dentifier |

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

13

Package Body Example*
I N E R

package body dp32 types is

constant bool to bit :
bool to bit table :=(false =>"'0" |,
true =>"'1'") ;
function resolve bit 32
(driver : in bit 32 array) return bit 32 Is

constant float value : bit 32 := X"0000 0000" ;
variable result : bit 32 := fl oat val ue ;

*Ashenden VHDL cookbook
14

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Package Body Example*
I N E R

begi n
for 1 I n driver'range | oop

result :=result or driver (1) ;
end | oop ;

return result ;
end resolve bit 32 ;

*Ashenden VHDL cookbook

15

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Library Clause
[LI [[[[shll

s Makes Items in a Library Available to a
VHDL Model

m 10 Access Items in a Library Need to Use
Their selected _name

1 brary 1dentifier { , . . . }

16

Use Clause
I N B E

= Tedious to Always Use an Item’s Selectec
Name

= All Items Declared in a Package or Library
Can Be Made “Visible” Through a Use
Clause

17

Use Clause
I N B E

= Can Be Used in Any Declarative Section

s Keyword “All” Imports All Identifiers

18

Use Clause Syntax
I N

use sel ected nane {, . . .}

sel ected nane <=

nane . (| dentifier
character literal
oper at or _synbol
all)

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

19

Use Clause Example*
| [P [[[[[spl

use wor k. dp32 types. al l
entity dp32 is
generic (Tpd : Tine := unit_del ay)
port (d_bus : inout bus bit 32 bus ;
a _bus : out bit 32 ;
read, wite, fetch : out bit ;
ready, phil, phi2, reset : Iin bit)
end dp32 ;

*Ashenden VHDL cookbook

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Allases

I e
m Alternative ldentifier for an Iltem

= Improves Readability

= Allows One to Differentiate Among
Identically Named Items in Different

Packages

m Can Refer to a Single Element or Part of a

Composite Data

YPE, €.9.,

alias interrupt level is PSW30 downto 26);

21

Allases
I N B E

= Operations on Aliases Operate on Actual

ltems EXxcept for the Following Attributes
— X’ si npl e_nane

— X’ pat h_nane

— X’ 1 nstance_nane

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

22

Allases
I N B E

= Cannot Declare Aliases for
— Labels
— Loop parameters
— Generate parameters (replicates items)

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

23

Data Alias Syntax
[LI [[[[shll

alias i1dentifier
| : subtype_indication | Is nane ;

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

24

Data Alias
N N EE

= Subtype Indication Allows for the Type to
Be Changed

— |If scalar original
» Direction cannot change
» Bounds cannot change
» Unconstrained type allowed

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

25

Data Alias
N N EE

= Subtype Indication Allows for the Type to
Be Changed

— If array or array slice
» Direction can differ
» Bounds can differ
» Base type must remain unchanged

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

26

Non-Data Alias Syntax
I N

al1as (I dentifier
character literal
oper at or _synbol)
s name | signature | ;

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

27

Non-Data Alias

| | 1 1 1 | | [S§

= Alias for Enumeration Type Does Not
Require Definition of Aliases for
Enumeration Literals of Original

m Alias for Physical

ype Retains Units

Without Redefinition

28

Non-Data Alias Syntax
I N

= Optional Signature
— Only for subprograms and enumeration literals

— Overloading of identifiers may require means
of differentiating among alternatives

» return type does this
— Quter [| are required

29

Non-Data Alias Syntax
I N

Sighature <=

| [type mark { , . . . } | [return
type mark |]
—-e.g.,

alias high is std.standard.’1" [return

bit]

30

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Resolved Signals
I [L[[[[[sfl

= VHDL Requires a Function to Specify the
Values Which Result From Tying Multiple
Outputs Together

= Resolved Signal Includes Resolution
Function

— Inclusion of function indicates It is a resolved
signal

31

Resolved Signals
I [L[[[[[sfl

= Resolution Function Must Be Written for an
Indeterminate Number of Signals Since It Is
Not Known When Declared How Many
Signals Will Be Connected to It.

= The Value of a Signal at a Transaction Is
Determined by the Resolution Function
Operating on the Multiply Connected
Signals.

32

Resolved Signal Syntax
I N E R

subtype I ndication <=
| resolution function_nane |
type mark [range
(range_attribute nane
| sinple expression (to | downto)
si npl e_expressi on)
| (discrete range { , . . . }) |

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Resolved Signal Example*

| | 1 1 1 | | [S§

package ML4 is
type WL4 ulogicis (‘X, ‘0O, ‘1, *Z);
type MVL4 ul ogic_vector is array
(natural range <>) of MWL4 ul ogic ;
function resolve WL4
(contribution : ML4 ul ogic vector)
return MVL4 ul ogi c ;

*Ashenden

34

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Resolved Signal Example*
I N EE

subtype MVL4 logic is
resol ve WL4 WL4 ul ogi c ;
end package WL4 ;

*Ashenden

35

Resolved Signal Example*
I N EE

package body MVL4 | s
type table is array
(MWL4 ulogic
MVL4 ul ogic)
of MVL4 ul ogic ;

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

36

Resolved Signal Example*
I N EE

constant resolution_table : table : =

X ‘0’ 1 Z
((X X X ‘X), “ X
(X 0 X ‘0), ol
(‘X X 1 ‘1), ‘1
(‘X 0 1 "z)) ‘Z

37

Resolved Signal Example*
I N EE

function resolve WL4
(contribution : ML4 ul ogic _vector)
return MVL4 ulogic is
variable result : MVL4 ulogic := *Z;

38

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

Resolved Signal Example*
I N EE

begi n
for 1ndex in contribution’range | oop
result := resolution _table
(result, contribution (I1ndex)) ;
end | oop ;

return result
end function resolve WL4 ;
end package body WL4 ;

39

Copyright © 1997/8/9, KJH, 545_10, 5/8/2001

End of Lecture
I N R O[]

9

40

