ECE-545

Introduction to VHDL
5L L rrrLruem

Prof. K. J. Hintz

Department of Electrical and Computer
Engineering

George Mason University

KJH, 545 1, 4/20/01

RASSP
| | § | | || [N

B Some of the materials used in this course
come from ARPA RASSP Program and are
copyright
— Rapid Prototyping of Application Specific

Signal Processors Program

— http://rassp.scra.org
B Some materials are copyright K. J. Hintz

KJH, 545 1, 4/20/01

[Lecture Goals

| | § | | || [N

B Introc
for V]

uce VHDL Concept and Motivation
HDL

B Introc

uce the VHDL Hierarchy and

Alternative Architectures Model
m Start Defining VHDL Syntax

KBdp gt ol4odb2048blrAssP E&F

Motivation
P L rrrrrmnmm

m Digital System Complexity Continues to
Increase

— No longer able to breadboard systems
» Number of chips
» Number of components

» Length of interconnects
— Need to simulate before committing to
hardware
» Not just logic, but timing

KJH, 545 1, 4/20/01

Motivation
P L rrrrrmnmm

m Different Types of Models are Required at
Various Development Stages

— Logic models
— Performance models
— Timing models

— System Models

KJH, 545 1, 4/20/01

Motivation
P L rrrrrmnmm

B Non-Proprietary Lengua Franca

— Need a universal language for various levels of
system design

— Replacement for schematics
— Unambiguous, formal language

— Partitions problem
» Design
» Simulation and Verification

» Implementation
KJH, 545 1, 4/20/01

Motivation
P L rrrrrmnmm

m Standard for Development of Upgrades
— Testbenches and results

— System modifications must still pass original
testbench

— Testbench can (and should) be written by
people other than designers

KJH, 545 1, 4/20/01

Need for VHDL
I e EEEETEn

B [cads to Automatic Implementation--
Synthesis

— Routing tools

— Standard cell libraries

— FPGA

— CPLD

— Formal Language description 1s independent of
physical implementation

KJH, 545 1, 4/20/01

Need for VHDL
I e EEEETEn

B Neced a Unified Development Environment

— Errors occur at translations from one stage of
design to another

— VHDL language the same at all levels

— All people involved speak the same HDL

— Testing and verification

m Performance, Reliability, and Behavioral
Modeling Available at All Design Levels

KJH, 545 1, 4/20/01

Need for VHDL
I e EEEETEn

B Need to Have Power and Flexibility to
Model Digital Systems at Many Different
Levels of Description

— Support “mixed” simulation at different levels

of abstraction, representation, and interpretation
with an ability for step-wise refinement

— Can model to high or low levels of detail, but
still simulate

10
KJH, 545 1, 4/20/01

Languages Other Than VHDL
-1 | ¢ ¢ 1 I | |5}

m VHDL: VHSIC (Very High Speed
Integrated Circuit) Hardware Description
Language

— Not the only hardware description language

B Most others are proprietary

11
KJH, 545 1, 4/20/01

ABEL
| | § | | || [N

B ABEL
— Simplified HDL
— PLD language

— Dataflow primitives, e.g., registers
— Can use to Program XILINX FPGA

KJH, 545 1, 4/20/01

12

ALTERA
| [| | [[[[l

m ALTERA

— Created by Altera Corporation

— Simplified dialect of HDL
» AHDL

KJH, 545 1, 4/20/01

13

AHPL
| | § | | || [N

m AHPL: A Hardware Programming
Language
— Dataflow language

— Implicit clock

— Does not support asynchronous circuits
— Fixed data types
— Non-hierarchical

14
KJH, 545 1, 4/20/01

CDL
| | § | | || [N

m CDL: Computer Design Language
— Academic language for teaching digital systems
— Dataflow language
— Non-hierarchical

— Contains conditional statements

KJH, 545 1, 4/20/01

15

CONLAN
| | [1 [][

B CONLAN: CONsensus LANguage

— Family of languages for describing various
levels of abstraction

— Concurrent

— Hierarchical

KJH, 545 1, 4/20/01

16

IDL
| | § | | || [N

m IDL: Interactive Design Language
— Internal IBM language

— Originally for automatic generation of PLA
structures

— Generalized to cover other circuits
— Concurrent

— Hierarchical

KJH, 545 1, 4/20/01

17

ISPS
| | § | | || [N

m [SPS: Instruction Set Processor
Specification
— Behavioral language

— Used to design software based on specific
hardware

— Statement level timing control, but no gate level
control

18
KJH, 545 1, 4/20/01

TEGAS
| | § | | || [N

B TEGAS: TEst Generation And Simulation

— Structural with behavioral extensions
— Hierarchical

— Allows detailed timing specifications

KJH, 545 1, 4/20/01

19

TI-HDL
| | § | | || [N

B TI-HDL: Texas Instruments Hardware
Description Language

— Created at Texas Instruments
— Hierarchical
— Models synchronous and asynchronous circuits

— Non-extendable fixed data types

KJH, 545 1, 4/20/01

20

VERILOG
| | § | | || [N

B Verilog

— Essentially 1dentical in function to VHDL

— Simpler and syntactically different

— Gateway Design Automation Co., 1983

— Early de facto standard for ASIC programming
— Open Verilog International standard

— Programming language interface to allow
connection to non-Verilog code

KJH, 545 1, 4/20/01

21

/ZEUS
| | § | | || [N

m /ZEUS

— Created at General Electric

— Hierarchical

— Functional Descriptions

— Structural Descriptions

— Clock timing, but no gate delays

— No asynchronous circuits

KJH, 545 1, 4/20/01

22

Different Representation Models
-1 | ¢ ¢ 1 I | |5}

B Some,Not Mutually Exclusive, Models
— Functional
— Behavioral
— Dataflow
— Structural
— Physical
B From RASSP Taxonomy

KJH, 545 1, 4/20/01

23

Functional Model
5L L rrrLruem

B Describes the logical Function of Hardware
Independent of Any Specific
Implementation or Timing Information

— Can exist at multiple levels of abstraction,

depending on the granularity and the data types
that are used 1n the behavioral description

24
KJH, 545 1, 4/20/01

Behavioral Model
I e EEEETEn

B Describes the Function and Timing of
Hardware Independent of Any Specific
Implementation

— Can exist at multiple levels of abstraction,

depending on the granularity of the timing that
are used 1n the functional description

25
KJH, 545 1, 4/20/01

Functional & Behavioral

Descriptions
-1 | ¢ ¢ 1 I | |5}

B Functional & Behavioral Models May Bear
Little Resemblance to System
Implementation

— Structure not necessarily implied

Input — O > Oy tpyt
Description

26
KJH, 545 1, 4/20/01

Datatlow Model
5L L rrrLruem

B Describes How Data Moves Through the
System and the Various Processing Steps

— Register Transfer Level (RT

L)

— No registers are native to VE

L

— Hides details of underlying combinational
circuitry and functional implementation

KJH, 545 1, 4/20/01

Structural Model
5L L rrrLruem

B Represents a System 1n Terms of the
Interconnections of a Set of Components

— Components are interconnected 1n a
hierarchical manner

— Components themselves are described
structurally, behaviorally, or functionally with
interfaces between structural and their
behavioral-level implementations

28
KJH, 545 1, 4/20/01

Structural Descriptions
-1 | ¢ ¢ 1 I | |5}

B Pre-Defined VHDL Components Are
‘Instantiated’ and Connected Together

B Structural Descriptions May Connect
Simple Gates or Complex, Abstract
Components

KJH, 545 1, 4/20/01

29

Structural Descriptions
-1 | ¢ ¢ 1 I | |5}

B Mechanisms for Supporting Hierarchical

Description

B Mechanisms for Describing Highly

Repetitive Structures Easily

Input —

KJH, 545 1, 4/20/01

>_

» Output

it

30

Physical Model
-1 | 1 I | | I [

m Specifies the Relationship Between the
Component Model and the Physical
Packaging of the Component.

— Contains all the timing and performance details
to allow for an accurate simulation of physical
reality

— Back annotation allows precise simulations

31
KJH, 545 1, 4/20/01

RASSP Roadmap
I EEEEEE

RASSP DESIGN LIBRARIES AND DATABASE

HW __»,F_I-Tw__l_
DESIGN | FAB |
SYSTEM Fruncton | [rwe IVl & T INTEG.
‘ DEF. »| DEsiGN _’ —» & TEST >
————— B B Rt P 4
S wasw N |DI§;\IIGN > (?(‘;VDE — -
~CODESIGN & \ . DESIGN _CODE
<0 -~
N\ -~
S -~
-

KJH, 545 _1, 4/20/01
Copyright © 1995, 1996 RASSP E&F

Outline

-1 | ¢ ¢ 1 I | |5}
m VHDL Background/History

B VHDL Design Example
m VHDL Model Components

—Entity Declarations

— Architecture Descriptions

B Basic Syntax and Lexigraphical
Conventions

KJH, 545 1, 4/20/01

Reasons for Using VHDL
-1 | 1 I | | I [

m VHDL Is an International IEEE Standard
Specification Language (IEEE 1076-1993)

for Describing Digital Hardware Used by
Industry Worldwide

—VHDL is an acronym for VHSIC (Very High
Speed Integrated Circuit) Hardware
Description Language

34
KJH, 545 1, 4/20/01

Reasons for Using VHDL
-1 | 1 I | | I [

B VHDL enables hardware modeling from the
gate to system level

B VHDL provides a mechanism for digital
design and reusable design documentation

B VHDL Provides a Common
Communications Medium

35
KJH, 545 1, 4/20/01

A Brief History of VHDL
1 | ¥ J | | 1o
m Very High Speed Integrated Circuit
(VHSIC) Program
—Launched 1n 1980

—Object was to achieve significant gains in VLSI
technology by shortening the time from
concept to implementation (18 months to 6
months)

—Need for common descriptive language

36
KJH, 545 1, 4/20/01

A Brief History of VHDL
1 | ¢} I I I | (5O

m Woods Hole Workshop

— Held 1in June 1981 in Massachusetts
— Discussion of VHSIC goals

— Comprised of members of industry,
government, and academia

KJH, 545 1, 4/20/01

37

A Brief History of VHDL
1 | ¢} I I I | (5O

mJuly 1983: contract awarded to develop
VHDL

— Intermetrics
—IBM

—Texas Instruments

m August 1985: VHDL Version 7.2 released

38
KJH, 545 1, 4/20/01

A Brief History of VHDL
1 | ¢} I I I | (5O

B December 1987: VHDL became IEEE

Standard 1076-1987 and in 1988 an ANSI
standard

B September 1993: VHDL was restandardized
to clarify and enhance the language

B VHDL has been accepted as a Draft
International Standard by the IEC

KJH, 545 1, 4/20/01

39

Gajski and Kuhn’s Y

Chart
I I O

Behavioral Structural

Algorithmic

Systems J

| Floor Plap

' Physical Partitions

\ 4
Physical/Geometry 40

KJH, 545 _1, 4/20/01
Copyright © 1995, 1996 RASSP E&F

VHDL Model
I e EEEETEn

— / ~<
//// / \\ -

— /
—
- 7/
- 4
- -

KJH, 545 1, 4/20/01

~

N -
~
N ~—_
N -
- -

41

VHDL Design Example
-1 | 1 I | | I [

B Problem: Design a single bit half adder with carry and

enable

B Specifications

— Inputs and outputs are each one bit

— When enable 1s high, result gets x plus y

— When enable 1s high, carry gets any carry of x plus y

— Outputs are zero when enable input 1s low

X —>
y —»

enable —

Half Adder

—— carry
—> result

KJH, 545 1, 4/20/01

Copyright © 1995, 1996 RASSP E&F

42

VHDL Design Example

Entity Declaration

1 | ¥ J | | 1o
B As a first step, the entity declaration
describes the interface of the component

—1nput and output ports are declared

ENTITY half adder IS

PORT(x, y, enable: IN BIT;
carry, result: OUT BIT) ;

END half adder;

X —>
y —»

enable —

Half
Adder

— carry

—> result

43

KJH, 545 1, 4/20/01

Copyright © 1995, 1996 RASSP E&F

VHDL Design Example

Functional Specification

I I I)

B A high level description can be used to
describe the function of the adder

ARCHITECTURE half adder a OF half adder IS

BEGIN
PROCESS (x, y, enable)
BEGIN

IF enable = ‘1’ THEN
result <= x XOR vy;
carry <= X AND vy;

ELSE
carry <= ‘0’';
result <= ‘0’;

END TIF;

END PROCESS;
END half adder_ a;

B The model can then be simulated to verify
w55 1@0ITECt functionality of the component

Copyright © 1995, 1996 RASSP E&F

44

VHDL Design Example

Behavioral Specification

-1 | ¢ ¢ 1 I | |5}
B A high level description can be used to

describe the function of the adder

ARCHITECTURE half adder b OF half adder IS

BEGIN
PROCESS (x, vy, enable)

BEGIN
IF enable = ‘1’ THEN

result <= x XOR y after 10ns;
carry <= X AND y after 12 ns;

ELSE
carry <= ‘0’ after 10ns;
result <= ‘0’ after 12ns;
END IF;

END PROCESS;
END half adder b;

B The model can then be simulated to verify
wnss ieprrect timing of the entity

Copyright © 1995, 1996 RASSP E&F

45

VHDL Design Example

Data Flow Specification

| | § | | || [N

B A Third Method Is to Use Logic Equations
to Develop a Data Flow Description

ARCHITECTURE half adder c¢ OF half adder IS
BEGIN
carry <= enable AND (x AND y) ;

result <= enable AND (x XOR V) ;
END half adder c;

® Again, the model can be simulated at this level to
confirm the logic equations

KJH, 545 _1, 4/20/01
Copyright © 1995, 1996 RASSP E&F

46

VHDL Design Example

Structural Specification

I N O A
m As a Fourth Method, a Structural

Description Can Be Created From
Previously Described Components

B These gates can be taken from a library of

parts

KJH, 545 1, 4/20/01

X

engblé

C
1>

47

VHDL Design Example

Structural Specification (Cont.)

_ ARCHITECTURE half adder d OF half adder IS

KJH, 545 1, 4/2

COMPONENT and2
PORT (in0O, inl : IN BIT;
out0 : OUT BIT) ;
END COMPONENT;

COMPONENT and3
PORT (inO, inl, in2 : IN BIT;
out0 : OUT BIT) ;
END COMPONENT;

COMPONENT xor2
PORT (in0O, inl : IN BIT;
out0 : OUT BIT) ;
END COMPONENT;

FOR ALL : and2 USE ENTITY gate 1lib
FOR ALL : and3 USE ENTITY gate lib.and3 Nty (and3 a) ;
FOR ALL : xor2 USE ENTITY gate lib.xor2 Nty (xor2 a);

-- description is continued on next slide

.and2 Nty (and2 a);

Copyright © 1995, 1996 RASSP E&F

|80

48

VHDL Design Example

Structural Specification (Cont.)

| | § | | || [N

-- continuing half adder d description

SIGNAL xor res : BIT; -- internal signal
-- Note that other signals are already declared in entity

BEGIN
A0 : and2 PORT MAP (enable, xor res, result);
Al : and3 PORT MAP (x, y, enable, carry);

X0 : xor2 PORT MAP (x, y, xXor res);

END half adder d;

KJH, 545 1, 4/20/01

Copyright © 1995, 1996 RASSP E&F

VHDL Model Components

-1 | ¢ ¢ 1 I | |5}
B A Complete VHDL Component Description

Requires a VHDL Entity and a VHDL
Architecture

—The entity defines a component’s interface

—The architecture defines a component’s
function

B Scveral Alternative Architectures May Be
Developed for Use With the Same Entity

50
KJH, 545 1, 4/20/01

VHDL Model Components
1 | ¥ J | | 1o

B Three Areas of Description for a VHDL
Component:

— Structural descriptions
— Functional descriptions

— Timing and delay descriptions (Behavioral)

KJH, 545 1, 4/20/01

51

Process
I R EEEETan

B Fundamental Unit for Component Behavior
Description Is the Process

— Processes may be explicitly or implicitly
defined and are packaged in architectures

52
KJH, 545 1, 4/20/01

VHDL Model Components
1 | ¥ J | | 1o

B Primary Communication Mechanism Is the
Signal (distinct from a variable)

— Process executions result in new values being
assigned to signals which are then accessible to
other processes

— Similarly, a signal may be accessed by a
process in another architecture by connecting
the signal to ports 1n the the entities associated

with the two architectures
Output <= My id + 10;

KJH, 545 1, 4/20/01

53

Entity Declarations
-1 | 1 I | | I [

B The Primary Purpose of the Entity Is to
Declare the Signals in the Component’s
Interface

—The 1nterface signals are listed in the PORT
clause

» In this respect, the entity 1s akin to the schematic
symbol for the component

54
KJH, 545 1, 4/20/01

Copyright © 1995, 1996 RASSP E&F

Entity Example
-1 | 1 I | | I [

X— Half [carry
V™ Adder |—» "esult \
enable —

ENTITY half adder IS

GENERIC (prop delay : TIME := 10 ns);

PORT(x, y, enable : IN BIT;
carry, result : OUT BIT) ;

END half adder;

KJH, 545 1, 4/20/01

Entity Declarations
Port Clause

| | § | | || [N

B PORT clause declares the interface signals
of the object to the outside world

PORT (signal name : mode data type) ;

B Three parts of the PORT clause
—Name
—Mode
—Data type

PORT (input : IN BIT VECTOR (3 DOWNTO O0) ;
ready, output : OUT BIT) ;

KJH, 545 _1, 4/20/01
Copyright © 1995, 1996 RASSP E&F

56

Entity Declarations
Port Clause (Cont.)

I e EEEETEn
B The Port Mode of the Interface Describes

the Direction in Which Data Travels With
Respect to the Component

B Five Port Modes

1. In: data comes in this port and can only be
read

2. Out: data travels out this port

57
KJH, 545 1, 4/20/01

Entity Declarations
Port Clause (Cont.)

| | § | | || [N

3. Buffer: bidirectional data, but only one
signal driver may be enabled at any one time

4. Inout: bidirectional data with any number of
active drivers allowed but requires a Bus
Resolution Function

5. Linkage: direction of data 1s unknown

58
KJH, 545 1, 4/20/01

Entity Declarations

Generic Clause

| | § | | || [N

B Generics May Be Used for Readability,
Maintenance and Configuration

B Generic Clause Syntax :

GENERIC (generic name : type [:= default value]) ;

—If optional default wvalue missing in generic

clause declaration, 1t must be present when
component is to be used (i.e. instantiated)

59
KJH, 545 1, 4/20/01

Copyright © 1995, 1996 RASSP E&F

Behavioral Descriptions
1 | ¥ J | | 1o

B VHDL Provides Two Styles of Describing
Component Behavior

—Data Flow: concurrent signal assignment
statements

—Behavioral: processes used to describe
complex behavior by means of high-level
language constructs

» variables, loops, 1f-then-else statements, etc.

60

KJH, 545 _1, 4/20/01
Copyright © 1995, 1996 RASSP E&F

Generic Clause
P L rrrrrmnmm

B Generic Clause Example :

GENERIC (My ID : INTEGER := 37);

— The generic My ID, with a default value of 37,
can be referenced by any architecture of the
entity with this generic clause

— The default can be overridden at component
instantiation

61
KJH, 545 1, 4/20/01

Architecture Bodies
5L L rrrLruem

B Describes the Operation of the Component,
Not Just Its Interface

B More Than One Architecture Can (and
Usually Is) Associated With Each Entity

62
KJH, 545 1, 4/20/01

Architecture Bodies
5L L rrrLruem

B Consist of Two Parts:

1. Declarative part -- includes necessary
declarations, e.g. :
» type declarations
» signal declarations
» component declarations

» subprogram declarations

KJH, 545 1, 4/20/01

63

Architecture Bodies
5L L rrrLruem

2. Statement part -- includes statements that
describe organization and/or functional
operation of component, e.g. :

» concurrent signal assignment statements
» process statements

» component instantiation statements

64
KJH, 545 1, 4/20/01

Architecture Body, e.g.
-1 | ¢ ¢ 1 I | |5}

ARCHITECTURE half adder d OF half adder
IS

-- architecture declarative part
SIGNAL xor res : BIT ;
-- architecture statement part
BEGIN
carry <= enable AND (x AND vy) ;
result <= enable AND xor res ;
XOor res <= X XOR y ;
END half adder d ;

65
KJH, 545 1, 4/20/01

[Lexical Elements of VHDL
I e EEEETEn

B Comments

— two dashes to end of line 1s a comment, e.g.,

--this 18 a comment

KJH, 545 1, 4/20/01

66

[Lexical Elements of VHDL
I e EEEETEn

B Basic Identifiers

— Can Only Use

» alphabetic letters (A-Z, a-z), or
» Decimal digits (0-9), or
» Underline character ()

— Must Start With Alphabetic Letter (MyVal)

KJH, 545 1, 4/20/01
Copyright © 1997, KJH

67

[Lexical Elements of VHDL
I e EEEETEn

B Basic Identifiers

— Not case sensitive
(LastValue = = 1AsTvALue)

— May NOT end with underline (MyVal)

— May NOT contain sequential underlines
(My Val)

68
KJH, 545 1, 4/20/01
Copyright © 1997, KJH

[Lexical Elements of VHDL
I e EEEETEn

m Extended Identifiers
— Any character(s) enclosed by \ \
— Case IS significant

— Extended 1dentifiers are distinct from basic
1dentifiers

— If“ \ ” 1s needed in extended identifier, use

(44 \\ 44

69
KJH, 545 1, 4/20/01

[Lexical Elements of VHDL
I e EEEETEn

B Reserved Words

— Do not use as 1dentifiers

m Special Symbols

— Single characters
& () *x+ , - ./ 5 < = > |
— Double characters (no intervening space)

=> * % — /: > = < = <>

70
KJH, 545 1, 4/20/01

[Lexical Elements of VHDL
I e EEEETEn

B Numbers

— Underlines are NOT significant
(10#8 192)

— Exponential notation allowed
(46e5 , 98.6E+12)

— Integer Literals (12)

» Only positive numbers; negative numbers are
preceded by unary negation operator

» No radix point i

KJH, 545 1, 4/20/01
Copyright © 1997, KJH

[Lexical Elements of VHDL
I e EEEETEn

— Real Literals (23.1)

» Always include decimal point
» Radix point must be preceded and followed by at
least one digit.
— Radix (radix # number expressed 1n radix)
» Any radix from binary (2) to hexadecimal (16)
» Numbers in radices > 10 use letters a-£ for 10-135.

72
KJH, 545 1, 4/20/01

[Lexical Elements of VHDL
I e EEEETEn

B String
— A sequence of any printable characters enclosed
in double quotes
(“a string”)
— Quote uses double quote
(“ he said ““no!”” ")
— Strings longer than one line use the

concatenation operator (&) at beginning of
continuation line. 3

KJH, 545 1, 4/20/01
Copyright © 1997, KJH

[Lexical Elements of VHDL
I e EEEETEn

m Characters

— Any printable character including space
enclosed 1n single quotes (*x")

m Bit Strings
— B for binary (b”0100 1001")
— O for Octal (0"76443")
— X for hexadecimal (x”FFFE F138”)

KJH, 545 1, 4/20/01

74

VHDL Syntax
-1 | 1 I | | I [

m Extended Backus-Naur Form (EBNF)

— Language divided into syntactic categories

— Each category has a rule describing how to
build a rule of that category

— Syntactic category <= pattern

— “<=* 1sread as *“...1s defined to be...”

75
KJH, 545 1, 4/20/01
Copyright © 1997, KJH

VHDL Syntax
-1 | 1 I | | I [

- eogo,
variable assignment <= target :=
expression;

— A clause of the category variable assignment 1s
defined to be a clause from the category target
followed by the symbol “ : = “ followed by a

clause from the expression category followed
by a terminating ““ ; ”

76
KJH, 545 1, 4/20/01

VHDL Syntax
-1 | 1 I | | I [

— syntax between outline brackets | | is optional

— syntax between outline braces { |} can be
repeated none or more times, a.k.a. “Kleene
Star”

77
KJH, 545 1, 4/20/01
Copyright © 1997, KJH

VHDL Syntax
-1 | 1 I | | I [

— A preceding lexical element can be repeated an
arbitrary number of times 1f ellipses are present,
e.g.,

case-statement <=
case expression is

case statement alternative

{ .. .1

end case ;

78
KJH, 545 1, 4/20/01
Copyright © 1997, KJH

VHDL Syntax
-1 | 1 I | | I [

— If a delimiter 1s needed, 1t 1s included with the
ellipses as

identifier list <=
identifier { , . . . }

79
KJH, 545 1, 4/20/01
Copyright © 1997, KJH

VHDL Syntax
-1 | 1 I | | I [

m “OR” operator, “ |, 1n a list of alternatives,
e.g.,

mode <= in |out |inout
B When grouping 1s ambiguous, parenthesis
are used, e.g.,

term <=

factor { (* | / | mod | rem) factor }

80
KJH, 545 1, 4/20/01
Copyright © 1997, KJH

VHDL Syntax
-1 | 1 I | | I [

B c.g. an 1dentifier may be defined in EBNF as

identifier <=

letter { [underline] letter or digit }

81
KJH, 545 1, 4/20/01

VHDL Lecture 1
I O

B The end...

KJH, 545 1, 4/20/01

82

