Subprograms
[LI [[[[e[l

Prof. K. J. Hintz

Department of Electrical
and
Computer Engineering
George Mason University

Structural Descriptions
[LI [[[[shll

= Port Mappings Can Be Specified Two Ways

— Positional association
» Order iIs Important

— Named association
» For connecting some signals

» Easier to read which signals are connected to which
Internal signals

» Order Is not important
— Can only use one type of association at a time

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Structural Descriptions
[LI [[[[shll

= Entity Ports Declared in an Architecture
Body Are Signals
— These signals are not available outside the

architecture unless connected to one of the
architectures ports

Structural Descriptions
[LI [[[[shll

m Subelement Association

— Separate, actual signals can be associated with
Individual elements of the architecture port

— All elements of the composite port must be
associated

— All associations for a particular port must be
grouped together with no Intervening ports
among them.

— Ranges can be associated

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Design Processing
I N

= Simulation and Synthesis Require

— Analysis of model
» Performs syntax check
» Places entities and architectures in design library

» Dependency relations
 primary units contain entity declarations
e secondary units contain architecture bodies

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Design Processing
I N

— Elaboration
» A collection of processes connected by nets
» Entity declarations replaced by architecture bodies

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Execution
I N B E

= Simulation Time Set to Zero
m Signals Assigned Initial Values
m Every Process Executed at Least Once

s Advance Simulation Clock to Next
Scheduled Timeout

m Perform Transactions and Update Signals
= Resume Sensitive Processes

Subprograms
[LI [[[[e[l

= Define Algorithms for Computing Values or
Exhibiting Behavior
— Type conversion
— Define resolution functions for signals
— Define portions of a process

Subprograms
[LI [[[[e[l

= TWO types
— Procedure
— Function

= Return Statements Allow for Different Exit
Points
— Function must always have a return statement
— Procedure does not return a value

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Subprograms
[LI [[[[e[l

m Declared Variables, Constants and Files Are
_ocal and Instantiated When Called.

— No signals allowed

m Procedure declarations can be nested

= Procedures can call procedures

10

Value of Subprograms
[LI [[[[s[l

s Write Once, Use Often
= Can Be Called Recursively

= Can Be Called Repeatedly From Within
Scope

11

Procedure Subprograms
[LI [[[[e[l

Procedure

— Encapsulates a collection of sequential
statements into a single statement

— Executed for their effect
— May return zero or more values
— May execute In zero or more simulation time

— Can modify a calling parameter because it is a
statement and doesn’t return a value

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

12

Function Subprograms
I [L[[[sl

= Functions

— Algorithmically generates and returns only one
value

» May be on right hand side of expression
— Must Alway returns a value

— Executes in zero simulation time
» 1.e., cannot contain a walit statement

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

13

Subprogram Declaration
[LI [[[[s[l

= Names the Subprogram
= Specifies Required Parameters

= Contains the Sequential Statements
Defining the Behavior of the Subprogram

= Defines the Return Type for Function
Subprograms

14

Subprogram Declaration
[LI [[[[s[l

= Local Declarations
— Types
— Subtypes
— Constants and variables
— Nested subprogram declarations

15

Procedure Syntax
I [[[[sl

procedure i dentifier

parameter_interface list | Is
subprogram_declarative part
begi n

sequential_statement
end procedure | dentifier ;

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Procedure Syntax
I [[[[sl

parameter_interface list <=

constant | variable | signal | dentifier

node subtype_indication
. = static_expression

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

17

Procedure Parameter List

1 1 | ¥ | | [I=fq
m Specifies Class of Object(s) Passed

— Const ant (assumed If mode isi n)
— Var 1 abl e (assumed If mode Is out)

— Si gnal (passed by reference, not value)

» If wal t statement Is executed inside a procedure,

the value of a signal may change before the rest of
the procedure is calculated

» If mode | nout , reference to both signal and driver
passed

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

18

Procedure Parameter List
o T T N T e

m Assoclates ldentifier With Formal
Parameter(s)

— Allows reference to a parameter in procedure
body

— Formal parameters are replaced with actual
values when called

19

Procedure Parameter List
o T T N T e

= Specifies optional mode(s)
—in
» assumed If not specified
— out
» cannot use value for computations
— 1 nout
» both read & write

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

20

Procedure Parameter List
o T T N T e

m Specifies Type(s)
— Provides error checking for type mismatches

— Unconstrained arrays are allowed (<>)

» Attributes of unconstrained arrays can be used to set
local constants or variables within procedures such
as looping parameters

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

21

Procedure Parameter List
o T T N T e

= Specifies Optional Default Value(s)

— Values to be used If a parameter Is not specified
— If default value Is desired, use keyword open
for parameter

— If default value is at end of list, can omit actual
value or use open

22

Procedure Example*
[LI [[[[s[l

procedure do_arith _op (
opl, op2 : in integer ;

op . In func _code) 1Is

variable result : Integer ;

begi n
case op Is
when add => result := opl + op2 ,;
when subtract => result := opl-op2 ;

end case :

*Ashenden, p 197

23

Procedure Example*
[LI [[[[s[l

dest <= result after Tpd ;
Z flag <= (result = 0) after Tpd,
end procedure do_arith _op ;

*Ashenden, p 197

24

Procedure Calling
I N EE R

m Once a Procedure 1s Declared, It Can Be
Called From Other Parts of Model

= A Procedure Is a Sequential Statement, So it
Can Be Called From

— Process
— Other subprogram body

25

Procedure Calling Syntax
I [L[[[sl

| abel procedure_nane
parameter_association_list ;

parameter_association_list <=

parameter name =>] expression
signal _name

variable _name

open

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

26

Procedure Calling
I N EE R

s Same Syntax As Ports
— Positional association
— Named association

— Mix Positional and named
» All Positional parameters must come first

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

27

Concurrent Procedure Calling
I N EE

= A Shorthand for A Procedure Call Where
Only a Concurrent Statement Would Be
Allowed

= Identical Syntax to Procedure Call
Statement

m Sensitive to Non-constant Parameters
Passed to It

28

Concurrent Procedure Example*
I N EE

procedure check _setup

(signal data, clock : In bit ;
constant Tsu : Iintinme) Is
begi n
| f (clock’event and clock = “1") then

assert data’'last _event >= Tsu

report “setup tine violation” severity
error ;

end |f
end procedure check _setup ;

*Ashenden, p 208

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

29

Concurrent Procedure Example*
I N EE

check ready setup : check setup
(data => ready ,
cl ock => phi 2 ,
Tsu => Tsu rdy clk) ;

= Formal Parameters
— data, clock, Tsu
= Actual Parameters
— ready, phi2, Tsu_rdy clk
— Procedure is sensitive to signals ready and phi2

30

Concurrent Procedures
o T T N T e

= Advantages
— Easler to read programs
— Write once, use often
— Check timing constraints

31

Concurrent Procedures
o T T N T e

m IfNo i nori nout Signals in Parameter
List
— No sensitivity list, hence no equivalent wait
statement
— If procedure returns, it suspends indefinitely

— Desirable iIf want to execute procedure once at
startup

— If walt statements are included in procedure,
then behaves like process

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

32

Concurrent Procedure Example*
I N EE

orocedure generate cl ock
(signal clk : out bit ;
constant Tperiod, Tpulse, Tphase : Iin tine)

S

begi n

wal t for Tphase ;

| oop
clk <= 1", 0 after Tpulse ;
wal t for Tperiod ;

end | oop ;

end procedure generate cl ock ;

*Ashenden, p 208

33
Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Concurrent Procedure Example*

! 1 1 1 1 ;7 [N
signal phil, phi2 : std ulogic := ‘0O’

gen_phi1:generate_c|ock(phi1, Tperiod => 50n ,
Tpul se => 20 ns , Tphase => 0 ns) ;

gen_phi 2: generate_cl ock(phi 2, Tperiod => 50 ns ,
Tpul se => 20 ns , Tphase => 25 ns)

: P 45ns i : 95ns
Ons 20 ns

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

34

Function Subprograms
I [L[[[sl

m Generalized Expression

m Allows Definition of New Operators In
Addition to Standard Ones (+, -, *, etc.)

= Allows Overloading of Standard Operators

s Must Contain at Least One Ret ur n

Statement
| abel : ret urn expression ;

35

Function Syntax
[LI [[[[shll

pure | 1 npure function identifier
parameter_interface list
return type mark i s
subprogram_declarative part
begi n
sequential_statement
| abel ret urn expression ;
end function | dentifier ;

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

36

Function Syntax
[LI [[[[shll

parameter interface list <=
constant | signal | dentifier{ |,
I N subtype_indication . = static_expression

37
Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Function Example*
| [P [[[[[spl

function byte to int (byte : word 8)
return integer iIs

variable result : integer := 0 ;
begi n

for tndex in O to 7 |oop

result :=result*2 + bit' pos(byte (index)) ;
end | oop ;

return result ;
end function byte to I nt

*Ashenden, VHDL Cookbook

38
Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

Function Parameter List

1 1 | ¥ | | [I=fq
m Specifies Class of Object(s) Passed

— Constant (assumed)

— Variable class is NOT allowed since the result
of operations could be different when different
Instantiations are executed

— Signal (passed by reference, not value)

39

Function Parameter List
I N R O[]

m Assoclates ldentifier With Formal
Parameter(s)

— Allows reference to a parameter in procedure
body

— Formal parameters are replaced with actual
values when called

m Specifies Type of Return Value

40

Function Parameter List
I N R O[]

= Optionally Specifies mode
—inIsthe ONLY allowed mode
m Specifies Type(s)
— Provides error checking for type mismatches

— Unconstrained arrays are allowed (<>)

» Attributes of unconstrained arrays can be used to set
local constants or variables within procedures such
as looping parameters

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

41

Function Parameter List
I N R O[]

= Specifies Optional Default Value(s)

— Values to be used If a parameter Is not specified

— If default value Is desired, use keyword open
for parameter

— If default value is at end of list, omit actual
value or open

42

Function Calling
| [P [[[[[spl

= Once Declared, Can Be Used in Any Expression

= A Function Is Not a Sequential Statement So It
Is Called As Part of an Expression

| abel function_name
parameter_association_list

43

Function Calling
| [P [[[[[spl

s Same Syntax As Ports
— Positional association
— Named association

— Mix positional and named

» All positional parameters must come first
([parameter name => |
expression | signal_name
| variable_name | open

{, . . . })

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

44

Pure Functions
I N B E

= Function Does Not Refer to Any Variables
or Signals Declared by Parent

= Result of Function Only Depends on
Parameters Passed to It

» Always Returns the Same Value for Same
Passed Parameters

= |f Not Stated Explicitly, a Function Is
Assumed to Be Pure

45

Impure Functions
| [P [[[[[spl

= Can State Explicitly and Hence Use
Parents’ Variables and/or Signals for
Function Computation

= May Not Always Return the Same Value
m €.0.,

| npure Function Now
Return Del ay Length ;

46

Overloading
I N EE

= Same Operation on Different Types

= More Than One Distinct Subprogram Can
Be Defined With the Same Name Where
Each Has

— Different parameter types
— Different number of parameters

m Context and Parameter List Determine
Which Subprogram Is Executed

47

Overloading Example*
| [P [[[[[spl

procedure itncrenment (a : 1 nout integer ;
n: ininteger :=1)
| S

procedure it ncrenent (a : Inout bit vector
n: Iin bit vector := b"1")
| S

procedure i ncrenent (a : Inout bit vector
n: ininteger :=1) 1is

*Ashenden, p 215

Copyright © 1997/8/9, KJH, 545_8, 5/8/2001

48

Overloading Symbols
I [L[[[[[sfl

= Predefined Arithmetic Symbols Can Also
Be Overloaded

= One Could Define Mixed Type Arithmetic
and Write a Function

= Overloaded Boolean Operators Are Not
“Short-Circuit” Evaluated

49

Overloading Symbols
I [L[[[[[sfl

= Predefined Arithmetic Symbol Is Quoted In
Function Declaration, e.g.,

function “+” (left, right : Iin bit vector)
return bit _vector ...

50

Subprogram Declaration
Visibility
[LI [[[[shll

= Visibility Follows Normal Scoping Rules

= All Variables Are Local and “directly
visible”
— Allows one to use function without insuring
variable name has not been used before

51

Visibility of Non-Local Variables
I N EE

m EXplicit reference can be made to non-local
variables

— “visible by selection”

— prepend variable with name of procedure, e.g.,
pl.v

as opposed to directly visible local variable
Y

52

End of Lecture
I N N N E O

= Structural Model
= Procedures

= Functions

= Overloading

53

