ECES/1

3 Cache Simulator

Archit Datta Kunchaparthi
Bharadwaj Thandra
Vishwas Reddy Pulugu
Vasudev Rupanaguntla

Introduction

* L3 Cache - We have designed the last level cache of a core in a multi-
processor environment using a shared memory.

e Details of Cache —

Address Length 32bits(Configurable)
Memory 8MB(Configurable)
Line Size 64B(Configurable)

Associativity 16(Configurable)

* MESIF protocol has been implemented to ensure cache coherence.
* Cache employs inclusivity.

L3 Cache

CORE 1 CORE 2 CORE 3

| & D Cache | & D Cache | & D Cache | & D Cache
L2 L2 L2 L2
L3 L3 L3 L3

CORE 4

Shared memory

A

Shared Memory

v

Implementation of the Design

e Sets in Cache — 8K(memory/(line_len*assoc))

31 19 18 6 5

categorized cache address bits
» Assumptions —
* Contents of Cache are initially invalid.

L3 Cache Design

* There are 2 inputs — n and address.
* ‘n’ — operation & ‘address’ — address on which the operation is performed.

e A Cache structure is declared with variable size & initialized to O.
e Additional bits are allocated for MESIF & LRU.

* For READ or WRITE operations, we check whether the given address is
already present in the cache or is to be fetched from memory.

* |n case of it being in cache, we increment HIT
* Else we increment MISS

* If data is being fetched from cache, its MESIF and LRU bits are updated.

Different Operations

e Operation 1: (n=0) It indicates a read request from L2 cache. We
check if it’s a HIT or a miss.

 If it’s a HIT and the operation is a read, the MESIF and LRU bits are updated
using their modules.

* If it’s a miss, only the MESIF bits are updated.

e Operation 2: (n=1) indicates write request from L2 cache, we do the
same HIT or MISS check.

* If it’s a HIT, the MESIF and LRU bits are updated.
* If it’s a miss only the MESIF bits are updated.

Different Operations

e Operation3: (n=2) It is similar to Operation 1 the only difference
being that the request here is for an instruction.

* Conditions when Cache is Snooping

* Operation 4: (n=3) The cache snoops an invalidate command. If the
cache has a HIT for the address provided in the invalidate command it
checks its MESIF bits. If it’s in either Forward or Shared state it
responds by changing its MESIF to invalid state.

Different Operations

e Operation 5: (n=4) The cache snoops a read request and checks for
the address.

* Depending on the MESI state it either returns a HIT, HITM or NOHIT.
e Operation 6: (n=5) NO operation takes place.

e Operation 7: (n=6) If the cache snoops a RWIM on the bus and has
the address, we invalidate the MESIF.

e Operation 8: (n=7) MESI in invalidated and cache is cleared.

* Operation 9: (n=8) We print the contents of the STATE of each valid
line.

Protocols

* Cache Replacement Policy
* True LRU algorithm

e Cache Coherence Protocol

* MESIF
* Modified
e Exclusive
e Shared
* |nvalid
* Forward

Replacement Protocol

* Replacement (Eviction) happens whenever all cache lines in a set are
filled and new address points to same index . Cache line has to be
evicted so as to accommodate new entries.

* We have implemented ‘True LRU’ replacement algorithm.

* LRU — (Least Recently Used) In this algorithm, in case of eviction, the
address location which was least recently accessed is replaced by the
new entry.

Replacement Protocol

* In this algorithm, we used ordering of cache lines in each set
according to the order of accessed addresses.

 We use ‘first’ and ‘last’ variables in set structure to keep track of least
recently used cache line.

* The line pointed by ‘last’ variable is replaced and that address is now
pointed by ‘first’ variable of set structure.

Cache Coherence Protocol

* A multi-processor system involves in referencing a particular data or
instruction pertaining to the same address.

e During this process, there will be inconsistency of the shared resource data
that will create incoherence of the shared resource due to modifications done
to the shared resource by different processors while they retain it in their
cache.

* This inconsistency is eliminated by the help of various cache
coherence protocols introduced. In this project we make use of the
MESIF protocol in order to maintain coherence with the data.

Cache Coherence Protocol

* The MESIF protocol consists of 5 states that represent the acronym of
the name of protocol. The states are Modified, Exclusive, Shared, Invalid
and Forward states. The definition of each of the states is as follows:

* Modified: The cached copy of the only valid copy of the line and no other
processor caches contain the line and the memory copy is out of date.

Exclusive: No other processor has a copy of the cached item and the processor’s
cache and memory are identical.

Shared: At least one other processor has a copy of the line, the cached copies
and memory are identical.

Invalid: The cache entry is invalid i.e., Cache doesn’t hold a copy of the line.

* Forward: This is an extended state of the shared state as in the MESI protocol.
The processor in forward state is responsible for providing the data if another
processor does a read operation. This data is already in other caches but the
cache in the forward state responds to any requests pertaining to this data. And
this data is identical with the memory.

State dig. When cache controller of processor
IS accessing memory

CPU Read/HIT/Memory Read

CPU Read/X/X

0
K-
-'3% (\‘gff‘-f’ 'CPU Read/X/X
CPU Write/X/X o '
CPU Read/X/X uel*’ - =2
.2l) _ CPU Read/X/X
vl"" \\"'
' CPU Write/X/X '-.'
|
l.'.‘\ ".".'
NG P 4

State dig. Of shooping processor

. RFOYHITS Forward

RFO/-=f--

.Ftrs-ad.-leT,-' Forwa rﬂ,

Read/--/—

_.-'

FO/HITM WriteBack!

System Verilog Constructs

* Interface
* For cores
e Bus Signals

* Packages

e Packed Structures
* Address (Use of Logic)
* MESIF State
* Sets
* Write Buffer

System Verilog Constructs

"define address length
"define associativity

° Package “define line length

"define memory sSize 4%

- Parameters

package 13 pkg:

parameter buffer len H

parameter adrs len="address length;
parameter assoc="associativity;

parameter line len="line length;
parameter memory= "mMEmMOryY S1zZe;

parameter set_len=memnryftline_len*assnc};

parameter tag len= adrs_len—EEngE:line_len}—ECngEtset_len};

System Verilog Constructs

typedef struct packed{
» Package logic [tag len-1:0]tag:;
logic [$clog2(set len)-1:0]index

-Type definitions logic [$clog2(line len)-1:0]byte
} address T;

typedef enum { NOHIT, HIT, HITM} snoop T;
typedef enum {READ =1, WRITE , INVALIDATE, EWIM, NCP} busop T:
typedef enum {INVALID, MODIFIED, EXCLUSIVE, SHARED, FORWARD} mesi state T;

typedef enum {CACHE HIT,CACHE MISS} hit miss T:
typedef enum {YES,NC} eviction T:

System Verilog Constructs

//cache structure...typedef
typedef struct packed {
t typedef struct packed bit [tag len-1:0]tag:
sl) mesil state T mesif;
for definition of cache. int prev:
A int next;
* Package includes tasks for) lines T:

MESIF protocol, LRU algorithm. . _..: civaoe packea

lines T [assoc:’]line;
int first;
int last;
} sets T;

typedef struct {
sets T [set len-_:0]set;
}caches T:

System Verilog Constructs

unigue case (meszif)

o Unique Cases INVALID: begin

* always_comb

always comb

e Assertions begin

assert (pl.n<® && pl.n >=0);

Interfaces

* Interfaces are used for Bus Operations and Cores.

* Bus Operation interface is used to interface cores #(parameter adrs_len=
import 13 pkg:i*;
Put Snoop Results and Get Snoop Results. -~

int n:

* Core interface is used to provide address = address_ T address;

endinterface

and operation from core to the cache design.
* Values to the core interface are provided |
interface bus signals;

from test bench. import 13 pka::*;
busop T BusOp:
snoop T PutSnoopResult:
snoop T GetSnoopResult;

endinterface

Verification Strategies

* The DUT was tested for READ/ WRITE operations

 When the cache controller of processor is accessing the memory
* When the cache is snooping

* When the cache is full and replacement is required

* To check the functionality of Write Buffer

* Directed Testing
e Performed READS and WRITES to single index.
* Transition from one MESIF state to other depending on the operation.
* Invalidating addresses and read from the same.
* |ssuing reads and writes for same index with different tags.
» Test case resulting in eviction for verifying replacement algorithm.

Verification Strategies

 Randomized Testing

* Generated random traces and provide it to DUT and reference model using a
random test case generator.

* Used Surandom_range to generate operation values

* Test Case Generator

* Created a configurable test case generator which creates trace files for a
range of specified addresses.

Verification Strategies

Reference Model:

* Using the input trace, reference model generates expected
read_count,write_count, hit_count and miss_count

* It also maintains track of cache contents(only addresses) in cache.

* The results from DUT are compared to the expected values from
reference model to verify the working of cache.

Assertions

e Assertions are used to ensure correct transition of MESIF states
during the operations

* Assertions are used to check whether the input address has any
unknown value and input operation has any out of range value.

* Assertions are used to check the process of eviction
 When the line which has to be evicted is at top
 When the line which has to ne evicted is in the middle
* When the line which has to be evicted is at the bottom

Emulation

* Code is synthesizable and ran on Emulator.
e Code isn’t clock based so couldn’t make it clock accurate.
e Hit count and miss count differs from expected values.

* Golden model cannot be implemented in emulation as it is not
synthesizable.

Results

e Simulation successful on PureSim.
* Checked L3 cache on Stand Alone Mode and TBX mode.
* For directed testing, results are matching with golden model

* For random testing, there are few assertion errors.

References

 ECE 585 & ECE 571 Lecture Slides
* Code adopted from ECE 585 Final Project(Fall 2014)

e WWW.asic-world.com

e Testbench.in
* Sunburst Papers
e Stack Overflow

http://www.asic-world.com/

THANK YOU

