

Sequential Architecture

» Sequential computers are based on the
model presented by John von Neumann
« Performance of the model is limited by:

— Speed of information exchange between
memory and CPU

— Execution rate of instructions

e Performance can be improved by improving
these aspects

Memory Banks & Cache

e The speed of iInformation exchange
between memory and CPU can be
Improved
— by using memory interleaving

e (= simultaneous memory access by having
several memory banks)

— by using very fast memory (cache)

Pipeline

o Execution rate of the instructions can be
Improved by overlapping the execution of
several instructions
— instruction pipelining means that instructions

are executed and fetched from the memory at
the same time

— execution pipelining means that different
Instructions are in different functional units
(multipliers, adders, ...)

Instruction Pipelines

e Execution of instructions has 4 phases:
— Fetch
— Decode
— Execute
— Write-back
o Usually these phases are executed as In
Industrial assembly line
=> overlapping of execution

Note

o |t takes some time to fill the pipeline but as

soon as the pipeline is filled the results
come out In every cycle

* Branches affect the execution as new
Instruction need to be fetched

Slows down the execution
=> Branch prediction

About Sequential Architectures

 Pipelining, memory interleaving and caching are
commonly used in sequential computers

e Some restrictions
— Cache speed is limited by technology

— Memory interlaving and pipelining are useful only in
Some cases

 Alternate way Is to use real parallel architectures

Parallel Architectures

e Parallel architectures can be classified In
several ways:

— Flynn’s taxonomy

— control mechanism

— address-space organization
— Interconnection network

— granularity of processors

* Note! ovelapping categories

Flynn’s taxonomy

* The most famous classification according to the data
and instruction streams:

— SISD (Single Instruction Single Data)
« Sequential architecture

— MISD (Multiple Instruction Single Data)

» Several processors execute different instructions to the same data
=> not too practical

— SIMD (Single Instruction Multiple Data)

» Several processors execute same instruction to several different
data

— MIMD (Multiple Instruction Multiple Data)

» Several processors execute instructions independently to their own
data

Control Mechanism

e Parallel architectures consist of several
processing elements PE
e Processing elements may operate

— under centralized control (=SISD)
— Independently (=MIMD)

SIMD & MIMD

 SIMD: Control unit dispatches instructions
to processing elements
— synchronous execution
— PE 1s on/off
— CM-2, llhac IV, MP-1, MP-2

« MIMD: Each processing element may
execute Its own program

— IPSC, Symmetry, nCube 2, CM-5

Comparison

SIMD requires less hardware because of
single control unit

MIMD processors are more complex
because of separate control units

SIMD requires less memory because only
one copy of the program Is used

SIMD suits for data-parallel programs

Comparison

SIMD may execute only one instruction In
each clock cycle

MIMD is suitable for programs limited by
condition statements

SIMD offers automatic synchronization

MIMD processors are common whereas
SIMD are special design

Address-space Organization

* Solving a problem In parallel architectures
requires communication between processors
o Communication can be achieved by using
— shared memory
— message passing

Message Passing

Multicomputer
Each processor has its own memory

Processors are connected through a message
passing Interconnection network

Processors communicate by sending
messages to each other

Example: CM-5, IPSC

Shared Memory

e Multiprocessor

« Shared memory architecture uses shared
memory for the communication by
changing variables

 Different variations
— UMA, uniform memory access
— NUMA, non-uniform memory access
— COMA, cache-only memory access

Uniform Memory Access

 First approach is to offer equal access to
shared memory

* Interconnection network capacity problem

— all processors may need to have something
from the memory at the same time

— memory access through the network may be
slow (because of the structure)

Non-uniform Memory Access

* Avoid unnecessary memory references by
using local memory

— Program
— Non-shared data structures

* Local memory concept can be extended by
removing global (shared) memory

 Memory references are mapped by the
hardware

Cache-only Memory Access

 NUMA architecture iIs similar to message
passing architecture

— NUMA provides hardware support

— Message passing architecture requires explicit
message passing

* |In some cases the processor contains only
cache memory and no local memory

(= cache only memory access)

Cache Coherence

e Cache can be added to processors to
speed up the memory references

e Cache improves the performance as It
does In sequential architecture
— but the parallel architecture causes troubles

If processors modify variables In their own
cache

 Memory value and cache value may differ

Cache Coherence Problem

e Write-through (WT) and write-back (WB)
caches
— WT: memory follows the cache
— WB: memory Is not updated until replacement

» Cache coherence problem may appear if
— Modification of shared data
— Process migration
— 1/O operations bypassing caches

Cache Coherence

« Cache coherence can be achieved by using
several approaches:

— snoopy coherence protocols (snoopy bus)
o write invalidate
— Invalidates all other copies

e Write update
— Broadcasts the newly cached copy

Interconnection Network

* Both shared memory and message passing
architectures can use

— static interconnection network
— dynamic interconnection network

 Static networks usually In message passing
computers

* Dynamic networks usually in shared
memory computers

Granularity of Processors

 Parallel architecture can be implemented by using
— small number of powerful processors
— large amount of less powerful processors

 Classification into

— coarse-grain (only few processors)

— medium-grain

— fine-grain (a lot of processors)
 Examples: Cray Y-MP, CM-5, CM-2

Granularity

 Price and avallability of processors !

— powerful processors cost a lot and therefore
parallel computers tend to have only limited
number of them

 Different applications suit for different
architectures
— limited parallel properties => coarse-grain
— lot of concurrency => fine-grain

Granularity

 Ratio of the time required for a basic
communication to the time required for the
basic computation

— Small ratio => suitable for communication
Intensive algorithms (= fine grain)

— Large ratio => suitable for computation
Intensive algorithms (= coarse grain)

Another approach

o Similar way Is to classify parallel computers
according to the following terms:
— Homogeneity (SIMD, MIMD, SPMD)

— Synchrony (synchronous, asynhronous, loosely
synchornous, BSP)

— Interaction mechanism (shared, messages)

— Address space (UMA, NUMA, NORMA,
COMA)

— Memory model (EREW, CREW, ...)

Terms

Homogeneity
— How alike processors are

Synchrony
— How tight synchronization is used

Interaction mechanism
— How processes interact

Address space
— memory location accessible by the process

Memory model
— How machine model handles shared memory conflicts

Physical Models

e |Large scale computer systems can generally be
classified into the following practical models:
- SIMD
— PVP, parallel vector processor
— SMP, symmetric multiprocessor
— MPP, massively parallel processor
— COW, cluster of workstations
— DSM, Distributed Shared Memory

PV/P

hese systems contain a small number of
powerful custom made vector processors

Each processor is capable of 1 Gflops
Custom designed crossbar swith network
Shared memory

Cray C-90, Cray T-90, NEC SX-4

SMP

Uses common microprocessors
Bus / crossbar switch

Symmetric I.e. each processor has equal access to
memory, 1/0, ...

Number of processors is limited by the centralized
memory, interconnection (scaling)

Used for database applications, data warehouses

IBM R50, SGI Power Challenge, DEC Alpha
server 8400

MPP

* Very large-scale computer system:
— commaon microprocessors
— physically distributed memory

— high communication bandwith and low latency
Interconnection

— scales well (up to 1000s of processors)

— asynchronous MIMD machine with message passing

— program consist of multiple processes (private address
space)

« Tightly coupled

COW

e Low-cost variation of MPP
— each node Is a complete workstation (PC/SMP)

— low-cost network (Ethernet, FDDI, Fiber-channel,
ATM, ..)

— loosely coupled (separate 1/0O bus)
— loacl disk
— complete operating system

 Digital TruCluster, IBM SP2, Berkley NOW

DSM

Uses cache directory (supports distributed
coherent caches) or special hardware and
software extensions

Stanford DASH, Cray T3D

Difference to SMP is physical distribution
of the memory (hardware and software
makes on illusion of shared memory)

Sofware inplementation (TreadMarks)

Comments

e Boundary between MPPs and COW is
becoming fuzzy

— IBM SP2 1s MPP but has a cluster architecture
with high-performance switch

— Clustering Is becoming a trend for scalable
parallel computers

Clustering

o Cluster is a collection of complete computers
(nodes) that are physically interconnected by a
high-performance network or a local area network

e Characteristics:

— Each computer is an SMP, workstation or PC

— Nodes work together as a single integrated computing
resource

— Each node can be used separately If necessary

Architecturel concepts

Cluster nodes

Internode connection
— Ethernet, FDDI, ATM, Fiber-channel
— Standard protocols
Single system image
— single resource vs. distributed system
Enhanced availability

— cost-effective way to enhance availability (% of time system is
available for the user)

Better performance
— superserver, minimize time for a job

Architectural comparison

o Clusters, SMP, MPP, distributed systems
are overlapping

— node complexity — hardware and software
capability
— Single system Iimage — relative concept

Benefits and difficulties

o Usability

— Single nodes are traditional platform

—develop and run application as used

— More difficult to program than message passing MPP
e Availability

— Percentage of time system is available for productive

use
— Use of common components (redundancy)
— Processors, memory, disk array, operating system

Benefits and difficulties

» Scalable performance
— add performance by increasing nodes
— processors, memory, disks scale well
« Performance/cost ratio

— clusters are cost-effective (cmp. PVP, MPP)
— made of common components (Moore’s law)

Abstract models

* Few abstract models have been developed
for the parallel computing
— PRAM, Parallel random access machine
— BSP, Bulk synchronous parallel model
— Phase parallel model

e Design and analysis of algorithms without
worrying about the details of physical
machines

PRAM

e |deal architecture

 Characteristics:
— p processors + unlimited memory
- MIMD
— Fine grain
— Tightly synchronous
— Zero overhead for synchronization
— Shared variables (no communication overhead)

PRAM

Simple and clean approach

— many theoretical parallel algorithms are specified with
PRAM

— widely used for analysing algorithms
Zero communication time iIs unrealistic
Overheads may affect in real life

Because of unrealistic assumptions PRAM model
has not been used as a machine model for real life
parallel computers

Memory models

 Memory references that happen at the same time
can be solved as follows:

— EREW (Exclusive Read Exclusive Write)

« No memory operations at the same time
e Weakest model

— CREW (Concurrent Read Exclusive Write)

 Several reads allowed but only one write
« Concurrent writes happen sequentially

— ERCW (Exclusive Read Concurrent Write)
 Several writes but only one read

— CRCW (Concurrent Read Concurrent Write)
e Several reads and writes at the same time allowed

Concurrent write

e Concurrent write can be solved in CRCW and
ERCW models as follows:

— Common value
« Concurrent write can be performed if the same value

— Arbitrary value
» One arbitrary processor succeeds
— Priority
 Processor with the highest priority succeeds

— Function
» Use some function of the values e.g. sum

BSP

« Bulk synchronous parallel model

e Overcome shortcomings of PRAM model
— p processor memory pairs (nodes)
— Interconnection network
— p processes (one / node)

— Time steps & supersteps
« Computation operations w time steps
e Communication gh time steps
 Barrier synchronization | time steps

BSP

BSP is an MIMD type computer

Loose synchrony at superstep level (compare tight
Instruction level synchrony in PRAM)

Within superstep each process execute instructions
asynchronously

Communication may use shared memory or
message passing

Point-to-point communication

BSP

e BSP is more realistic than PRAM because It
consideres overheads

o EXxeution time of superstep Is determined by:

— load imbalance: w Is max time spent on computation
operations

— synchronization overhead: lower bound for the
communication network latency

— communication overhead: gh time steps, platform
dependent part g * h relation

— time for superstep isw + gh + |

Phase Parallel Model

e Combines both PARM and BSP

— Parallel program Is executed as sequence of
phases (superstep)
e parallelism phase
e computation phase
e Interaction phase

— Different computation phases may execute
different workloads at different speeds (w, t)

— Different interactions may take different times

Sources

 Lappeenranta Univ of Technology
e Labra

