
Copyright  1997/8/9, KJH, 545_6, 5/7/2001
1

Modeling Constructs

Prof. K. J. Hintz

Department of Electrical
and

Computer Engineering
George Mason University

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
2

Modeling Constructs

■ An Entity Declaration
– Describes the external interface (I/O signals)

■ Multiple Architecture Bodies
– Describe alternative implementations of an entity

» Increasing levels of fidelity to physical reality
» Allows simulation to different degrees of detail

■ Hierarchical Approach to Model Building

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
3

Entity Declarations

■ Entities are the Primary Hardware
Abstraction in VHDL and May Represent
– Entire system
– Subsystem
– Board
– Chip
– macro-cell
– logic gate

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
4

Entity Declarations

■ May Be Used Directly as a Component in a
Design

■ May Be the Top Level Module of the Design
– Reside in library
– Usable by other designs

■ May Have No Port Clause When Used As a Test
Bench Since All Signals Are Generated
Internally

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
5

Entity Declaration Syntax

entity identifier is

[port (port_interface_list) ;]

{ entity_declarative_item }

end [entity] [identifier] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
6

Interface List Syntax

port_interface_list <=

(identifier { , . . . } : [mode]

subtype_indication [:= expression])

{ ; . . . }

mode <=

in | out | inout | buffer | linkage

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
7

Port Clause

■ Channels for Dynamic Communication
Between a Block and Its Environment

■ Optional
– Not needed for testbench entities, e.g.,

entity TestNiCadCharger is

end entity TestNiCadCharger ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
8

Port Clause

■ Purpose Is to Define Interface
– in

» in only

– out
» out only

– inout
» Can be connected to multiple signals
» Requires bus resolution function

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
9

Port Clause

– buffer
» Signal driving buffer drives output

• i.e., no need to resolve

» Signal driving buffer can also drive other internal
signals

• i.e., there is an implied buffer isolating internal usage
from port signal

– linkage
» Means for connecting to foreign design entities,

e.g., Verilog

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
10

Port Clause

■ Can Be Given Default Value Which Can Be
Overridden When Instantiated
– Unconnected or unassociated signals of mode
in must have default expression

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
11

Port Clause, e.g.,

entity NiCadCharger is

port (Voltage, Current : in real := 0.0 ;

AC : in bit := ‘1’ ;

Charged, Recharge: out bit) ;

end entity NiCadCharger ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
12

Component vs Entity

■ Entities Represent Real Devices Which
Have Architectures to Implement Them

■ Components Represent Interfaces to
Entities or Virtual Devices
– Need to be declared

» may be instantiated at same time
» can be used to build structural model, instantiated

later

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
13

Component Declaration

■ Declares a Virtual Design Entity Interface
■ May Be Used to Associate a Component

Instance With a Design Entity in a Library
by Using
– Component configuration
– Configuration specification

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
14

Component Declaration Syntax

component identifier [is]

[generic_clause]

[port_clause]

end component [identifier] ;

generic_clause <=
generic (generic_interface_list);

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
15

Component Declaration, e.g.

component mux_2_to_1 is

generic (tpd : time);

port (in_1, in_2, mux_out);

end component mux ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
16

Component Instantiation Syntax

Identifier: [component]

component_identifier

[generic map (generic_association_list)]

[port map (port_association_list)];

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
17

Direct Component Instantiation

Identifier: entity

entity_identifier

[(architecture_identifier)]

[port map (port_association_list)] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
18

Direct Component Instantiation, e.g.

And2_1: entity

And2

[(TI74LS00)]

[port map (pin2 => in_1,

pin3 => in_2,

pin1 => out)] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
19

Configuration Declaration

■ Declares Virtual Design Entity That May
Be Used for Component Instantiation

■ Components Need Not Be Bound When
Declared, but Specified in Configuration

■ Binds a Component Instance With a Design
Entity in a Library

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
20

Basic Configuration Syntax

configuration identifier of entity_name
is

{ configuration_declarative_item }

block_configuration
end [configuration] [identifier] ;

where identifier is the entity at the top
of the design hierarchy

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
21

Configuration Declarative Syntax

configuration_declarative_item <=

use_clause
| attribute_specification
| group_declaration

(a group_declaration declares a named collection of
named entities)

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
22

Block Configuration Syntax

■ A Block Is an Identified Group of
Concurrent Statements

block_configuration <=

for block_specification
{ use_clause }

{ configuration_item }

end for ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
23

Block Specification Syntax

block_specification <=

 architecture_name
| block_statement_label
| generate_statement_label
[(index_specification)]

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
24

Configuration Item Syntax

configuration_item <=

 block_configuration
| component_configuration

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
25

Component Configuration Syntax

■ Associates Binding Information With
Component Labels

for component_specification
[binding_indication]

[block_configuration]

end for ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
26

Binding Indication

binding_indication <=

[use entity_aspect]

[generic_map_aspect]

[port_map_aspect]

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
27

Entities/Components

■ Entities Can Be Defined Locally or in a
Library

■ Components Are Local Linkages to Entities
in Libraries

■ Either Can Be Used in an Architecture, but
Component Is More General and Allows for
Reuse of Entities

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
28

Architecture Bodies

■ There May Be Multiple Architecture Bodies
of the Same Entity With Each Architecture
Body Describing a Different
Implementation of the Entity.
– Behavior using the sequential or concurrent

statements
– Structure of the entity as a hierarchy of entities

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
29

Architecture Bodies

■ Declarations Define Items That Will Be
Used to Construct the Design Description.
– Signals used to connect submodules in a design
– Component port declarations are signals within

the entity

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
30

Architecture Body Syntax

architecture identifier of entity_name is

{ block_declarative_item }

begin

{ concurrent_statement }

end [architecture] [identifier] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
31

Concurrent Statements

■ No Temporal Ordering Among the
Statements

■ A Signal Assignment Statement Is a
Sequential Statement and Can Only Appear
Within a Process.

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
32

Concurrent Statements

■ A Process of Sequential Statements
Behaves As If It Were One Concurrent
Statement
– Internally sequential
– Externally concurrent

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
33

Signal Declarations

■ Signals Can Be Declared Internal to an
Architecture to Connect Entities

■ Variables Are Not Appropriate Since They
Do Not Have the Temporal Characteristics
of Hardware

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
34

Signal Declarations

■ Signals Declared Within an Entity Are Not
Available Unless Specified in the Port
Clause of the Entity Declaration.

■ Discrete Event Simulation
– Signal changes are scheduled in the future

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
35

Signal Syntax

signal identifier { , . . . } :

subtype_indication [:= expression] ;

[label :] name <= [delay_mechanism]

waveform ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
36

 Waveform Syntax

waveform <=

(value_expression [after time_expression])

{ , . . . }

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
37

Signal Assignment, e.g.,

Recharge <= ‘1’ after 5 ns , ‘0’ after 2005
ns ;

■ Executes in Zero Time
■ Schedules Future Event
■ Time References Are Relative to Current

Time
– Recharge returns to zero 2 ms after it goes high,

not 2.005 ms after it goes high

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
38

Discrete Event Simulation

■ Transaction
– A scheduled change in a signal value

■ Active Signal
– A simulation cycle during which a signal

transaction occurs
■ Event

– A transaction which results in a signal’s value
changing

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
39

Signal Attributes

Given a signal, S, and a value T of type time

S’delayed (T) A signal that takes on the same values as
S but is delayed by time T

S’stable (T) A Boolean signal that is true if there has
been no event on S in the time interval T
up to the current time, else false

S’quiet (T) A Boolean signal that is true if there has
been no transaction on S in the time
interval T up to the current time, else
false

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
40

Signal Attributes
S’transaction A signal of type bit that changes value

from ‘0’ to ‘1’ or vice versa each time there
is a transaction on S

S’event True if there is an event on S in the current
simulation cycle, else false

S’active True if there is a transaction on S in the
current simulation cycle, else false

S’last_event The time interval since the last event on S

S’last_active The time interval since the last trans. on S

S’last_value Value of S just before the last event on S

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
41

Signal Attributes, e.g., 1*

if clk’event

and (clk = ‘1’ or clk = ‘H’)

and (clk’last_value = ‘0’ or

clk’last_value = ‘L’)

then

assert d’last_event >= Tsu

report “Timing error: d changed within
setup time of clk” ;

end if ;

*Ashenden, p112

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
42

Signal Attributes, e.g., 2*

entity edge_triggered_Dff is

port (D, clk, clr : in bit ;

Q : out bit)

end entity edge_triggered_Dff ;

architecture behavioral of
edge_triggered_Dff is

begin

state_change : process (clk, clr) is

*Ashenden, p113

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
43

Signal Attributes Example 2*

 begin

if clr = ‘1’ then

Q <= ‘0’ after 2 ns ;

elsif clk’event and clk = ‘1’ then

Q <= D after 2 ns ;

end if ;

end process state_change ;

end architecture behavioral ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
44

Wait Statements

■ Until Statements Depend on Time
■ Wait Statements Depend on Signals

[label :] wait [on signal_name

{ , . . . }]

[until Boolean_expression]

[for time_expression] ;

Sensitivity Clause

Condition Clause
Timeout Clause

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
45

Wait Statements

■ All Clauses Are Optional

■ Wait Statements Are The Only Ones That
Take More Than Zero Time to Execute

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
46

Wait Statements

■ Simulation Time Only Advances With Wait
Statements

■ A Process Without a Wait Statement Is an
Infinite Loop.
– Processes with sensitivity lists have an implied

wait statement at the end of the process.
– A process must have either a wait statement or

a sensitivity list.

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
47

Sensitivity Clause

■ Sensitivity Clause
– A list of signals to which the process responds
– An event (change in value) on any signal

causes the process to resume
– Shorthand--sensitivity list in heading rather

than wait statement at end of process.

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
48

Sensitivity Clause, e.g.

process (clk, clr) is process is

begin begin

wait on clk, clr ;

end ; end ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
49

Condition Clause

■ When Condition Is True, Process Resumes
■ Condition Is Tested Only While the Process

Is Suspended
– Even if the condition is true when the wait is

executed, the process will suspend
– In order to test the condition,

» A signal in the sensitivity list must change, or,
» IFF there is no sensitivity list, an event must occur

on a signal within the condition

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
50

Timeout Clause

■ Specifies the Maximum Simulation Time to
Wait.

■ A Sensitivity or Condition Clause May
Cause the Process to Resume Earlier.

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
51

Concurrent Signal Assignments

■ Functional Modeling Implements Simple
Combinational Logic.

■ Concurrent Signal Assignment Statements
Are an Abbreviated Form of Processes
– Conditional signal assignment statements
– Selected Signal Assignment Statements

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
52

Conditional Signal Assignments

■ Shorthand if Statement

■ Sensitive to ALL Signals Mentioned in
Waveforms and Conditions.

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
53

Conditional Signal Assignment
Syntax

[label :] name <= [delay_mechanism]

{ waveform when Boolean_expression else }

waveform [when Boolean_expression] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
54

unaffected

■ Can make Waveform Not Schedule a
Transaction on the Signal in Response to an
Event using unaffected

■ Can Only Be Used in Concurrent Signal
Assignment Statements

when not priority_waiting and
server_status = ready else unaffected ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
55

Selected Signal Assignments

■ Shorthand for case Statement

■ All Rules of case Statement Apply

■ unaffected Also Applies

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
56

Selected Signal Assignments

[label :] with expression select

name <= [delay_mechanism]

{ waveform when choices , }

waveform when choices ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
57

Concurrent Assertions

■ Shorthand for Process With a Sequential
Assertion Statement

■ Checks Boolean_expression Each Time
Signal Mentioned in It Changes

[label :] assert Boolean_expression

[report expression]

[severity expression] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
58

Concurrent Assertions

■ Compact Manner for Including Timing and
Correctness Checks in Behavioral Models
– e.g., for S-R flip flop

assert not (s = ‘1’ and r = ‘1’)
report “Illegal inputs” ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
59

Entity and Passive Processes

entity identifier is

[port (port_interface_list) ;]

{ entity_declarative_item }

[begin

{ concurrent_assertion_statement
| passive_concurrent_procedure_call_statement
| passive_process_statement }]

end [entity] [identifier] ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
60

Passive Statements

■ Statements Are Passive If They Do Not
Affect the Operation of the Entity in Any
Way.

■ Concurrent Assertion Statements Are
Passive Since They Only Test Conditions

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
61

Passive Statements

■ A Process Statement Is Passive If It Does
NOT Contain
– any signal assignments, or
– calls to procedures containing signal

assignment statements
■ Concurrent Procedure Call Statements

– not yet covered

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
62

Passive Statement Example*

entity S_R_flipflop is

port (s , r : in bit ;

q , q_n : out bit) ;

begin

check: assert not (s = ‘1’ and r = ‘1’)

report “Incorrect use of S_R_flip_flop: s
and r both ‘1’” ;

end entity S_R_flipflop ;

Copyright  1997/8/9, KJH, 545_6, 5/7/2001
63

End of Lecture

