
5/7/2001 331_8 1

Data Flow Modeling in VHDL

ECE-331, Digital Design
Prof. Hintz

Electrical and Computer Engineering

5/7/2001 331_8 2

Modeling Styles
■ Behavioral Modeling

– Explicit definition of mathematical relationship
between the input and output

– No implementation information
■ Structural Modeling

– Implicit definition of I/O relationship through
particular structure

– Interconnection of components

5/7/2001 331_8 3

Behavioral Modeling
■ All VHDL processes execute concurrently
■ Non-procedural

– Data-flow
– Concurrent execution

■ Procedural
– Algorithmic
– Sequential execution of statements
– Equivalent to a single concurrent statement

5/7/2001 331_8 4

Data Flow Model
■ Concurrent Statements

– Execute in arbitrary order
– Execute only when any of input variables

changes

Local_Sig_1 <= In_1 AND In_2 ;

Local_Sig_2 <= In_1 OR Local_Sig_1;

5/7/2001 331_8 5

Signal Assignment Statements
■ Two Types

– Conditional concurrent signal assignment
statement

– Selected concurrent signal assignment
statement

■ Each of These Has a Sequential Process
Equivalent

■ Either Form Can Be Used and Are
Equivalent

5/7/2001 331_8 6

Other Statements
■ Null Statements

■ Loop Statements

■ Assertion & Report Statements

5/7/2001 331_8 7

Conditional Statements
■ The Value of an Expression Is Assigned to

a Signal When A Condition Is Evaluated As
True

■ Condition Must Evaluate to a BOOLEAN

5/7/2001 331_8 8

BIT or BOOLEAN?
■ Logical Types Are Not Equal

– BIT for signals
■ ‘0’ or ‘1’
■ Character type

– BOOLEAN for conditions
■ TRUE or FALSE

5/7/2001 331_8 9

Relational Operators
Relational Operators Have No Relative

Precedence

Symbol Operator
= Equal
/= Not equal
< Less than

<= Less than or equal to
> Greater than

>= Greater Than or equal to

5/7/2001 331_8 10

Conditional Concurrent Syntax

signal_identifier <= options
conditional_waveforms ;

options <=

[guarded] [delay_mechanisms]

conditional_waveforms <=

{ waveform when condition else }

waveform [when condition]

5/7/2001 331_8 11

Waveform Syntax

waveform <=

(value_expression [after time_expression])

{ , ... }

5/7/2001 331_8 12

Sequential Equivalent, If
[if_label :] if Boolean_expression

then

sequential_statement

{ elsif Boolean_expression then

sequential_statement }

[else

sequential_statement]

end if [if_label] ;

5/7/2001 331_8 13

If Statement, e.g.,

entity NiCadCharger is

port (Voltage, Current : in real ;

AC : in bit ;

Charged, Recharge : out bit);

end entity NiCadCharger ;

5/7/2001 331_8 14

If Statement, e.g.,
architecture ChargerArch1 of NiCadCharger

is

begin

Charger_A: process (Voltage,

Current, AC) is

begin

if Voltage >= 9.6 then

Charged <= ‘1’;

Recharge <= ‘0’;

5/7/2001 331_8 15

If Statement, e.g.,
elseif(AC = ‘1’ and Current < 0.5)
then

Charged <= ‘0’;

Recharge <= ‘1’;

else

Charged <= ‘0’;

Recharge <= ‘0’;

end process Charger_A ;

end architecture ChargerArch1 ;

5/7/2001 331_8 16

Select Conditional Statements
■ The Particular Value of an Expression

Determines Which Statements Are
Executed

■ The Sequential Equivalent To the Select
Concurrent Conditional Assignment
Statement Is The Case Statement

5/7/2001 331_8 17

Select Concurrent Syntax
with expression select

signal_identifier <= options
selected_waveforms ;

selected_waveforms <=

{ waveform when choices , }

waveform when choices

5/7/2001 331_8 18

Case Statement Syntax

[case_label :] case expression is

(when choices =>

{ sequential_statement })

{ ... }

end case [case_label] ;

5/7/2001 331_8 19

Alternatives for “choices”

choices <= (

simple_expression |

discrete_range |

element_simple_name |

others)

{ | ... }

5/7/2001 331_8 20

Choices in Case Statements
■ Locally Static, Determined During

Analysis Phase
■ Exactly One Choice for Each Possible

Value of Selector Expression
■ More Than One Choice Can Be Listed for

Each When
■ Others: Precedes the Alternative to Be

Used If All Other Case Alternatives Fail

5/7/2001 331_8 21

Case Statement, e.g.,

entity Multiplexer is

port (MuxSelect : in subtype MuxType is

positive range 0 to 3 ;

In_0, In_1, In_2, In_3: in bit ;

MuxOut : out bit);

end entity Multiplexer ;

5/7/2001 331_8 22

Case Statement, e.g.,

4_to_1_MUX :

case MuxSelect is

when 0 =>

MuxOut <= In_0 ;

when 1 =>

MuxOut <= In_1 ;

5/7/2001 331_8 23

Case Statement, e.g.,

when 2 =>

MuxOut <= In_2 ;

when 3 =>

MuxOut <= In_3 ;

end case 4_to_1_MUX ;

5/7/2001 331_8 24

Null Statements
■ Need Method of Specifying When No

Action Is to Be Performed, e.g., In Case
Statement

[null_label :] null ;

■ Use As “Stub” for Code to Be Written
FlirFocus: process (range, aperture)

begin

null ;

end process FlirFocus ;

5/7/2001 331_8 25

Loop Statements

■ Used for Repeated Execution of Sequential
Statements
– Infinite
– Exit on condition
– Inner & Outer Loops
– Next
– While
– For

5/7/2001 331_8 26

Loop Statement Syntax

[loop_label :]

loop { sequential_statement }

end loop [loop_label] ;

5/7/2001 331_8 27

Infinite Loop Example

entity 2_Phase_Clock is

port (Clk : in bit ;

Phase_1, Phase_2 : out bit) ;

end entity 2_Phase_Clock ;

5/7/2001 331_8 28

Assertion & Report Statements
■ Assertion Statements Check Expected

Conditions at Their Location in the
Program.

■ Assertion Statements Are Not “If”
Statements Since They Test for the Correct,
Expected Results Rather Than an Error.

5/7/2001 331_8 29

Assertion & Report Statements
■ If Other Than the Expected Condition, the

Report and Severity Expressions Are
Executed

[assertion_label :] assert Boolean_expression
[report expression]

[severity expression] ;

5/7/2001 331_8 30

Assertion Statements
■ Expression Must Evaluate to String
■ Uses in simulation

– Notify user when statement is executed
– Optionally print report expression
– Optionally print severity (e.g., note,
warning, error, failure)

– Determine whether to continue

5/7/2001 331_8 31

Report Statement
■ A Note Is Printed Whenever the Expression

Occurs
■ Report Always Produces a Message
■ Useful for Tracing Values or Paths During

Execution
■ Expression Must Evaluate to String
[report_label :] report expression

[severity expression] ;

5/7/2001 331_8 32

Operator Precedence
■ Highest to Lowest

– Unary operator: NOT
– Relational operators: =, /=, <, <=, >, >=
– Boolean (bitwise): AND, OR, NAND, NOR,

XOR, XNOR
■ Parentheses Can Be Used to

– Force particular order of evaluation
– Improve readability of expressions

5/7/2001 331_8 33

Type Declaration/Definition

type identifier is type_definition ;

type_definition <=

scalar_type_definition |

composite_type_definition |

access_type_definition |

file_type_definition

5/7/2001 331_8 34

Scalar Type

scalar_type_definition <=

enumeration_type_definition |

integer_type_definition |

floating_type_definition |

physical_type_definition

5/7/2001 331_8 35

Predefined Enumerated Types
■ type severity_level is (note, warning,
error, failure);

■ type Boolean is (false, true);

– Used to model abstract conditions

■ type bit is ('0', '1');

– Used to model hardware logic levels

5/7/2001 331_8 36

Bit-Vector Type
■ Useful Composite Type Since It Groups

Bits Together Which Can Represent
Register Contents or Binary Numbers.

signal Out_Port_Adx: Bit_Vector

(15 downto 0);

5/7/2001 331_8 37

Specifying Values with String
Literal

Out_Port_Adx <= B ”0110_1001”;

Out_Port_Adx <= X ”69” ;

Out_Port_Adx <= O ”151” ;

5/7/2001 331_8 38

Subtype (Slice)
■ Subtype: Values which may be Taken on by

an Object are a Subset of some Base Type
and may Include All Values.

subtype identifier is subtype_indication ;

subtype_indication <=

name [range simple_expression
(to | downto) simple_expression]

5/7/2001 331_8 39

Other Subtypes
■ A Subtype may Constrain Values from a

Scalar Type to be Within a Specified Range

subtype pin_count is integer range 0 to
400 ;

subtype octal_digits is character range
'0' to '7';

5/7/2001 331_8 40

Subtype Bounds
■ A Subtype May Constrain an Otherwise

Unconstrained Array Type by Specifying
Bounds for the Indices

subtype id is string (1 to 20);

subtype MyBus is bit_vector (8 downto 0);

5/7/2001 331_8 41

Attributes
■ Predefined Attributes Associated with Each

Type

Type_Name ‘ Attribute_Name

5/7/2001 331_8 42

Scalar Type Attributes
T’left leftmost value in T

T’right rightmost value in T

T’low least value in T

T’high greatest value in T

T’ascending True if ascending range,
else false

T’image(x) a string representing x

T’value(s) the value in T that is
represented by s

5/7/2001 331_8 43

Discrete and Physical Attributes
T’pos(x) position number of x in T

T’val(n) value in T at position n

T’succ(x) value in T at position
one greater than that of x

T’pred(x) value in T at position one
less than that of x

T’leftof(x) value in T at position one
to the left of x

T’rightof(x) value in T at position one
to the right of x

5/7/2001 331_8 44

End of Lecture

■ Concurrent
■ Sequential
■ Conditional
■ Types
■ Attributes

