CHAPTER 2
SAT: Search for Satisfiability, Petrick Function Minimization and Related Problems
Version 3.3

June 21, 2010

By Marek Perkowski, Sravya Bollomapali and Sazzad Hossain.

I hope everybody can help improving these chapters.

Please read and correct, ask me questions. Draw figures or improve.

Simulate in VHDL. Load to Veloce. Check and correct enumeration of sections and figures. May be we will add more to this chapter. Sravya, please make order with enumerations.
2.1. Introduction

In this chapter we discuss how to construct binary and multiple-valued-input  SAT models  for hardware-realized algorithms. These include reconfigurable, data-path, tree search, multiplication, oracle-like and other, algorithms. We analyzed several algorithms for solving SAT and some close combinatorial problems and we found important similarities. These similarities were next used to construct general concepts of algorithms based on SAT and CSP models. These algorithms cover a very wide class of problems. They can be realized in hardware and can model binary logic problems as well as multiple-valued logic problems. There is also a didactic value in comparing these algorithms and building oracles and other hardware for them. Ultimately, our goal is to create a hardware system for prototyping   algorithms which has elements of evolutionary, tree search and other classical software and hardware algorithms.
In this chapter we show a class of problems that are reduced oracle-based algorithms:
1. genetic algorithms and similar,

2. tree search algorithms, 
3. SAT/CSP algorithms for the Oracle model.

We hope that our analysis shown in this chapter will allow creating and analyzing various classes of algorithms quickly and with little effort. All these applications are practical. They are all based on creating SAT or CSP models or equivalently on creating oracles for Oracle algorithm [Perkowski/Hossain09]. The first task is then to be able to design oracles systematically and for any problem.
This chapter shows four methods for solving SAT and similar problems:

1. Using simple oracle, oracle with information how many terms are satisfied and more advanced oracles.

2. Multiplying terms in POS SAT and simplifying expressions using Boolean Logic.

3. Tree search based on positive and negative cofactors.

4. Sequential oracle based on linear architecture.
Our first main task in this chapter is to explain the SAT model of solving problems. We will start from the simplest of these problems and continue towards explanation of a large class of  problems. Working in a systematic way on designing SAT models for many problems, we realized that there are certain categories of problems for which models are very similar. Therefore, we tried to classify all these models to certain types of models. Such characterization will allow next to design hardware architectures with less effort, systematically and by reusing  typical sub-methods. 

Based on the solved problems, there exist the following types of models:

1. Satisfiability models: These models are based on creating a single-output satisfiability formula. The formula can use various gate types and logic structures, depending on the problem.

2. Constraint satisfaction models: These types of models are for constraint satisfaction problems such as graph coloring, image matching or cryptographic puzzles. These models use logical, arithmetical and relational blocks and have often the decision oracle and the optimization oracle as their components. The decision model is a global AND of several partial decision sub-models. The Constraint Satisfaction Models can be treated as generalizations of Satisfiability Model. This understanding helped us to build Constraint Satisfaction models and we believe that it should be always used when new SAT/CSP models for CS problems are being built.
3. Path problems: Path problems are to find certain path in a graph, for instance an  Euler path or Hamiltonian path. Many games and puzzles such as “Man, wolf, Goat and Cabbage” belong to this category. The graph is given explicitly or implicitly. The SAT/CSP models for path problems include decision sub-models for each move (edge) in the graph of the problem (game). The path problems can be also treated as constraint satisfaction problems in which constraint variables are repeated for successive units of time. When we know how many time units are needed in a sequence of moves to solve the given problem or the given problem instance, then this problem can be reduced to the constraint satisfaction problem based on oracle.
4. Problems related to spectral transforms: Walsh, Reed-Muller, Haar, Fourier, etc. For instance; (1) finding the best transform in certain transform family for a given input data, one that optimizes certain cost function, (2) finding the completion of incomplete function to a complete function that has the minimum number non-zero coefficients in its spectral transform (for instance Walsh).
5. The mapping problems, including their special classes; (1) the subset selection problems, (2) the permutation problem, (3) the combination problem. These problems are also constraint satisfaction problems, but they have special properties which makes them easier to solve based on analogies certain known algorithms for similar problems.  
The Satifiability oracles include the following:

1. POS satisfiability,

2. Solving the unate covering problem by Petrick Function,

3. Solving binate covering problem,

4. Solving various multi-level SAT formulas, especially the generalized SAT of the  form 
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5. Solving the even-odd covering problem for ESOP, PPRM, FPRM and similar  logic minimization problems,

6. Solving the AND-OR Directed Acyclic Graphs (DAGs) from robotics and Artificial intelligence.

The constraint satisfiability oracles include:

1. Proper graph coloring

2. Compatible graph coloring

3. Graph coloring problems with non-standard cost functions

4. Waltz algorithm for image matching

5. Cryptoarithmetic puzzles such as SEND + MORE = MONEY

The Mapping oracles include:

1. Maximum cliques (used in Maghoute algorithm for graph coloring),

2. Maximum independent set,

3. Finding prime implicants of  a Boolean Function.
Path oracles include:

1. Euler path,

2. Hamiltonian path,

3. Shortest path,

4. Longest path,

5. Traveling salesman path,

6. Missionaires and cannibals logic puzzle,

7. Man, Wolf, Goat and Cabbage logic puzzle.

Exhaustive solving of equations includes:

1. an + bn = cn
2.2. Solving the Satisfiability Class of Problems
2.2.1. Product of Sums SAT (POS SAT)
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    Figure 2.1.1.1:  Classical oracle for POS Satisfiability 
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The fundamental role of satisfiability to computer science, algorithm design, CAD and complexity theory is well-known. 
In this section we will present examples of building oracles for various satisfiability problems. Let us build first the oracle for function 
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. The standard oracle is presented in Figure 2.1.1.1. The formula can be transformed as follows, using De Morgan rules:
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                                                          Equation 2.1.1.1
Using Equation 2.1.1.1 the oracle can be built as shown in Figure 2.1.1.2. 

2.1.2. Generalized SAT.

In some problems the satisfiability formula is not in POS form. It can be either converted to a POS form, which is often very inefficient, or it can be designed as a multilevel circuit of other structure than that from Figure 2.1.1.2.

For example, given is a SAT formula:
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                               Equation 2.1.1.2

The formula is transformed to the following form
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          Equation 2.1.1.3

and realized as in Figure 2.1.1.3. Another way to realize (a + b + c) would be to use 
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Figure 2.1.1.3: Oracle for function
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. The circuit is not minimized.

Graph Coloring can be reduced to covering of nodes with Maximum Independent Sets. Covering is SAT problem and Maximum Independent set is SAT problem. Show example.
2.1.3. AND/OR DAGs.

There are several problems in Artificial intelligence, CAD, planning and scheduling that can be represented by trees or DAGs ( directed acyclic graphs). These structures can be converted to satisfiability formulas in classical logic which are next converted to  arrays.
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Figure 2.1.3.1:  AND/OR DAG for certain Artificial Intelligence Task (such as robot planning). Nodes represent tasks. Leafs represent trivial actions. Arrows represent task dependence. Nodes c and d are AND-nodes. Others are OR-nodes. Node e is implication node and nodes h, i, g and f are terminal nodes (leafs).
Given is for instance a DAG from Figure 2.1.3.1, called the AND-OR graph—the data structure used in AI. There are two types of nodes in Figure 2.1.3.1 – the AND nodes, denoted by an angle symbol between outgoing edges. This means that to satisfy the parent node, all its children nodes must be satisfied, see Figure 2.1.3.2.
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                (a)                                 (b)
Figure 2.1.3.2:  Example of the AND node in the AND/OR graph. (a) the subgraph, (b) the logical transformation to remove the implication operator.
The other type of nodes are OR nodes. They mean that to satisfy the parent node, any of its children should be satisfied, see Figure 2.1.3.3.
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           (a)                                    (b)
Figure 2.1.3.3:  Example of the OR node in the AND/OR graphs. (a) the subgraph, (b) the logical transformation to remove the implication operator.
From the graph from Figure 2.1.3.1 the following logic equation is written:
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                                         Equation 2.1.3.1
By using the logic transformation rule
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                                                                                 Equation 2.1.3.2
Equation  12.1.3.1 is converted to Equation 12.1.3.3 below
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                                           Equation 2.1.3.3
Applying the OR-to-EXOR transformation 
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the following Equation 2.1.3.4 is created:
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                          Equation 2.1.3.4
It is now easy to create an oracle for the function from Equation 2.1.3.4, using in general the methods already outlined in this book; including mirrors and factorizations, and possibly, ancilla bits.
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Figure 2.1.3.4:  Oracle for function 
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.The circuit is not optimized.
2.2.   Solving the Unate Covering Problem.

Given is  a function from Figure 2.2.1. All its prime implicants are marked as ovals (loops). Using the minterm compatibility graph G all primes are found as maximum cliques. They can be also found as maximum independent sets of graph 
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 (G complement). Based on KMap and primes we can create the covering table from Figure 2.2.2.
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Figure 2.2.1:  Finding  graphically all prime implicants for minimal Covering of  a SOP circuit.
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   Figure 2.2.2:  Covering table for function from Figure 2.2.1.

From the table, denoting rows A, B, C, D, E we compile the Petrick function in a standard way:
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This function can be simplified using the Boolean law

as follows : 
1 = A • B • D • C

Therefore,
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Figure 2.2.2.1: Oracle for the function 
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Another search method for (another) unate covering table from Figure 2.2.4 is illustrated in Figure 2.2.3. Figure 2.2.3 shows the branching tree for the unate covering problem from Figure 2.2.4. All leafs are solutions, as showed in Figure 2.2.3. Both these methods can be used to build search oracles, as well as hybrid parallel searches.
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Figure 2.2.3: Solving the Petrick Function from the unate covering table in Figure 2.2.4.This method can be combined with oracle methods using the mixed parallel   SAT approaches.
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Figure 2.2.4: Another example of an unate covering problem represented by a table.
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Figure 2.2.4.1: Oracle for the function f=(AB+AD+CBF+CBE). The circuit is not optimized.
It will be added here how to solve Petrick function on CCM using multiplication of terms. Use Cube Calculus. Parasa knows the method. For Sravya.
2.3. Solving the Binate Covering Problem.

Binate covering problem was also known as “Covering with closures”. This is because in binate covering problem, variables in the function appears both in positive form and negative form. Unate covering always has a solution whereas binate covering may or may not have a solution. Binate covering problem is used in artificial intelligence, state machine minimization, technology mapping and Boolean relations.

One example of binate covering problem is in Figure 2.3.1.1. The covering-closure table for the implication graph from Figure 2.3.1.1 is shown in Figure 2.3.1.2. 
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Figure 2.3.1.1: Implication graph for the binate covering problem.
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Figure 2.3.1.2: Covering-Closure table for the implication graph.

The equation for the binate covering problem is evaluated as
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The function can be simplified using the logic transformation rule 
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Figure 2.3.1.3: Oracle for the binate covering problem with function 
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Given is a finite state machine in figure 2.3.2.1(a). A triangular table in Figure 2.3.2.1(b) was generated covering all possible cases to minimize the number of states in the state machine. The ‘X’ symbol in the table indicates there is no possibility for grouping the corresponding states, ‘V’ indicates that the states can be combined without any problem and variables in the table indicates that states can be grouped only if the states mentioned in the block can be combined without any problem. Based on the triangular table, a compatibility graph for the state machine can be generated shown in Figure 2.3.2.2.
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Figure 2.3.2.1: (a) Finite state machine (b) Triangular table indicating the compatibility for combining different states in the FSM.

From figure 2.3.2.2 (a) and (b), maximum clique of the graph are identified as {A,C,F},{B,F},{C,D,F},{C,E,F}.  

To minimize the state machine, a covering-closure table shown in Figure 2.3.2.3  is created by considering the maximum cliques and all its subsets as rows and all the states in the machine and the implications in the compatibility graph as columns.
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Figure 2.3.2.2: (a) Compatibility graph for the FSM (b) Incompatibility graph for the FSM.
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Figure 2.3.2.3: Covering-Closure table for the FSM.

From the table, binate covering problem can be specified using the equation
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The function can be simplified using the Boolean laws (A→B = Ā+B) and A.(A+E) = A.A+A.E =A(1+E) =A .

The minimized state machine is shown in figure 2.3.2.4.
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Figure 2.3.2.4: Minimized FSM using binate covering problem.

2.4. Finding Maximum Independent Sets in a graph

2.4.1. The Maximum Independent Set Problem

Finding all Maximum Cliques of a graph and finding all maximum Independent Sets of a graph are two fundamental problems for which creating oracles is relatively easy, so we start from these problems.  The complement graph of graph G is a graph with N nodes that when added (set theoretical union of edges) to graph G make a complete clique graph on N nodes. 
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Figure 2.4.1:  Maximum Clique in graph G . There are other maximum cliques but this is the only one maximum clique with four nodes. {3, 4, 6} is a maximum clique with 3 nodes.{4, 5, 6} is  another maximum clique with 3 nodes. {5, 7} is a  maximum clique with 2 nodes.

2.4.2. Finding Prime implicants of Boolean Function.
Prime implicants are found from the cliques of the graph G of compatibility of true minterms or from the maximum independent set of its complement graph 
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             Graph G                                                                Graph
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Figure 2.4.2.1: Graph G and its complement graph 
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. The maximum independent sets of graph G are the maximum cliques of graph 
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, and vice versa. For instance { n2, n3, n4, n5 } is a maximum clique with four elements.

The algorithm will produce all cliques of size n, next all cliques of size n + 1, etc.

Oracle for the decision part of the maximum independent set for graph from Figure 2.4.2.2 is shown in Figure 2.4.2.3. The optimization Oracle finding all independent sets with more than val nodes is given in Figure 2.4.2.4. This circuit uses the “Count Ones” circuit and “≤ comparator” and is explained in full detail in chapter XX.
[image: image163.wmf]A

E

A

E

A

A

A

E

A

A

=

+

=

×

+

×

=

+

×

)

1

(

)

(



Figure 2.4.2.2: Example of a graph to find the maximum independent set.
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Figure 2.4.2.3: The oracle to find all maximum independent sets of graph from Figure 2.4.2.2. Each AND-gate is for an edge of this graph. This can be converted to classical SAT problem.
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Figure 2.4.2.4: The optimizing Oracle to find all independent sets in a graph that have more than val nodes each.
Another approach to Petrick function minimization is to create an oracle as in Figure 2.4.2.5. One more approach is given in Figure 2.4.2.6. Both these examples use realization of single-index symmetric functions realized as reversible blocks. These way optimization problems such as Petrick Function are converted to decision problems.
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Figure 2.4.2.5:  An oracle to solve Petrick Function. Value of k is set by the user.
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Figure 2.4.2.6: Oracle for the Symmetric function for N=5 and each block indicates a multiplexer.
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Figure 2.4.2.6: One more alternative approach to solving Petrick Function. MISSING GATE AND, FIX THE FIGURE SRAVYA
SRavya = show the following:

a. How to do maximum clique Solver using Oracle

b. How to solve maximum clique Solver on CCM using multiplication of terms. Use Cube Calculus. Parasa knows the method.

2.5. Classes of Satisfiability Problems.

We showed in sections 2.2 and 2.3 examples of problems that belong to the “satisfiability class of problems”. In this section we analyze the satisfiability class of problems in more detail.

2.5.1. Variants of reducing various problems to SAT.

Satisfiability type of problems are the simplest problems for which oracles can be built. Formulating the oracles is quite straightforward from the SAT formula. In the most general case the Satisfiability Decision Function problem is formulated as an arbitrary binary or multiple-valued-input binary-output discrete single-output function, for instance, a product of sums of literals. (The literals are variables negated or not). Another example may be EXOR of products of literals, or product of EXORs of literals, or product of sums of products of literals. These functions are created by transforming some natural-language or mathematical decision problems, such as for instance cryptographic puzzles. The question is to find out for which values of variables the formula is satisfied. In some problems one has to find all solutions, in some other problem just one solution or only some solutions, Often only one solution is enough. An example of oracle for unate function f from section 2.3.2 is shown in Figures 2.3.2.3 and 2.3.2.4. Let us observe that this is a purely logic oracle that gives yes/no answer only. There is a single wire for each variable of the formula. When the function is satisfied the output variable has value “1”. The input values may be: 
(1) given in exhaustive way by counting, 
(2) generated randomly, 
(3) generated according to Genetic Algorithm
Below we will formulate systematically several satisfiability types of problems, starting from the simplest ones.
Given is a product of terms, each term being a Boolean sum of literals, each literals being a Boolean variable or its negation. We are interested in the following problems.

Problem 2.5.1.1 (Satisfiability):

Answer Yes if there exists a product of literals that satisfies all terms or No if such product does not exist.

Problem 2.5.1.2 (Optimization of the Generalized Petrick function): 

Find a product with the minimum number of literals that satisfies all terms or (option) prove that such product does not exist.

Problem 2.5.1.3 (Optimization of the Generalized Petrick function-non-negated literal variant): 

Find such product of literals that satisfies all terms and in which a minimum number of literals is not negated or prove that no such product exists. (The not negated literals will be also called positive literals).

Problem 2.5.1.4 (Partial Satisfiability): 

Find such set of literals that satisfies the maximum number of terms.
Problem 2.5.1.5 (Complementation of Boolean function): 

Given is a Boolean function in a Sum of Products Form. Find its complementation in the same form.

Problem 2.5.1.6 (Tautology Checking):

Verify whether a function is a Sum of Product Form is a Boolean tautology.

Problem 2.5.1.7 (Conversion from Sum of Product Form (SOP) to Product of Sums Form (POS)):
Convert a Boolean function from a Sum of Products to the Product of Sums Form.

Problem 2.5.1.8 (Conversion from Product of Sums Form to Sum of Products Form):

Convert a Boolean function from a Product of Sums to the Sum of Products Form.

In problems 2.5.1.2, 2.5.1.3 and 2.5.1.4 we can look for all solutions, all optimal solutions, some optimal solutions or for a single optimal solution. Problem 2.5.1.2 in which all solutions are looked for corresponds to the well-known Boolean Complementation Problem that occurs in the minimization of Boolean functions.
Other problems such as Tautology Checking, Conversion from Sum of Product Form to Products of Sums Form and Conversion from Product of Sums Form to Sum of Products Form are also mentioned.

The central role of the first problem in Computer Science is well established. Many reductions of practically important problems to problems 2.5.1.2 and 2.5.1.3 were shown, including problems from VLSI Design Automation, especially in logic design and state machine design. It has many applications also in logistics, scheduling, AI and robotics.
Ashenhurt/Curtis Decomposition of Boolean functions can be done in an algorithm that repeatedly applies Satisfiability, Tautology and Complementation. These operations are also of fundamental importance in most algorithms for Boolean minimization, factorization, and multi-level design.

The problem of Partial Satisfiability and its applications are discussed by K. Lieberherr [Lieberherr81, Lieberherr83]. Many other reductions to the formulated above problems are discussed in papers [Garey79, Perkowski 80, Perkowski 86, Perkowski87]. A design automation system [Perkowski85] was created, in which many problems were first reduced to the few selected "generic" combinatorial optimization problems. These problems include the eight problems introduced above. The paper looked to various methods to implement these generic combinatorial algorithms with the goal of finding ones that are as efficient as can be realistically achieved for NP-hard problems with software and hardware technologies of that time. Systolic processors, hardware accelerators and classical oracles were proposed for these problems.
The above problems can be applied not only to POS based SAT or 3SAT, but to arbitrary oracle built from arbitrary gates, i.e. a multi-level binary or multiple-valued circuit.
The covering problem is reduced to the minimization of Petrick Function. An example of Petrick function for a covering table from Figure 2.2.4 was shown in Figure 2.2.3. All NP- complete combinational decision problems are equivalent to the Satisfiability Problem [Garey79]. The reductions of many practically important NP-hard combinatorial optimization problems can be also found in the literature. For instance the minimization of the Sum of Products Boolean functions can be reduced to the Covering Problem [Breuer72, Perkowski80] and Covering Problem can be further reduced to the Petrick Function Optimization Problem (PFOP) [Slagle70]. Many other problems, like test minimization can be also reduced to the Covering Problem [Kohavi78, Breuer72, Perkowski80].
The problem of minimization of Finite State Machines includes: (1) the Maximum Clique Problem and (2) the problem of finding minimum closed and complete subgraph of a graph (Closure/Covering Problem) [Perkowski 76]. The first of these problems, (1), can be reduced to the Petrick Function Optimization Problem (PFOP). The problem of optimum output phase optimization of PLA [Sasao84] can be reduced to PFOP.

The second problem, (2), can be reduced to the Generalized Petrick Function Optimization Problem (GPFOP), introduced above. Many other problems, like AND/OR graph searching [Nilsson71] or TANT network minimization [Gimpel67] were reduced to the Closure/Covering Problem.

A number of problems (Including Boolean Minimization [Perkowski80], [Nguyen87], Layout Compaction [Perkowski80], and minimization of the number of registers in hardware compilation [Perkowski80] can be reduced to the Minimal Graph Coloring Problem. The Minimal Graph Coloring can be reduced to the Problem of Finding the Maximum Independent Sets and next the Covering Problem (Maghoute algorithm). The Problem of Finding the Maximum Independent Sets can be reduced to PFOP. The PFOP is a particular case of the GPFOP. As we then see, all the above problems can be reduced to the Generalized Petrick Function Optimization Problem for which we will create a QSAT model. A role and importance of Complementation [Sasao85], Tautology [Sasao84b] and conversion methods from SOP to POS and vice versa in logic design are well known. 
SRavya = show the following:

a. How to do SAT Solver for all these problems using Oracle

b. How to solve SAT Solver for all these problems on CCM using multiplication of terms. Use Cube Calculus. Parasa knows the method.

2.5.2.   Computers for Solving Satisfiability and Petrick Function Problems

2.5.2.1. A General Characteristics of the Existing Algorithms.

The analysis of various algorithms for satisfiability can be found in the papers of Davis and Putnam [Davis85], Goldberg, Purdom and Brown [Goldberg82], Franco [Franco85], Lieberherr [Lieberherr81, Lieberherr82]. Although it is not generally acknowledged, the Boolean complementation problem [Sasao85, Brayton84] is basically the same as the Problem 2.4.1.2 with all solutions looked for. Various algorithms for solving the Covering Problem and Boolean minimization [Slagle70], [Schmidt74] are basically the algorithms to solve the PFOP, and can be easily adapted to solve the GPFOP.

Most algorithms for these problems from literature known to us are sequential, few are parallel. All the above problems are strongly interrelated. The algorithms to solve them can be basically divided into the following categories:

· tree searching  algorithms (ex. Slagle, Schmidt, Purdom, Davis)

· array algorithms (ex. Quine - McCluskey algorithm to solve the covering   

      problem)

· transformational algorithms (ex. Original method to solve the Petrick functions)

The tree search can be differently organized and various tree searching strategies were proposed (chapter X6). We will use the terminology from Nilsson [Nilsson71]. The tree is composed of nodes and arrows. New nodes are created from the nodes by application of operators. Arrows are labeled by operators. In our case operators correspond to literals or sets of literals. Various search strategies are used to expand trees, they use the cost and heuristic functions to select the nodes for expansions and for the ordering of operators. We assume that the order of expanding the tree in the figures is from left to right.

2.5.2.2. Tree-Search Algorithms for Basic Boolean Problems
2.5.2.2.1. A General Characteristics of the Existing Approaches

The non-optimum algorithms for these problems can be divided into the following categories:

1. Greedy algorithms,

2. Random  search algorithms,

3. Incomplete tree-search algorithms (they search only a subset of the solution space),

4. Simulated annealing algorithms,

5. Genetic algorithms.

6. Particle Swarm and Bacteria Foraging algorithms,

7. Hardware simulators,

8. SAT-solvers
In all these approaches three representations of a General Petrick Function (GPF) are applied, as well as three basic methods of branching. This gives many basic algorithm variants, out of which only few have been investigated in the literature. In this book only few of these categories are illustrated for ASPS, but the careful reader has now enough knowledge to investigate all possible variants and trade-offs.

Let us take the POS form of a GPF: 

F1 = (a + 
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The first representation is a list of terms. A term is a Boolean sum of literals. Each term can be also represented as a list. Function F1 can be then represented as a  list:

F1  =  ( (a (b) (c) d)  ((a) d e)  ((b) (c) e) )  
The same representation will be used for a Sum of Products Form:

 F2 =  a 
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The possible methods of tree branching for our problems are the following:

1. a non-balanced binary tree, where each branching is done for a single variable and its negation. Various variables can be selected for branching in different nodes of the same depth of the tree [Purdom83] and additional rules are used for terms being single literals [Davis62].

2. an arbitrary number of successors in each node, branching is done according to the selected term in this node, all literals from this term lead to some successor nodes [Breuer72], [Perkowski 80].
3. a method based on a standard tree of subsets of a set of all literals used in the function [Perkowski80]. This method modifies the standard tree by removing literals that are not present in each current node of the tree.

The method can lead to different problem decompositions of a large SAT problem to many smaller SAT problems with respect to sets of support variables. This can have application in parallel SAT solvers or in   SAT solver accelerators . These methods are built into hardware controllers of oracles.
Let us now concentrate on the first branching method only. The following decisions affect speed and quality of solutions obtained from this method.

1. How to select the branching variable?

2. What other rules (like Davis-Putnam) can be applied for creating the operators?

3. How to order the branches of the tree?

4. How to terminate the branches of the tree?

5. What parts of tree are expanded in series and which in parallel?

The modification of the first branching method is shown in Figure 2.5.2.2.1.1. Nodes of the tree correspond to the function and simplified functions that are created after substitutions. The leafs of the tree are the solutions. Usually they correspond to products of operators along the branches. This method is used when all solutions are searched for.
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Figure 2.5.2.2.1.1: The variant of the first branching method as the general approach to find all solutions to a SAT, (a) the tree with variable branching and solutions being product groups, (b) the KMap with Sum groups and product groups shown.

[image: image64.emf]) ( ) ( ) ( ) ( ) ( v t r a s r a v y x a z x a y x a

           

) () () ( v y x z x y x

    ) () ( v t r s r

  

a

a


Figure 2.5.2.2.1.2: Smart selection of a decomposition variable in the first branching method.
A variable is selected for branching according to some rule. For instance, a variable can be selected that occurs most often (in both affirmative and negative forms) in the POS formulas of the function. The branching with operators variable = 0 and variable = 1 is done by substituting in the formula the values 0 and 1 for this variable, respectively. Two new nodes are created, in which the corresponding functions are simplified by removing terms with selected literal and removing the negations of the selected literal from other terms. Whenever a term being a single literal is created, it is immediately used for substitution, as in the Davis-Putnam procedure and the algorithms based on it. Figure 2.5.2.2.1.2 illustrates the application of the branching decomposition. The initial function has the support set of 9 variables. After branching for variable a we create two smaller SAT problems, the first with the support set of 4 variables, and the second with the another support set of 4 variables. This way a smaller  computer can be build to solve in an exact way each sub-problem in a parallel  computer.
2.5.2.2. Selection of a Branching Variable

The rules for selecting a variable are:

1. Select a variable that occurs in most terms, in both positive and negative forms.

2. If there are more than one such variables selected in step 1 then select among them variables that occur in the shortest term. If there is only one variable selected in step 2 then return it.

3. If there are more than one variable selected in step 2 then select among them a variable v that maximizes the value of the function:
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   4.  Otherwise return random variable from step 3.

2.5.2.2.3. Additional Operator Selecting Rules

All literals from terms consisting of single literals are selected and no branching is done.

2.5.2.2.3.1. Ordering of Branches
For each variable v selected according to section 2.5.2 we can apply one of two operators:  v and 
[image: image66.wmf]v

  as the first operator in branching. The literal that occurs more often in the terms is applied. This leads to solutions being generated earlier when the depth-first search strategy with successors ordering is used, in which the successors of a node are ordered according to the above rule.

These rules are good for sequential parts of parallel algorithms, those that produce initial decompositions of SAT formulas on top of trees.

2.5.2.2.3.2 Termination of Tree Branches

2.5.2.2.3.3. First variant of branches terminating.
Two new additional rules are used:

1. When a function in a node consists of a single term, the solutions are created for all literals from this term. No branching is done and the current branch is terminated.

2. When all terms in a function include the same literals  L1,....Ln  and only single other literal each, then the solutions are created for  L1,...,Ln  and the product of the remaining literals from the terms.

3. No branching is done and the current branch is terminated. When all terms in  a function include the same literals  L1 ,...., Ln  and one or more from these terms include only those literals and no other literals, then the solutions are created for  L1,....,Ln. No branching is done and the current branch is terminated (this is unlike in the well-known procedures).

2.5.2.2.3.4. Second variant of branches termination.

In the optimization problems when only a single optimum solution or some optimum

solutions are looked for with a minimum number of positive literals a speed-up can be obtained by using the rules:

[1A.] When a function in a node consists of a single term any literal from this term is selected to the solution. No branching is done and the current branch is terminated.

[2A.] When all terms in a function include the same literals L1, ...., Ln  and only single other literal each then the solution is created for  L1 . No branching is done and the current branch is terminated. When all terms of the function include the same literals  L1,..., Ln  and one or more from these terms include only those literals and no other literals then the solution is created for  L1. No branching is done and the current branch is terminated.

Additionally, in this type of optimization search problems the cut-off rules are used to backtrack in master processors of parallel systems when the costs of partial solutions are equal or higher than the current minimum cost (cost of the best solution found until now).

2.5.2.2.3.4. Discussion

The created solutions (so-called implicants of  F1 ) are all different. Comparison of the created products with the Karnaugh map of  F1  from  Figure 2.4.2.2.1.1b  allows us to observe the following properties of this branching method:

1. the complemented function has products which   are not neccessarily prime implicants,
2. the implicants in the complemented function   are overlapping (are not disjoint)
3. the number of implicants is smaller than the number of all prime implicants of the function (all prime implicants are generated in many methods).

It results from the above that this branching method is well suited for complementation of Boolean functions and for finding of single solutions to the optimization problems. This method is not able to find all optimal solutions to such problems, however, it can produce a subset of quasi-optimal solutions, which in practice can be quite sufficient.

The advantage of this method is that some good solutions can be found with very limited search (using for instance the depth-first tree-search strategy [Nilsson71], and the cut-off in the tree can be applied soon. Another advantage is that each solution is generated only once in the search process.

The main disadvantage of this method is that it may not produce the optimal solution to Problem 2.5.1.2, when the variables are selected in a wrong order. Although in the investigated by us practical examples the solutions were always optimal, they depended on heuristics. It does however provide optimum solution to Problem 2.5.1.3, which has more practical applications.

The solution to Problem 2.5.1.2 is with this branching variant not necessarily optimum since not all combinations of literals are created as branches of the tree. The solution to Problem 2.5.1.3 is optimal since all combinations of positive literals are generated as branches. The other branching methods are compared in [Perkowski87]. Only the implementations of the above two variants of the first method will be discussed below.

2.5.2.2.3.5. Reductions

In this section we will show how some of the problems investigated by us can be reduced to other problems, in order to decrease the number of necessary generic programs in our library of useful CAD routines.

2.5.2.2.3.6. Reduction 1.

Let us assume that we dispose an algorithm Find_Solutions (Product_of_Sums, Number_of_Solutions, Type_of_Solutions) that finds solutions (the solutions are products of literals) to Product_of_Sums. Product_of_Sums is a Boolean function in product of sums form (GPFOP). Number_of_Solutions and Type_of_Solutions are some user-specified parameters.

When

1. Number_of_Solutions = all, then all solutions are generated

2. Number_of_Solutions = all_optimal, then all optimal solutions are generated.

3. Number_of_Solutions = some_optimal, then some optimal solutions are generated.

4. Number_of_Solutions = one_optimal, then one optimal solution is generated.

When

1. Type_of_Solutions = literals, the solutions to minimize the number of literals are looked for

2. Type_of_Solutions = positive_literals, the solutions to minimize the number of positive literals are looked for.

When this parameter equals nil (empty) the type of the function is irrelevant.

To find a complementation of a Boolean function in a Sum of Products Form it is sufficient to find all solutions to a dual function. 

With respect to the representation of Boolean functions shown above the finding of the dual function is trivial. It consists only in negating of all literals in the Sum of Products Form.

F = ab + cd + 
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                                                  Equation 2.4.1
Function f in SOP form is represented as (( a b) (c d) (( a ) (b))).

(Dual f) in POS form is:

(((a) (b)) ((c)(d)) ( a b))                                                                           Equation 2.4.2
When we generate all solutions for Equation 12.4.2 using the first branch terminating variant and next the set of solutions generated by the program is treated as a SOP then the returned by it complement function will be the same as in Equation 12.4.1.

2.5.2.2.3.7. Reduction 2.

To convert a Sum of Products to Product of Sums Form it is sufficient to find all solutions to this sum of products treated as a product of sums. The result is treated as a sum of products.

Example 2.4.2.2.3.7.1:
Let us take the function from the previous example:  f =  ab + cd + 
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. Applying de Morgan Theorem to the right side of the formula Equation 2.4.1  we get:
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                 Equation 12.4.3
This is a POS of function f. We treat the SOP of f = ((a  b) (c  d) ((a) (b)))  as a POS and find solutions with the first branch terminating variant. Later we treat the set of solutions as the product of sums. The same solution as in Equation 2.4.3 is found.

Let us verify this. POS corresponding to SOP is:

(a + b) (c + d) (
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d                      Equation 2.4.4
The result Equation 2.4.4 must be treated as POS, then we have:

 (
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+ d)                                     Equation 2.4.5
This is the same result as in Equation 2.4.3 .

2.4.2.2.3.8. Reduction 3 
Let us assume now that we dispose an algorithm Satisfiability (Product_of_Sums) that answers   YES  or   NO , depending if there is a solution to a Product_of_Sums. Let us assume now that we want to check whether some SOP is a tautology. SOP is a tautology when its complement is zero or in other words when the answer to the Satisfiability Problem for the complement is  NO.

Example 2.4.2.2.3.8.1:
SPF of function f is:

F =  ab + a
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                                                                      Equation 2.4.6
f is represented as ((a b) (a (b)) ((a) b) ((a) (b))) . It can be easily checked that   Equation 2.4.6  is a tautology:
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                                   Equation 2.4.7 
The right side of Equation 2.4.7  can be calculated by

  (Dual Sum_of_Products) = (((a) (b)) ((a) b) (a (b)) (ab))  
This is given as an argument to program Satisfiability. Now searching the tree shows that there is no product of literals that satisfies this function. The answer for function from Equation 2.4.7 produced by the Satisfiability program will be NO. Therefore the answer to the corresponding Tautology  problem will be YES.

In conclusion, we will need only three programs to solve all eight problems:
· Satisfiability(Product_of_Sums),
· Find_Solutions(Product_of_Sums, Number_of_Solutions, Type_of_Solution,

· Partial_Satisfiability(Product_of_Sums, Number_of_Solutions, Type_of_Solutions)
These SAT programs can be of any type, including the single oracle system   and the parallel   system.

2.5.2.2.3.9. Other data structures
Sravya please check all examples and all numbers of sections, figures and formulas.
Let us take the GPF (POS): 

F1 = (a + 
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The first representation is a list of terms. A term is a Boolean sum of literals. Each term can be also represented as a list. Function F1  can be then represented as a  list:

 F1 = ( (a (b) (c) d)  ((a) d e)  ((b) (c) e) )   
Its variants use computer words or Boolean cubes [Ulug 74] to represent terms.

The second representation uses an array of symbols 0 and 1 to describe the GPF F1, Figure 2.5.2.2.3.9.1:
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Figure 2.5.2.2.3.9.1: Tabular Representation of Function F1.
This representation uses often arrays of binary words to store  rows or columns of the array. The variant of this representation uses half the number rows, but more symbols  to be stored in an array are now required. Two bits per symbol ( 0 ,  1 ,  X , auxiliary  E ) are used.
	
	C1
	C2
	C3

	a
	1
	0
	X

	b
	0
	X
	1

	c
	0
	X
	0

	d
	1
	1
	X

	e
	X
	1
	1


                                              F1
Figure 2.5.2.2.3.9.2:  Second Method for Tabular Representation of Function F1.
 The third representation uses lists corresponding to rows of the above arrays:
La  =  {C1},

L
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 = {C1},

Lc  =  {},

L
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Ld =  {C1, C2},

L
[image: image96.wmf]d

 = {},

Le  =  {C2, C3},

L
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The possible methods of tree branching are the following:
· irregular binary tree, where branching is done for a variable and its negation. Various variables can be selected in different nodes of the tree on the same search depth [Purdom, Haralick],

· arbitrary number of successors in each node, branching  is done according to the selected term in this node ,
·  all literals from this term lead to successors [Breuer72, Perkowski80],
· standard tree of subsets of a set of all literals used in the function [Perkowski87].

This method modifies the standard tree by removing literals that are not present in each current node of the tree.

2.5.3. Discussion on branching and parallelism.

The first branching method is shown in Figure 2.5.2.2.1.1a. Whenever terms of single literals are created, they are immediately used for substitution, as in the Davis-Putnam procedure and all its successors. The created solutions (implicants of F1) are all different. Comparing the created products with the Karnaugh map of the F1  function (Figure 2.5.2.2.1.1b) permits us to note two properties of this branching method:

· the complemented function has products which are not prime implicants,
· the implicants in the complemented function  are not overlaping.
It results from the above that this branching method is well suited for complementation of Boolean function and for finding of single solutions to problems. It is not able to find all optimal solutions, however it can produce a subset of quasi-optimal solutions, which in practice can be quite sufficient.

The advantage of this method is that some good solutions are found with small search (using for instance the depth-first tree-search strategy (Nilsson, [Nilsson71]) and the cut-off in the tree can be applied soon. Another advantage is that each solution is generated only once.

The main disadvantage of this method is that it can produce not the optimal solution, when variables are selected in wrong order. Although in the investigated by us practical examples the solutions were always optimal, they depended on the heuristic. The optimum solution {a} is found (Figure 2.5.2.2.1.1) when variable a is selected in the first level (it is selected because variable a occurs most often). When variable c is selected on the first level the best solution found has two literals and is not optimum.
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Figure 2.5.3.1:  The second branching method applied to function from Figure 2.5.2.2.1.1. Observe that the groups 
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 are included in other solutions thus they can be never generated if the search would be executed in another order (like from right to left) and any branch with a group included in the existing group being a solution would be cutted-off.
The second branching method is presented in Figure 2.5.3.1. At each node of the tree one term is selected

· according to some heuristic,
· randomly,
· as the first one. 

The literals from this term are taken for branching. This method can incorporate not only Davis-Putnam heuristics but also many methods used to solve the covering problem, like dominance of rows or symmetry. As we see in the corresponding Karnaugh map (Figure 2.5.3.2) the created products are prime implicants of the function and they also overlap. The method is then good to generate all prime implicants while complementing a Boolean function and to generate all optimal solutions to a Boolean function. The disadvantage of this method is that some solutions are generated many times (like in our example). The advantage of this method is that it can generate all optimum solutions.
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Figure 2.5.3.2: The groups obtained from search in Figure 2.5.3.1 that are not included in other groups generated at the left in Figure 2.5.3.1.
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Figure 2.5.3.3: Part of the tree of all subsets of literals applied to function from Figure 2.5.3.1. Observe that solutions included in other solutions are generated and there are solution repetitions. Thus finding new solutions can be speed-up by changing the order of node expansions. Davis-Putnam and other rules can be used to select good expansion nodes. This is shown in nodes N11 and N12.
The third branching method uses the standard method of generating subsets of a set of all literals (see Figure 2.5.3.3). Some literals, like a in node N1 are cancelled because of search model. However implicants included properly or not into other implicants are generated, which makes this method applicable only if the implicants with costs higher than the cost of the actually minimum solution are cutted-off.  This method can generate quickly some product solutions with the minimum number of literals. This method cannot be used to generate all optimum solutions or to complement a Boolean function.

Observe that because of wide branching, the breadth first strategy generates many simple nodes in the first level branching, thus solutions in nodes N10, N12, N13 and N14 are generated that may be cut-off  by earlier finding of node N7.  Similarly node N14 can be removed as included in N7 (ade 
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ae) when we look for all solutions. The tree from Figure 2.5.3.3 is an excellent illustration of various search trade-offs typical for SAT, unite covering, binate covering, even-odd covering, graph-coloring, some mapping and constraint satisfaction problems.

The approximate methods expand some subset of the described above trees. The greedy algorithms find one depth-first path in the tree and if necessary, iterate. The random search algorithms find single random depth-first path and (sometimes) iterate.

The incomplete search algorithms search with some heuristic strategy, that searches only a subspace of the entire solution space. The search strategies include:

· depth-first with limited number of backtracks,
· ordered-search with not-admissible quality function (Nilsson [Nilsson71]),
· branch-and-bound with no-admissible quality function,
·  any combination of the above.

This analysis is only a beginning. More work should be done to create good search strategies for   parallel   computers for SAT and related problems.
Concluding on SAT. In theory, every NP problem can be polynomially reduced to SAT. A parallel   computer tuned to solve SAT problems of various types would be a tremendous asset to all these problems. Here we showed only subset of these problems.

12.6. Oracle for the Exact ESOP Minimization Problem.
12.6.1. Binary Case

In  1988 Martin Helliwell, a PSU student, introduced a decision function for exact ESOP minimization  which was later on named the Helliwell Function [Perkowski-Jeske90]. This problem is equivalent to the so-called Even-Odd Covering Problem. He implemented a GAL-based circuit courtesy Lattice Corporation for hardware minimization of exact ESOPs for single-output 5 variable functions. The generating functions were the all possible products of terms of n-variable function F; there existed thus N = 35   = 243 of such generating functions. There were 25 flip-flops corresponding to every minterm of the function, set initially to the value of a function to be minimized. The problem was to find by an exhaustive hardware search such choice of the generating functions that the EXOR of them would make the states of all flip-flops equal to zero ( F = (g iff F ( (g = 0). A 243 bit binary counter in natural code was used to exhaustively search all combinations of the generating functions so the search was generating worse solutions after already finding a solution with a smaller cost such as generating candidate 00011 after already finding that combination 000011 was a solution. This was the first hardware accelerator for EXOR logic problem and its performance was much superior to IBM PC AT but the limited size of functions discouraged the PSU team at this time to continue this research. Searching with a binary counter is not a depth-first or a breadth-first method and its only advantage is the simplicity and regularity of hardware.
In 1990 several generalizations of the Helliwell’s Method to multi-output multiple-valued functions were found [Perkowski, Jeske] to Positive Polarity Reed-Muller Forms to Fixed Polarity Reed-Muller Forms GRM forms and other [Green91, Perkowski]. The method was implemented in software using depth-first search but unfortunately the limit of 5 variables was not exceeded. However it was observed that the search algorithms can be made much more efficiently for strongly unspecified functions and by using more sophisticated tree search strategies. A tree is pruned by finding equivalent operators on each level. 
Now we will formulate the  oracle to solve the ESOP Minimization Problem.
Given
(D1) the set of care minterms of a single output function F with the corresponding binary output values of a single output function for each care minterm d. 
(D2) The set  d of  the generating (or basis)  functions to be used.
Find 
The minimum solution i.e. the expression being an EXOR of generating functions Gi with the minimum number of inputs to the output EXOR gate ( i.e. in other words the minimum number of EXORed functions selected from the set of the generating functions from D2).

The algorithm.

For function F of n variables create an arbitrary number C of all generating functions Gi stored in hypothetical registers C = 2 n for any canonical AND/EXOR form, 3 n for ESOP, C = 2n for any LI form C =3 n for non-canonical expressions being generalizations of canonical Maitra LI forms, C = v *2n for a combination of generating functions from various canonical forms, LI forms, etc. To every generating function Gi corresponds one binary decision variable gi in the oracle.
Exoring all selected group variables equals the original function F. The decision function from formula F is a generalization of the Helliwell Function. Its generalization for multi-output case is trivial.  The cares of each output must be separately repeated in the vectors. Figure 2.6.1 explains the principle of our approach. This particular example minimizes a completely specified function as an ESOP but very similar oracles can be build for PPRM, FPRM, Maitra, etc, complete and incomplete algorithms. In theory, any method based on LI families can be reduced to these types of oracles. 
Create oracle as shown in Figure 2.6.1 and Figure 2.6.2.
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Figure 2.6.1: Oracle for ESOP to be minimized using the Helliwell’s Function. (a) The construction of the oracle for all ESOPs of 2 variables. The first from left level are EXOR gates, the next are EQUIVALENCE gates and the next is the global AND. (b) The minterms of the 2-variable KMap and all generating functions for an ESOP Generating functions are product terms encoded by respective decision variables. For instance, the variable g0X encodes product term 0X = ā and the decision variable g00 encodes the product term 00 = 
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Figure 2.6.2:   Oracle for the oracle from Figure 2.6.1.
Several variants of this algorithm were developed which speedup the operation in some special cases.  When no upper bound is known the algorithm with increasing the value of m can be used instead of the above algorithm with decreasing the value of m. In the increasing variant the first solution is the minimum one but usually more iterations are needed. In this variant it speeds the algorithm when we calculate a lower bound of the cost as the starting value of m.
Sravya , Show oracle and CCM code for this.

2.6.2. Binary Generalizations.
This section introduced a software/hardware approach to all “even-odd” covering problems. The Boolean decision function to be satisfied with minimum nonzero arguments is a generalization of the Helliwell’s function. The incomplete function first simplified in software to disjoint cubes. ON and OFF cubes corresponds now to minterm mi from Figure 2.6.1 and the oracle reflects the structure of the even-odd covering problem with any generating functions. The search is executed where m is an expected solution cost and N is the number of classes of equivalent generating functions. The method is more efficient when for incomplete functions m is small even for large N.
Helliwell Function has been used for exact solution to incomplete Exclusive-Or Sum of Products (ESOP) and Fixed Polarity Reed-Muller FPRM forms. Next this method has been extended to other similar problems. Another method investigated for similar applications was the Zakrevskij’s Staircase method [ref]. Basically, from the deeper theoretical point of view these two methods are the same. We will call them GHF, Generalized Helliwell Function. It can be observed that these methods can be generalized to all problems where the function sought is the canonical form of an EXOR of arbitrary linearly independent (LI) generating functions (chapter X9). Next it can be observed that the EXOR expression can be not necessarily canonical so that arbitrary functions are used instead of LI functions. Finally the methods can be extended to a non-canonical EXOR expression of arbitrary generating functions.  If the matrix of these functions is singular-many (all) solutions are found. If these functions are not Linearly Independent, no solution is found.

Concluding, the presented method is in theory so general that every combinatorial decision or optimization problem can be solved. It would require, however, an   oracle with an exponential number of qubits.

2.7. Relations between Oracles and Cube Calculus

2.7.1. Introduction
In this section we will investigate relations between oracle model of problem solving and CCM model of problem solving. We will do this first using SAT and unate functions minimization such as in Petrick Function Solver.

It is well-known that many important problems can be reduced to SAT. Many other problems can be reduced to finding minimal or all solutions to oracles that are more general than SAT [ref]. In this paper we present parallelization of the unate covering problem solver that finds applications in logic synthesis. This problem is solved by minimizing the number of variables that solve certain Boolean Equation (Decision Function) called the Petrick Function. Our results indicate that modeling SAT for unate covering problems by matrix multiplication and using CUDA as a computation resource for the solver results in a linear speedup. The amount of speedup for any given problem is dependent on problem size: in general, the larger the problem, the greater the speedup. For our experiments in this project, we found that speedup was achieved on problems with as few as 14 literals. 
2.7.2. SAT Problem and its parallel solution.
A Satisfiability (SAT) problem is that in which we seek an assignment of variables in a Boolean function in POS form (equation 1) such that the expression evaluates to true. 
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The SAT problem is very important in science and engineering as many scheduling and logistics problems are solved via SAT, some with thousands of literals. SAT helps us in designing a logic circuit that satisfies some function definition required by the circuit. This becomes very useful in the computer-aided design (CAD) of large, complex devices. For Equ 2.1, we can easily see two solutions:[image: image116.png]


. We wish to design fast software that can discover solutions automatically, given a consistent specification of these functions as input to the (CSP) solver.  Here we solve a special case of SAT—the unate covering problem. We refer to the unate covering problem as Quasi-SAT because the methods outlined here can be applied to SAT and arbitrary oracles. We first discuss the QSAT problem and how a matrix-multiplication algorithm can be used as a solver. Next, we compare a CPU-only version with a CPU + GPU implementation with CUDA, both written C. We conclude with a discussion of how we might improve our solver in terms of execution time and maximum problem size.
2.7.3. The QSAT Problem
The QSAT problem is referred to as a unate covering problem. This distinction is important in that it simplifies the solver. To see this, we first set forth a working definition for unate functions
Definition 3.1: Unate Functions. 
For some arbitrary Boolean function, [image: image118.png]
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 is considered positively unate in [image: image122.png]


 if it’s positive cofactor [image: image124.png](f..)



 includes the corresponding negative cofactor [image: image126.png](=)



. Similarly; if the negative cofactor includes the positive cofactor, then the function is negatively unate in [image: image128.png]


 If all [image: image130.png]
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are positively (negatively) unate, then we say that the function is positively (negatively) unate. If this condition fails (at least one variable is binate) for any variable, then we say that the function is not unate; it is binate. If the function we wish to solve is either negatively- or positively unate, then the solution we seek is not concerned with the polarity of the variables in the solution, we are only interested in which literals appear in a given solution. This is the primary simplification we get by designing a unate-covering solver. The unate covering problem appears in practice in many situations, and it is not trivial. We look for solutions that have a minimum number of positive literals. This problem occurs in SOP (Sum of Product) minimization of Boolean Functions and in Minimization of Finite State Machines, in test minimization and Scheduling, to name just a few.
2.7.3.1. Relationship of QSAT to SAT

The QSAT solver is a component of a full SAT solver. Consider the following:

The positive and negative cofactors of the binate function in Equ. 1 are
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 [ 3.2 ] 
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By the definition of a unate function, both of these cofactors are unate. Let us assume that we have at our disposal a unate-covering solver, and we call it[image: image138.png]QSAT {Xx_}



. We could find solutions to equation 1 by utilizing the QSAT solver:
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       [ 3.4 ]

This exactly matches the form of Shannon’s expansion, and it only works when the input to the QSAT solver is a unate function. 

The products in Equ. 4 represent two solutions to the original function; each term would represent the same two first-found solutions from earlier,[image: image142.png]


. Applying this to larger functions would be a matter of breaking the function down into unate cofactors, solving the unate functions with the QSAT solver, and then performing the multiplication of the factored-out literals. Once can easily see that integrating Shannon’s expansion into the algorithm would allow us to use the QSAT solver to build a SAT solver. This may not be the most efficient way to build a SAT solver and is only an example how a QSAT relates to SAT.

2.7. 3.2. QSAT Problem Formulation
Let us take an example of a QSAT problem. Often times, a unate covering problem will be expressed as a prime implicant chart. In Table 1, we see such a chart. MISSING SRAVYA
Table 1: The Prime Implicant Chart for Equ. 3.4.

Taking our clauses to be in SOP form and expressing this table in the form of a Boolean function, we find the following function:
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    [ 3.5 ]
Specifying the function as in Table 1 is equivalent to the specification in Equ. 3.5. The Boolean-expression form is referred to as a Petrick function. There are many ways to find an assignment of a product of the prime implicants such that the function evaluates to true (all clauses are true). One such method it tree branching. Paths to the leaves of the tree resulting from branching the expression represent a product of literals that satisfies the chart. The minimal solutions are the shortest path to the leaves; we have a single minimal solution,
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[ 3.5 ] 

The literal cost of this function is 4; all of the other solutions (paths to leaves) have a cost of 5.

How might we solve this function in software? It turns out that implementing a tree-search algorithm requires recursion and sequential data structures: a queue for depth-first search, a stack for breadth-first search, or both for a hybrid method like iterative deepening. Our target technology in this case is CUDA, and recursion is not allowed. More importantly the data structure itself is not parallel (doesn’t provide random access to any element), so speedup would be very hard to obtain with this method. 

The amount of parallelism in the data structure themselves contribute to how much speedup any program is likely to obtain. Random-access data structures (arrays and matrices) are the primary data structure used in CUDA. One particular method of computation that is particularly well suited for CUDA execution is matrix multiplication. So the question now becomes how we can solve the prime implicant chart with matrix multiplication.
 2.7. 3.3. Solving QSAT with Matrix Multiplication

As a disclaimer, we understand that this method is not novel. We are just interested in whether or not an arbitrary problem’s computation time can be decreased—significantly or otherwise—by using CUDA as a computation resource in the hardware system. Let us consider the algorithm with a simple example. In Equ 6 we have a 3-literal, 2-clause Petrick function. The associated prime implicant chart and its matrix representation are shown in Fig. 3.2.
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Fig. 3.2: Prime implicant chart (a) and matrix (b) representations of the Petrick Function in equation 6.


We can see by inspection that the minimal-cost solution is B, and that there are other solutions. In the matrix representation, a 1 in a clause column indicates that the associated literal appears in that clause. Whether or not this literal appears positively or negatively is irrelevant since this is a unate function. In Table 2, we see the truth table for this function.

	Input ABC
	Clause A+B
	Clause B+C
	Output P
	Literal Cost

	000
	0
	0
	0
	0

	001
	0
	1
	0
	1

	010
	1
	1
	1
	1

	011
	1
	1
	1
	2

	100
	0
	0
	0
	1

	101
	1
	1
	1
	2

	110
	1
	1
	1
	2

	111
	1
	1
	1
	3


Table 2: Truth table for the Petrick function in Equ. 3.6

Again, the “input” patterns denote whether or not the associated literal appears in a solution candidate. From this we can explicitly see the solutions: B is the minimal solution of cost = 1. BC, AC, and AB are solutions of cost 2, and ABC is the maximum-cost solution at 3 literals. 

We sort this truth table according to literal cost of the input patterns and define a matrix, M, that represents all possible solutions to the function. Then we multiply M by N from Equation 7.7, which results in the output matrix being produced, P in Equation 7.8:
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[ Equ.7.8 ] 
The conceptual interpretation of how this matrix multiplication helps us solve a QSAT problem is revealed by inspecting the output matrix. Any given element in the output matrix [image: image154.png]P(i,j)



represents how many times the input pattern from row i in M satisfies the clause in column j in N. Take row 2 of the output matrix as an example: multiplying the second row of M with the first column of N, we obtain zero for the sum of the three multiplications, so a zero is entered in the associated output position, [image: image156.png]P(2,1)



. To complete the row in the output matrix, we perform the same multiplications for the second clause in the function (second column of N) with the same input pattern. This time the sum of the multiplications is one (a single match between input pattern and clause), so a 1 is entered at the associated output matrix position, [image: image158.png]P(2,2)



.

Since we are working with a binary matrix, this is essentially a form of pattern matching, and we only need one match per column/row pair. The minimal condition for satisfying the constraint matrix is just a row in the output matrix containing no zeros. The first row in the output matrix with no zeros is the third, which is associated with the input pattern 010 representing the solution B, which has a literal cost of 1. We also have non-zero-containing rows below. Since the rows in the all-possible-solutions matrix (M) are sorted by cost, the rows of the output matrix are ordered by the cost of their associated solution candidate.  The non-zero rows in P are associated with the input patterns {010, 011, 101, 110, 111}. These input patterns have a cost of {1, 2, 2, 2, 3}, the sorting is key to finding minimal solutions first. If we did not sort the solution space first, then we would have to implement method of determining the cost associate with an output row. One could argue that if an output-matrix element is zero, then we should “cut off” the search for the associated input row. One could also notice that the first row of the input solution space will always be zero. We did not consider cut-off optimizations for this project, as we wanted problems of the same size to have the same execution time regardless of the details of the actual values in the PI chart. It would be hard to compare execution times of problems of the same size when the search-cut-off point for any given solution candidate is relatively random between different problems of the same size. The algorithm we implement in the software performs this multiplication without regard to whether or not a zero is produced in the output matrix. We just perform the multiplication, and then search the output matrix in separate routines. This allows us to use complete matrix multiplication as our solver engine. Further, it allows us to explore alternative parallelization schemes for each routine.

2.7.4. Multiple-valued Generalizations.
Our main idea from section 2.6.1 can be generalized to MV-input binary-output logic and in case of exhaustive search can be summarized as follows: every multi-output incomplete (multiple-valued) k-nary input, k-nary output function realized in the form of a GF(k) addition of arbitrary functions from a well defined set of functions over GF(k) can be minimized exactly or approximately using an oracle. This may be done in a system that realizes a generalized Helliwell function in the oracle. 
Very similar generalized “hybrid” approaches to solving arbitrary hybrid Boolean/MV equations, Generalized Satisfiability Functions, variants of Graph Coloring, MV Maximum Clique Set Covering, MV Petrick Functions and MV Clique Partitioning using oracles can be created, as should be obvious from our discussion of SAT and CSP models. In each of them the essence is to perform the enumeration of all subsets and checking some logical conditions using complete enumeration. Using a parallel processor various Sequential/parallel Generations that correspond to Depth-First, Breadth-First and other Tree Search methods can be created. Most generally the main contribution of section 2.6 is to propose a very general method to perform arbitrary tree search for NP-complete problems using parallel search hardware computers.
Concluding we can state that:
1. Problems can be formulated with oracle.

2. Oracle can be: simple oracle  - one output, generalized oracle – gives feedback how close we are to the solution, feedback oracle – gives information what to do next in exercising circuit that proposes solutions.

3. The oracle needs the exercising circuit. This circuit creates binary vectors in certain order. It can correspond to A* search, depth-first search, breadth-first search, etc, Genetic Algorith, etc.

4. Oracle can be simulated in Cube Calculus by a matrix. Evaluation of the oracle is multiplying the oracle matrix by the vector of inputs. This corresponds to simulation. This includes parallelism of simulating with many vectors in parallel, similar to quantum computing.

5. Cube calculus machine can have various search strategies and algorithms that are more powerful than oracle.

6. Our method is very general as we do not  restrict ourselves to POS 3SAT but we can have an arbitrary oracle, like for graph coloring.

7. Read about the Rough Set Machine, and Brinkmann method for SAT my Chinese student worked on this. Include Petrick function machine.
2.7. Conclusion to Chapter 2.

In this chapter, based partially on literature but mostly on our own analysis, we presented a simple and intuitive explanation of basic SAT-like hardware search algorithms. Using diagrams KMaps, trees and exemplary matrices allowed, we hope to explain these complex subjects in a simple way. Next, we showed SAT family of oracles for very many classical CAD problems. Figure 2.7.1 presents the reduction graph of just some basic CAD problems. We build oracles for sufficient number of nodes in this graph to be able to solve (in theory) every CAD problem reducible to them. As it can be seen, SAT and graph coloring occupy important place in this graph. So is the maximum clique problems. Some of our model oracles have two parts: decision part and cost function minimization, as shown in Figure 2.7.2. Chapter X15 will illustrate these and new principles of building oracles for more types of problems. Reductions for more CAD problems and also for other problems will be given.
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Figure 2.7.1: The reductions of basic CAD problems discussed in this book. It should be obvious to the reader familiar with Garey and Johnson seminal book [Garey] that there are hundreds of practical problems efficiently reducible to the problems from this graph, especially to the SAT problem.
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Figure 2.7.2: Schematic representation of   oracles for all problems from Figure 2.7.1. Every problem is represented by mapping to decision variables that are given in to the oracle. The user or an automatic system modifies the decision oracle of the given problem for new instances by modifying the metaphorical “data base” of unstructured search or a Boolean function model used in this book. The problem itself can be modified by adding or removing some constraints – another redesign of this Boolean function. Finally the optimization part of the oracle is modified by changing the cost function or the way how this cost function is calculated.
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