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QUANTUM CHANNELS, WAVELETS, DILATIONS,
AND REPRESENTATIONS OF On

DAVID W. KRIBS1

Abstract. We show that the representations of the Cuntz C∗-
algebras On which arise in wavelet analysis and dilation theory
can be classified through a simple analysis of completely positive
maps on finite-dimensional space. Based on this analysis, we find
an application in quantum information theory; namely, a structure
theorem for the fixed point set of a unital quantum channel. We
also include some open problems motivated by this work.

There has been considerable recent interest in the analysis of com-
pletely positive maps on finite-dimensional space. There are a num-
ber of reasons for this including connections with wavelet analysis
[3, 5, 15], dilation theory [10, 16], representation theory of the Cuntz
C∗-algebras On [3, 5, 9, 10], and quantum information theory [1, 17,
21, 22]. The results obtained in the current paper have implications
for each of these areas. In presenting this work, another goal we have
is to push further the connections between the various areas mentioned
above.

In the first section we establish a result for completely positive maps.
While we focus on the finite-dimensional setting, this is not necessary
in the proof. A structure theorem for the fixed point set of a unital
quantum channel is contained in the second section. In particular, we
prove that the fixed point set is a C∗-algebra which is equal to the
commutant of the algebra generated by any choice of row contraction
which determines the channel. We discuss the 2-dimensional channels
[17, 21], and use the theorem to classify them by their fixed point sets.
The representation theory for On is considered in the third section.
We focus on a subclass of representations arising in dilation theory
and wavelet analysis [3, 5, 9, 10, 15]. Each of these representations
determines a completely positive map on finite-dimensional space. We
ask if these representations can be classified just by examining the map.
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2 D.W.KRIBS

An affirmative answer is provided by the result on completely positive
maps from the first section. Finally, in the fourth section we pose some
open questions which are motivated by this work.

1. Completely Positive Maps

In this section we present a theorem for completely positive maps on
finite-dimensional space. Let K be a finite-dimensional Hilbert space
and let B(K) be the bounded operators on K. It is well-known (see [7,
18, 19] for instance) that every completely positive map Φ : B(K) →
B(K) is determined by a row matrix A = (A1, . . . , An) of operators in
B(K) in the following sense:

Φ(X) =

n
∑

i=1

AiXA∗
i for X ∈ B(K).(1)

The map is unital if, in addition, Φ(I) =
∑n

i=1 AiA
∗
i = AA∗ = I. Of

course, there will be many choices of tuples A which determine a given
completely positive map in this way. We prove the following result.

Theorem 1.1. Let K be a finite-dimensional Hilbert space. Let Φ :
B(K) → B(K) be a completely positive unital map, and suppose A =
(A1, . . . , An) is a choice of operators which determine Φ as in (1). If p
is an orthogonal projection in B(K), then we have the following equiv-

alences for the range space Ran(p) of the projection:

(i) Φ(p) ≥ p if and only if Ran(p) is A∗
i -invariant for 1 ≤ i ≤ n.

(ii) Φ(p) ≤ p if and only if Ran(p) is Ai-invariant for 1 ≤ i ≤ n.

(iii) Φ(p) = p if and only if Ran(p) is Ai-reducing for 1 ≤ i ≤ n.

Furthermore, for a given projection p, one of these equivalences holds

for a particular choice of A in (1) if and only if it holds for all choices

of A in (1).
In each of these cases the limit

Φ∞(p) := lim
k→∞

Φk(p)

exists. This operator belongs to the fixed point set B(K)Φ of Φ, and it

is computed from the fixed point set as follows.

(i)′ If Φ(p) ≥ p, then Φ∞(p) = inf{X ∈ B(K)Φ : X ≥ p}.
(ii)′ If Φ(p) ≤ p, then Φ∞(p) = sup{X ∈ B(K)Φ : X ≤ p}.

(iii)′ If Φ(p) = p, then the infimum and supremum from (i)′ and (ii)′

are both equal to p.

While the existence of the limit Φ∞(p) and the final three facts seem
to be of independent interest, the applications of this result contained
in the rest of the paper are based on (i) − (iii).
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Note 1.2. After preparing this article the author discovered that con-
ditions (ii) and (iii) were recently established in [4], although the
proofs here are different.

Before proving the theorem, we establish a lemma which generalizes
a result from [10].

Lemma 1.3. Let X be a positive operator in B(K) which satisfies the

inequality 0 ≤ X ≤ Φ(X). Then the eigenspace ker(X − ||X||I) is

A∗
i -invariant for 1 ≤ i ≤ n.

Proof. Without loss of generality assume that ||X|| = 1. Let M =
ker(X − I). Then for any vector ξ ∈ M,

‖ξ‖2 = (Xξ, ξ) ≤
n

∑

i=1

(AiXA∗
i ξ, ξ)

=

n
∑

i=1

(XA∗
i ξ, A

∗
i ξ) ≤

n
∑

i=1

(A∗
i ξ, A

∗
i ξ) = ‖ξ‖2.

In particular, all the inner product inequalities are actually equalities.
Since X is a positive contraction, the only way this can happen is if
each of the vectors A∗

i ξ belongs to M. Hence M is A∗
i -invariant. �

Proof of Theorem 1.1. First note that the equivalences (i) and (ii)
are duals of each other. Indeed, since Φ is unital,

Φ(p) ≥ p if and only if Φ(I − p) ≤ I − p,

and the subspace Ran(p) is A∗
i -invariant precisely when Ran(I − p) =

Ran(p)⊥ is Ai-invariant. Thus we shall prove (i).
If Φ(p) ≥ p, then an application of the previous lemma yields the

A∗
i -invariance of Ran(p). To see the converse of (i), with respect to the

orthogonal decomposition K = pK ⊕ p⊥K, suppose Ai can be written
in matrix form as

Ai =

[

Bi 0
Ci Di

]

for 1 ≤ i ≤ n.

Then the relation Φ(IK) =
∑n

i=1 AiA
∗
i = IK yields the identities:

n
∑

i=1

BiB
∗
i = IpK,

n
∑

i=1

BiC
∗
i = 0 and

n
∑

i=1

(CiC
∗
i + DiD

∗
i ) = Ip⊥K.

Thus upon writing p = [ I 0
0 0 ] with respect to this spatial decomposition

we get

Φ(p) =

n
∑

i=1

AipA
∗
i =

[

I 0
0

∑n

i=1 CiC
∗
i

]

≥
[

I 0
0 0

]

= p.
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For (iii), notice that the previous computation shows that Φ(p) = p
when Ran(p) = pK is Ai-reducing. Indeed, the subspace pK is reducing
for the operators A = (A1, . . . , An) exactly when Ci = 0 for 1 ≤ i ≤ n.
On the other hand, if Φ(p) = p, then the inequalities in (i) and (ii) are
satisfied. Hence Ran(p) is Ai-reducing.

Concerning the limits, suppose p satisfies equivalence (i). Since Φ is
positive and unital, we have

0 ≤ p ≤ Φ(p) ≤ Φ2(p) ≤ . . . ≤ Φk(p) ≤ . . . ≤ I.

This is a monotone increasing sequence of positive operators which is
bounded above, hence we obtain the existence of the limit Φ∞(p) =
limk→∞ Φk(p). It is clear from the form (1) that Φ is continuous, hence
Φ∞(p) is fixed under the action of Φ. On the other hand, when X ≥ p
is fixed by the map, we have X ≥ Φk(p) for k ≥ 1, showing that Φ∞(p)
is bounded above by every fixed point which majorizes p. It follows
that Φ∞(p) actually is the infimum.

The proof of (ii)′ is analogous since, in that case, the operators Φk(p)
form a decreasing sequence of positive operators which are majorized
by p. Finally, when Φ(p) = p, we get Φ∞(p) = p so that (i)′ and (ii)′

show that the infimum and supremum are both equal to p. �

Remark 1.4. While our focus is on the finite-dimensional case, we note
that the proof of Theorem 1.1 works for any completely positive unital
map determined as in (1) by a row contraction A. The only change in
the conclusion is that the limit Φ∞(p) converges in the strong operator
topology.

2. Quantum Channels

Mathematically, a quantum channel is a completely positive trace
preserving map on finite-dimensional space. In the language of quan-
tum information theory, a channel describes the transfer of quantum
information, or qubits, from ‘Alice’ to ‘Bob’ (see [1, 17, 21, 22] for
some recent related analysis, as well as the text [8] for general infor-
mation). The operators A = (A1, . . . , An) which determine a quantum
channel Φ as in (1) are called the Kraus operators [18] of the channel.

In general the fixed point set B(K)Φ = {X ∈ B(K)|Φ(X) = X} of a
completely positive map is just a self-adjoint subspace. In particular,
generally the fixed point set is not closed under multiplication. We
obtain the following structure theorem for the fixed point set of a unital
quantum channel.

Theorem 2.1. Let Φ : B(K) → B(K) be a unital quantum channel. If

A = (A1, . . . , An) determines Φ as in (1), then the algebra A generated
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by A1, . . . , An is a ∗-algebra which depends only on Φ. Further, the

fixed point set B(K)Φ of the map Φ coincides with the commutant of A,

A
′ = {X ∈ B(K) | AiX = XAi for 1 ≤ i ≤ n}, and hence is itself

a ∗-algebra containing the identity operator on K.

We begin by pointing out a special case of the theorem, established
previously in [4, 10], which holds more generally. For completeness we
provide a proof.

Lemma 2.2. Let K be a finite-dimensional space and let Φ : B(K) →
B(K) be a unital completely positive map which is determined as in

(1) by A = (A1, . . . , An). If A = B(K), then the fixed point set for Φ
consists of scalars, B(K)Φ = CI.

Proof. Suppose X = X∗ is non-scalar and satisfies Φ(X) = X. Then
Lemma 1.3 can be adapted to show that the eigenspaces corresponding
to the two extremal eigenvalues for X are perpendicular A∗

i -invariant
subspaces, which are both non-trivial since X is non-scalar. Thus the
algebra A∗ has proper invariant subspaces, a contradiction. �

The key observation for unital quantum channels is that invariant
subspaces for the determining n-tuples are actually reducing.

Lemma 2.3. Let Φ : B(K) → B(K) be a unital quantum channel.

Then every projection which satisfies Φ(p) ≥ p, also satisfies Φ(p) = p.
Thus if A = (A1, . . . , An) determines Φ, then every subspace which is

invariant for the family {A∗
i : 1 ≤ i ≤ n} is also reducing for the family.

Furthermore, every subspace which is invariant for {Ai : 1 ≤ i ≤ n} is

also reducing.

Proof. Since Φ is positive and unital, we have 0 ≤ Φ(p) ≤ I. Thus if
we are given a projection p which satisfies p ≤ Φ(p), then trace preser-
vation ensures we must have equality, p = Φ(p). A similar analysis
follows for the dual notion Φ(p) ≤ p ≤ I. The rest of the lemma
follows from Theorem 1.1. �

Proof of Theorem 2.1. We first show A is a ∗-algebra. Let {pj}
be a maximal family of pairwise orthogonal projections which are each
minimal reducing for the family {Ai : 1 ≤ i ≤ n}. Let Kj = pjK for
each j. Then Aipj = pjAi for all i, j, and by maximality IK =

∑

j pj.

Hence the algebra A =
∑

j pjApj is block diagonal with respect to this
family, and the blocks Apj = pjA = pjApj are algebras themselves.
But the trivial subspaces are the only subspaces which are invariant
for Apj . Indeed, if a subspace pK is invariant for each Ai and p ≤ pj is
supported on some pj , then pK is reducing for the Ai by Lemma 2.3,
and hence by the minimality of pj we have either p = 0 or p = pj.
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It follows from Burnside’s classical theorem that the restricted finite-
dimensional algebra Apj is equal to B(Kj), in particular the algebras
Apj are self-adjoint. Therefore A = A

∗ is a ∗-algebra. (In particular,
it is a finite-dimensional C∗-algebra.)

Since Φ is unital, that is Φ(I) = I, it is clear that every X which
commutes with A1, . . . , An will be fixed by Φ. Hence the fixed point
set B(K)Φ contains the commutant A′.

To see the converse, let Ai,j = Aipj for all j and i = 1, . . . , n, and
for each j put Bj = (A1,j , . . . , An,j). Given X ∈ B(K), let X = (Xjk)
where Xjk = pjXpk. If X satisfies Φ(X) = X, then a computation
shows that Φj(Xjj) = Xjj where Φj : B(Kj) → B(Kj) is the unital
completely positive map Φj(Y ) =

∑n

i=1 Ai,jY A∗
i,j . However, as ob-

served above, the minimality of pj as an Ai-invariant subspace gives
us Apj = B(Kj). Hence by Lemma 2.2, we have Xjj = xjjpj for some
scalar xjj.

For j 6= k, we claim that either Xjk = 0 = Xkj for all X = X∗ in
B(K)Φ, or there is a unitary Wjk : Kk → Kj with Ai,j = WjkAi,kW

∗
jk for

i = 1, . . . , n. Thus suppose there is an X = X∗ with Φ(X) = X and
Xjk 6= 0, normalized so that ||Xjk|| = 1. Let M = {ξ ∈ Kk : ||Xjkξ|| =
||ξ||}, and let N = XjkM be the corresponding subspace of Kj. Then
for ξ ∈ M we have

Xjkξ = (pjΦ(X)pk)ξ = Φ(Xjk)ξ = (BjX
(n)
jk B∗

k)ξ.

This implies that each A∗
i,k leaves M invariant. Indeed, since Bj and

B∗
k are contractions, and Xjk achieves its norm on ξ, it follows that B∗

kξ

belongs to the subspace M(n) on which X
(n)
jk achieves its norm. Thus

by Lemma 2.3, M is an Ai-reducing subspace contained in Kk. Since
M is non-zero, the minimality of pk gives M = Kk. By considering
Xkj = X∗

jk, we see that N = Kj also. In particular, Xjk and X∗
jk are

partial isometries, and it follows that Wjk = Xjk|Kk
: Kk → Kj is a

unitary operator.

The identity above shows that Wjk = BjW
(n)
jk B∗

k. Hence for ξ ∈ Kk

||ξ|| = ||Wjkξ|| = ||BjW
(n)
jk B∗

kξ|| ≤ ||W (n)
jk B∗

kξ|| ≤ ||ξ||.

Thus Bj acts as an isometry from the range RanW
(n)
jk B∗

k onto the
range RanWjk = Kj. As Bj is a row contraction, it must be zero on

the orthogonal complement of RanW
(n)
jk B∗

k. Hence, B∗
j is an isometry

from Kj onto RanW
(n)
jk B∗

k . Consequently, B∗
j Wjk = W

(n)
jk B∗

k, in other
words, A∗

i,j = WjkA
∗
i,kW

∗
jk for i = 1, . . . , n, as claimed.
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Now suppose Φ(Y ) = Y = Y ∗ = (Yjk). If j 6= k is a pair which fits
into the above analysis, then

WjkΦk(W
∗
jkYjk) =

n
∑

i=1

WjkAi,kW
∗
jkYjkA

∗
i,k

=

n
∑

i=1

Ai,jYjkA
∗
i,k

= pjΦ(Y )pk = Yjk.

Thus by Lemma 2.2, W ∗
jkYjk is scalar. Hence Yjk = yjkWjk for some

scalar yjk, and also Ykj = Y ∗
jk = yjkW

∗
jk. The other off-diagonal entries

of Y are either zero, or have a similar form.
This analysis gives us a handle on the matrix entries in the decom-

position X = (Xjk) for X = X∗ in B(K)Φ. The corresponding form
for each Ai in this decomposition is given by Ai =

∑

j Aipj =
∑

j Ai,j,
and hence a computation shows that XAi = AiX for i = 1, . . . , n and
X = X∗ in B(K)Φ. Since the self-adjoint subspace B(K)Φ is spanned
by its self-adjoint part, it follows that A′ contains the entire fixed point
set B(K)Φ. This completes the proof. �

Note 2.4. We note that our approach in proving Theorem 2.1 was
motivated by work in [10] on dilation theory, which is discussed in
the next section. This connection leads to an open question posed
in Section 4 which, if answered, could mesh the theory of quantum
channels with that of certain operator algebras on infinite-dimensional
space.

We finish this section by showing how this theorem can be used to
classify quantum channels by their fixed point sets.

Example 2.5. The quantum channels on M2 = B(C2), the so called
qubit channels, were recently characterized in [21]. The identity matrix
together with the Pauli matrices {I, σx, σy, σz} form a basis for M2

where

σx = ( 0 1
1 0 ) σy = ( 0 −i

i 0 ) σz = ( 1 0
0 −1 ) .

Every unital qubit channel is equivalent, through unitary conjugations
at both the input and output stages, to a map Φ which is diagonal and
real with respect to this basis. In other words; Φ(I) = I, Φ(σx) = λ1σx,
Φ(σy) = λ2σy, Φ(σz) = λ3σz, where λ1, λ2, λ3 ∈ R (for more on the
geometry of channels see the text [8]).

Thus describing the set of channels on M2 amounts to deriving con-
ditions on the λk which guarantee such a diagonal map is completely
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positive and trace preserving. The norm of a completely positive map
Φ is given by ||Φ|| = ||Φ(I)||. Hence for these diagonal maps, a simple
necessary condition for complete positivity is that each |λk| ≤ 1. Using
Choi’s lemma [7], necessary and sufficient conditions on the λk were
computed in [21] which lead to a description of the entire set of qubit
channels, though the conditions are rather technical.

From Theorem 2.1 and the basic theory of finite-dimensional C∗-
algebras, we know there are just three possibilities for the fixed point
algebra MΦ

2 of a unital qubit channel Φ. Somewhat surprisingly, we
don’t need the extra conditions on {λ1, λ2, λ3} from [21] to classify the
fixed point sets.

Corollary 2.6. Let Φ : M2 → M2 be a unital quantum channel. Then

the fixed point set for Φ is a ∗-subalgebra of M2 containing the identity

operator and satisfying one of the following conditions.

(i) MΦ
2 = M2 if and only if each λk = 1 and Φ is the identity

map.

(ii) MΦ
2 = CI if and only if λk 6= 1 for k = 1, 2, 3.

(iii) MΦ
2 = span{|v1><v1|, |v2><v2|}, where {v1, v2} is an orthonor-

mal basis for C2 and |vi><vi| is the rank one projection of C2

onto span{vi}, and this case holds if and only if exactly one of

{λ1, λ2, λ3} is equal to 1.

Proof. By the previous discussion we may assume Φ is diagonal with
respect to the Pauli basis and that |λk| ≤ 1 for k = 1, 2, 3. An ele-
mentary computation shows that the Pauli basis has the property that
projections p = p2 = p∗ ∈ M2 are either trivial (p = 0 or p = I) or
represented as

p =
1

2
I + aσx + bσy + cσz ,

where a, b, c ∈ R and a2 + b2 + c2 = 1/4. Thus Φ(p) = p exactly when
a = aλ1, b = bλ2 and c = cλ3.

In particular, the case λ1 = λ2 = λ3 = 1 corresponds to a, b, c being
free variables and Φ being the identity map on M2. By Theorem 2.1
the operator algebraic characterizations of MΦ

2 in (ii) and (iii) are
the only remaining possibilities for the fixed point set. Further, the
finite-dimensional C∗-algebra MΦ

2 is spanned by its projections. Thus
MΦ

2 = CI exactly when there are no non-trivial projections fixed by
Φ. Equivalently, there are no solutions a, b, c to the above identities.
Clearly this holds if and only if each λk 6= 1.

Hence the remaining cases must satisfy (iii), and we claim this is
when exactly one of the λk is equal to 1. Indeed, either one or two of
the λk must be equal to 1 for the case (iii) maps, since otherwise we



COMPLETELY POSITIVE MAPS 9

would be in one of the first two cases by the previous paragraph. If,
say, λ1 = λ2 = 1, then Φ fixes σx and σy. Whence, (−i)σxσy = σz is
also fixed by Φ since the fixed point set is an algebra. But this would
imply that λ3 = 1, and we are really in case (i). Similarly, it is easy
to see that when any two of {λ1, λ2, λ3} are equal to 1, the third must
be as well. Thus the operator algebra characterization of MΦ

2 in (iii)
occurs precisely when there is exactly one λk equal to 1. �

3. Applications To Representation Theory For On

In this section we show that representations of the Cuntz C∗-algebra
On arising from dilations and wavelets can be classified through an
analysis of completely positive maps. Given a positive integer n ≥ 2,
On is the universal C∗-algebra generated by the relations

s∗i sj = δijI for 1 ≤ i, j ≤ n and

n
∑

i=1

sis
∗
i = I.

An n-tuple S = (S1, . . . , Sn) of operators in B(H) which satisfies these
relations consists of isometries with pairwise orthogonal ranges, for
which the range projections of the isometries span the entire (neces-
sarily infinite-dimensional) Hilbert space H. Up to isomorphism, On

is the C∗-algebra generated by any such n-tuple since it is simple. A
theorem of Glimm’s [13] suggests it is not possible to find a meaning-
ful classification of all representations of On (it is an ‘NGCR’ algebra).
However, there are good reasons for attempting to classify particu-
lar subclasses of these representations, including connections with the
study of endomorphisms of B(H), finitely correlated states, dilation
theory, wavelet analysis, and the theory of non-selfadjoint operator al-
gebras (See [3, 5, 9, 10, 15] for examples from different perspectives).

The representations π of On on a space H which are of interest here
have the property that there exists a finite-dimensional subspace K of
H which is co-invariant and cyclic for the isometries S = (S1, . . . , Sn),
where π(si) = Si. In other words,

(i) S∗
i K ⊆ K for 1 ≤ i ≤ n

and
(ii) H =

∨

i1,...,ik
Si1 · · ·SikK, where the closed span is over all in-

dices 1 ≤ i1, . . . , ik ≤ n and k ≥ 1.

We let A = (A1, . . . , An) be the row contraction of matrices consist-
ing of the compressions to K of the isometries, so that Ai = PKSi|K =
(S∗

i |K)∗. Notice that
∑n

i=1 AiA
∗
i = IK and thus Φ(X) =

∑n

i=1 AiXA∗
i
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defines a completely positive unital map on B(K). These representa-
tions were classified in [10]. They form the subclass of representations
of On which arise through the minimal isometric dilations of row con-
tractions of matrices [6, 12, 20]. They also include the representations
of On which come from wavelet analysis.

Every orthogonal wavelet of scale n is determined by a scaling func-
tion ϕ in L2(R) that determines functions which generate a ‘wavelet
basis’ for L2(R). On the other hand, the Fourier expansion of ϕ also
determines so called wavelet filter functions m1, . . . , mn in L∞(T). Let
ρ be a primitive nth root of unity. The orthogonality of the wavelet is
embedded in the statement that the complex matrices 1√

n

(

mi(ρ
kz)

)n

i,k=1

are unitary for a.a. z ∈ T. Given such a wavelet, a representation of
On on L2(T) is obtained by defining isometries Sif(z) = mi(z) f(zn)
for 1 ≤ i ≤ n.

Extensive analysis has been conducted on these and other related
wavelet representations (see [3, 5, 15, 16] for instance). When the
scaling function ϕ is compactly supported, the associated representa-
tion possesses a finite-dimensional subspace K which satisfies (i) and
(ii) above for the isometries Si. In fact, these representations are quite
specialized in that K can be chosen to be spanned by Fourier basis
vectors. Thus, the orthogonal wavelet representations form a subclass

of the On representations arising through dilation theory. Hence, the
analysis in [10] can be applied to these representations, and it has been
recently by Jorgensen [15].

The decomposition theory of [10] can quickly become computation-
ally cumbersome. This basic problem provided the initial motivation
for this paper:

Question 3.1. Given a row contraction A = (A1, . . . , An) of matri-
ces, or equivalently a completely positive map Φ on finite-dimensional
space, is it possible to classify the associated representation of On just
in terms of Φ, without reference to the n operators Ai?

It was shown in [10] that decomposing these representations, which
act on infinite-dimensional space, amounts to an exercise in finite-
dimensional matrix algebra. This matrix algebra essentially consists
of identifying a maximal family of pairwise orthogonal minimal A∗

i -
invariant subspaces. Each of these minimal ‘anchor’ subspaces gener-
ates an irreducible subspace for the Si, and with this information the
representations can be classified. Thus we have the following:

Answer 3.2. Theorem 1.1 answers Question 3.1 in the affirmative. In
particular, such anchor subspaces are identified by finding any maximal
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family of mutually orthogonal minimal projections satisfying p ≤ Φ(p),
and these subspaces only depend on Φ. Thus all the classification re-
sults for these representations in previous papers [3, 5, 10, 15] can be
restated without reference to the minimal A∗

i -invariant subspaces, only
to the minimal projections satisfying this inequality. For instance, this
gives a new characterization of irreducibility: one of these representa-
tions is irreducible precisely when there is a unique minimal projection
p satisfying p ≤ Φ(p).

We show how this new perspective can ease the computational bur-
den by considering an example from each of the dilation and wavelet
settings.

Example 3.3. The following example is due to Arveson, and appeared
in the seminal paper [2] as an example of a completely positive map
for which the fixed point set B(K)Φ is not an algebra. Nonetheless, it
provides a satisfying application of the method introduced here. For
k ≥ 2, let Φ : Mk → Mk be the completely positive unital map defined
by (assuming an orthonormal basis for Ck has been fixed)

Φ([xij ]) =





x11 0

...
xk−1k−1

0 1

k−1

∑

k−1

i=1
xii



 .

Without the new perspective discussed above, classifying a represen-
tation of On generated by Φ through dilation theory would first require
finding a row contraction A = (A1, . . . , An) which determines Φ as in
(1). Next, the minimal A∗

i -invariant subspaces would have to be com-
puted. With the new perspective this becomes a triviality: The rank
one projections E1,1, . . . , Ek−1,k−1 clearly satisfy Eii ≤ Φ(Eii), and are
obviously minimal with respect to this property. This is all the infor-
mation we need here to describe a representation of On generated by
Φ, and we emphasize that no reference is required to a row contraction
A which determines Φ.

Indeed, it follows that such a representation breaks up into the di-
rect sum of k − 1 irreducible subrepresentations. In particular, the
representation will be irreducible if and only if k = 2. The ranges
of E1,1, . . . , Ek−1,k−1 provide one-dimensional ‘anchor’ subspaces which
generate the irreducible subspaces associated with the irreducible sub-
representations. Further, some thought shows that the free semigroup
algebra S (the wot-closed algebra generated by the isometries from
the dilation [9, 10, 11]) associated with each subrepresentation is uni-
tarily equivalent to the tractable ‘one-dimensional atomic’ free semi-
group algebra arising in the literature [11]. Thus the free semigroup
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algebra of the full representation is unitarily equivalent to the direct
sum of k − 1 copies of this algebra.

Example 3.4. Matrix representations were worked out in [3] for the
completely positive maps Φ determined by wavelet representations of
O3 with K = span{z0, z−1, z−2} ⊆ L2(T). The authors show how
combining an eigenvalue analysis of the matrix, together with a com-
putation of the fixed point set for the map, can be used to discern
information on the representation. The method presented in this sec-
tion stream-lines this analysis in that it can be used to obtain this
information in one fell swoop.

Consider the ordered basis of standard matrix units for M3

B = {E0,0, E−1,−1, E−2,−2, E0,−1, E0,−2, E−1,−2, E−2,−1, E−1,0, E−2,0},
corresponding to the ordered basis {z0, z−1, z−2} of K. An example of
a matrix representation [Φ]B in this basis for a completely positive map
Φ determined by a wavelet representation of O3 is given by

[Φ]B =































1 0 0 0 0 0 0 0 0
0 1√

2
1 − 1√

2
0 0 0 0 0 0

0 1√
2

1 − 1√
2

0 0 0 0 0 0

0 0 0 1√
2

0 − 1√
2

0 0 0

0 0 0 1√
2

0 − 1√
2

0 0 0

0 1√
2

− 1√
2

0 0 0 0 0 0

0 1√
2

− 1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































(for the reader of [3], this example is generated by taking g = 2, N = 3,
λ0 = 1, λ1 = 1√

2
= λ2).

The rank one projection E0,0 satisfies Φ(E0,0) = E0,0, and is clearly
minimal with this property. Solving for projections p = (pij), with
ranges orthogonal to that of E0,0 (so pij = 0 if i = 0 or j = 0), and
such that p ≤ Φ(p), yields the inequalities

p11 ≤
p11√

2
+ p22(1 − 1√

2
) and p22 ≤

p11√
2

+ p22(1 − 1√
2
).

Hence p22 ≥ p11 and p11 ≥ p22, so that equality is achieved. Further ele-
mentary analysis shows that p12 = p21 = 0. Thus Φ(E−1,−1 +E−2,−2) =
E−1,−1 + E−2,−2 and this rank two projection is minimal satisfying
p ≤ Φ(p) since any smaller projection satisfying this inequality would
have to also satisfy the above inequalities involving p11 and p22.
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It now follows that the associated wavelet representation has two
irreducible subrepresentations, and the corresponding irreducible sub-
spaces are generated by the anchor subspaces

(E−1,−1 + E−2,−2)K and E0,0K.

Also, O3 cyclic vectors for the corresponding irreducible summands can
be obtained simply by taking bases for the generating anchor subspaces.
In particular, {z0} and {z−1, z−2} will suffice for the two subspaces.

4. Open Questions

We finish by taking the opportunity to pose some open problems
motivated by the work in this paper.

Question 4.1. As Remark 1.4 points out, the equivalences (i)−(iii) in
Theorem 1.1 are valid when the Ai act on infinite-dimensional space.
Thus we ask whether there are subclasses of representations of On

arising from dilations of infinite rank n-tuples A which can be classified
using just the associated completely positive map Φ? At present there
is not even a non-trivial subclass of such representations which has
been classified in any way.

A natural class to consider could be wavelet representations of On

for which the associated scaling function is not compactly supported.
It can be shown that these representations have a co-invariant cyclic
subspace K which is infinite-dimensional, hence they do indeed arise
from the dilations of infinite rank n-tuples. These representations also
have the advantage of having an explicit formula for the generating
isometries, which is determined by the wavelet filter functions and the
scaling function.

We mention that this class could provide examples that shed light on
a deep problem in free semigroup algebra theory, posed in [9], which
is related to the invariant subspace problem.

Question 4.2. In many respects, quantum information theory is still in
its infancy. For instance, there are certainly connections with operator
theory and operator algebras, but these seem to be underdeveloped at
present.

A natural question to ask here is whether the representations of On

determined by quantum channels through dilation theory have a mean-
ingful interpretation in quantum information theory? Could they pro-
vide a theory for describing the ‘external noise’ associated with quan-
tum transmissions?

Question 4.3. We also wonder how the distinguished fixed points
Φ∞(p) from Theorem 1.1 fit into the analysis of completely positive
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maps? A connection with eigenvalue analysis is suggested by Lemma
1.3, but we are unable to say anything substantial at this point.

Acknowledgements. The author is grateful to Palle Jorgensen and
Stephen Power for helpful discussions. Thanks also to members of the
Department of Mathematics at the University of Iowa, and Depart-
ment of Mathematics and Statistics at Lancaster University for kind
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Note Added in Proof. We mention that Theorem 2.1 has motivated
forthcoming work [14] on quantum error correction. Furthermore, a
new simpler proof of Theorem 2.1 is included in [14].
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