
Quantum Braitenberg
Vehicles

Report

Submitted by
Indudhar Devanath

Braitenberg Vehicles

Valentino Braitenberg wrote a revolutionary book called “Vehicles, experiments
in synthetic psychology” (Publisher: Cambridge, Mass. MIT Press). In his book he
describes a series of thought experiments. In these experiments, he shows how simple
systems (the vehicles) can display complex life-like behaviors far beyond those which
would be expected from the simple structure of their 'brains'. He describes the a law
called the "law of uphill analysis and downhill invention". Here he explains that it is far
easier to create machines that exhibit complex behavior than it is to try and build the
structures from the behavioral observations. By connecting simple motors to sensors,
crossing wires and making some of them inhibitory, we can construct simple robots that
could show fear, aggression, love, affection, and other feelings.

Love, Fear and Aggression

 The vehicle has two sensors and two motors, right and left. The vehicle can be
controlled by the way the sensors are connected to the motors. Braitenberg defines three
different basic ways we could possibly connect the two sensors to the two motors.

a) Each sensor connected to the motor on the same side.
b) Each sensor connected to the motor on the opposite side.
c) Both sensors connected to both the motors.

Type (a) vehicle will spend more time in places where there is less of the stuff that
excites its sensors and will speed up when it is exposed to higher concentrations. If the
source of the light (for light sensors) is directly ahead, the vehicle may hit the source
unless it is deflected from its course. If the source is to one side, one of the sensors, the
one nearer to the source, is excited more than the other. The corresponding motor turns
faster. As a consequence, the vehicle will turn away from the source. Turning away
from the source is illustrated with the following figure.

We can observe another type of vehicle, type (b) vehicle with positive motor

connection. No change if the light is straight ahead, a similar reaction as seen in type (a).
If it is to a side, then we observe the change. Here, the vehicle will turn towards the
source and eventually hit it. As long as the vehicle stays in the vicinity of the source, no
matten how it stumbles and hesitates, it will hit the source frontally, in the end.

 If the two vehicles are let loose in an environment with sufficient stimulus
sources, then their characters emerge. Their characters are quite opposite. The type (a)
with positive connection will become restless in their vicinity and tends to avoid them,
escaping until it safely reaches a place where the influence of the source is scarcely felt.
The feelings of fear displayed by this vehicle. Vehicle of type (b) with positive
connection turns towards the source of light. They resolutely turns towards them and hits
the source with high velocity, as if it wanted to destroy them. The aggressive feelings
displayed clearly.

 When we introduce some kind of inhibition to the stimulation, we observe a
slightly differing behavior but very interesting behavior. It is some what relaxing and
soothing type of trend in the behavior is observed.

In the above example, we notice that when we switch the sensors excitation to the motors
from positive excitation to negative excitation, we notice the following behavior. The
negative excitation slows down the motor when the particular sensation is activated. The
vehicle will spend more time in the vicinity of the source. The vehicle will orient itself
towards the source and then approaches the source slowly, since the oblique course the
sensor nearer to the source will slow down the motor on the same side, producing a turn
toward that side. The vehicle with straight connections will come to rest facing the
source. The vehicle with crossed connections for analogous reasons will come to rest
facing away from the source and may not stay there very long, since a slight perturbation
could cause it to drift away from the source. This would lessen the source’s inhibitor
influence, causing the vehicle to speed up more and more as it gets away. This behavior
is illustrated in the below diagram.

Building Braitenberg Vehicles

Type 1 Braitenberg Vehicles:

The sensors generate input to the combinational logic circuit and the output of the circuit
is used to trigger the effectors of the Braitenberg Vehicle.

Type 2 Braitenberg Vehicle:

The combinational logic circuit will use sensors and present state from RAM and
generate output and next state to control the effectors.

Type 3 Quantum Braitenberg Vehicle:

The sensors help generate input to the Quantum combinational logic and the output
generates discrete data that help control the effectors.

Type 4 Quantum Braitenberg Vehicle:

Sensors help generate input in the form of discrete data. The logic also borrows present
state input from the memory. Output generated is in the form of discrete data that will be
used to trigger the effectors of the vehicles.

 To start with, we will be using light sensors and servo motors that control the
wheels of the robot will be our target effectors. The motion of the motors will define the
behavior of each type of the vehicle. The combinational logic and Quantum logic will be
designed using VHDL and will be implemented using an available XILINX FPGA chip.
This chip will be mounted on the robot and will be tested for its behaviour.

Quantum Logic:

Qubits are quantum bits, derived from photons, electrons or ions. Electrons with 2
possible spin rotation +1/2 and -1/2 are represented as |01> and |1> respectively.
Wavefunction of a particle p1 is given by ψ = α |0> + β |1>
α and β are complex eigen values.
|α|2 = probability of p1 in state |0>
|β|2 = Probability of p1 in state |1>

The properties of these probability are

a) |α|2 and |β|2 have nonzero positive values
b) |α|2 + |β|2 = 1
c) Particle p1 and ψ1 addedd to p2 with ψ2 we have

|ψ1ψ2> = α1α2 |00> + α1β2 |01> + β1α2 |10> + β1β2 |11>
In a quantum system n qubits represent a superposition of 2n states. Operations over a set
of qubits are defined as matrix operations. Quantum gate will be a matrix having vector
of complex coefficients of the waveform as input and producing vector of complex
coefficients as output.

Example of a quantum gate

a,b,c,d = Complex coefficients of the matrix indicating complex probability to transit
from one state to another.

α |0> , β|1> = complex waveform coefficients to be propagated through the matrix
operator.

General Purpose Controller Gate

if S1 = 0 then M2 = S2
if S1 = 1 then M2 = U (S2)

Here ‘U’ is the Quantum Logic that will be designed and implemented for our Quantum
Braitenberg Vehicles.

Fundamentals of Quantum Logic Gates

Quantum gates in parallel with another Quantum Gate will increase the dimensions of the
quantum logic system which is represented in the matrix form. This is because the
mathematical Kronecker product of Matrices is applied to the system. This Kronecker
Matrix Multiplication is the one responsible for Qubit states to grow such that N bits
corresponds to superposition of 2N States where as in other digital systems N bits
corresponds to 2N distinct states.

Kronecker Matrix Product

Quantum gate in series of another quantum gate will retain the dimensions of the
quantum logic system.

Hadamard gate has a unitary matrix. Example of unitary matrix and also a permutation
matrix is a Feynman gate. Permutation matrix is a matrix is a matrix which has only one
‘1’ in every row or column.

Analyzing Quantum Logic Circuits

Example 1:

The above quantum circuit can be split into 3 circuits as shown below.

Here gate X (Feynman gate) is in series with gates H (Hadamard gate) and Z (Wire)
which are themselves in parallel.

From this result we note that if the input is ‘00’ the output will be either ‘00’ or ‘10’. If
the output is connected to servo motors then the vehicle would move either backwards or
towards right. Similarly if the gates are re arranged as follows, the results are seen
accordingly.

Pauli-Z gate example

V Gate (Root of Not Gate) Example

V* Gate (Inverse of Root of Not Gate) example:

Pauli-X gate example

Combination of Feynman and V* Gate

Combination of Hadamard, Pauli-X and Feynman gate

By using these combination of gates, we could build a Quantum logic that we can
use to implement on the Braitenberg Vehicle. After the choice of the gates, then it is
input into a compiler which then converts the Quantum Logic into VHDL code that can
be directly downloaded into the FPGA style circuits to generate its equivalent Binary
Logic which behaves exactly like that of the designed Quantum Logic.

Quantum VHDL Compiler

This compiler is one of a kind which can generate a VHDL code for any kind of
the Quantum circuit that is given to the compiler. The compiler is build using LISP
programming. Lisp is a general-purpose programming language and an AI language
interactive Common Lisp programs are easy to test (interactive) easy to maintain
(depending on programming style) portable across hardware/OS platforms and
implementations (there is a standard for the language and the library functions) Common
Lisp provides clear syntax, carefully designed semantics, several data types (numbers,
strings, arrays, lists, characters, symbols, structures, streams etc.) runtime typing (the
programmer need not bother about type declarations, but he gets notified on type
violations.), many generic functions (88 arithmetic functions for all kinds of numbers
(integers, ratios, floating point numbers, complex numbers), 44 search/filter/sort
functions for lists, arrays and strings automatic memory management (garbage collection)
packaging of programs into modules an object system, generic functions with powerful
method combination (Common Lisp was the first ANSI standard object oriented
programming language.) and DSB macros (every programmer can make his own
language extensions). Common Lisp is well suited to large programming projects and
explorative programming.

The language has a dynamic semantics which distinguishes it from languages
such as C and Ada. It features automatic memory management, an interactive incremental
development environment, a module system, a large number of powerful data structures,
a large standard library of useful functions, a sophisticated object system supporting
multiple inheritance and generic functions, an exception system, user-defined types and a
macro system which allows programmers to extend the language. Eric Raymond has
written an essay called "How to Become a Hacker," in which he explains that Lisp is
worth learning for the profound enlightenment experience you will have when you finally
get it; that experience will make you a better programmer for the rest of your days, even
if you never actually use Lisp itself a lot.

Uses of Building such amazing Quantum Braitenberg Vehicles
1) They can be used to solve maze games
2) They can be tested for their performance in the Robot Soccer Competitions
3) The Quantum circuits could be implemented into public entertainment robots
4) They can also be used to build commercially viable Robot Pets.

Reference:

1) Martin Lukac, Mikhail Pivtoraiko, and Marek Perkowski, ``Genetic
Algorithms for Quantum and Reversible Logic Synthesis, accepted to Artificial
Intelligence Review Journal, Special Issue on Artificial Intelligence in Logic
Design, S. Yanushkevich guest editor, 2003.

2) Goran Negovetic, Martin Lukac, Marek Perkowski, Andrzej Buller,
``Evolving Quantum Circuits and an FPGA-based Quantum Computing
Emulator,'' Proceedings of Symposium on Boolean Problems. September, 2002,
Freiberg, Germany

3) Valentino Braitenberg, “Vehicles, experiments in synthetic psychology”
Publisher: Cambridge, Mass. : MIT Press, 1984

4) Reference for LISP Programming:
a. http://www.nist.gov/lispix/doc/lispix/lisp-new.htm
b. http://www.cons.org/cmucl
c. http://www-formal.stanford.edu/jmc/history/lisp/lisp.html

