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Abstract

The differences between electronics design through arti-
ficial evolution and through conventional methods have the
consequence that evolved circuits may take unusual lever-
age from the physics of their medium of implementation.
This can occur even if there is no tractable analytical model
to predict how the overall behaviour will emerge from the
interactions of the components. This is alluring for single-
electron circuit design, and a first case-study is presented:
the evolution of a NOR gate. Although the results to date
are far from ideal or practical, it appears that the particu-
lar thermal energies of the electrons are exploited. Whether
desirable or not, this indicates that evolution can explore
new kinds of designs not seen before in the literature.

1 Introduction

This paper discusses the use of evolutionary algorithms
to design single electron systems, and describes a first ex-
ploratory experiment. Although evolutionary design does
not circumvent all of the design challenges faced in making
the technology viable, we show that some of its differences
from conventional design can be helpful.

Since around 1995 there has been a considerable im-
petus of research to discern when, how, and why evo-
lutionary techniques can be useful in electronics design
[17, 7, 18, 13, 26, 12, 19]. In particular, a sequence of
experiments at the University of Sussex, UK (summarised
in [23, 22]) provides the basis for our evolution of single-
electron designs to follow. These experiments were de-
signed to determine how radically different evolved circuits
can be from those produced by conventional design meth-
ods (see also [10]).

In practice, there are many important differences be-
tween evolutionary design and conventional methods. The
most fundamental is that evolution proceeds through the
accumulated action of the variation operators (such as
crossover and mutation), and these can be largely blind. For
example, a typical mutation operator considers each part of
the design in turn, and with a small probability applies a
random change to it. The consequences of the variation do
not need to be predicted in advance; evolution works by tak-
ing account of the resulting changes induced into the mea-
sured performance of the system. Although it is possible to
introduce context-sensitive or heuristic variation operators,
it is this essentially stochastic and cumulative action of the
variation operators that distinguishes evolution from other
forms of heuristic search, and even from the iterative loop
of design and testing often present in bottom-up electronics
design.

Hence, circuits can be designed through evolution even
when there is no feasible way of analysing how the indi-
vidual interactions of the components give rise to the over-
all behaviour. This may be because the dynamics of the
interactions are too complex, or simply because a tractable
analytical model of the components is not available. For ex-
ample, when one evolved microelectronic circuit was inves-
tigated [21], it was found that it had ingeniously exploited
the semiconductor physics of the reconfigurable FPGA chip
on which it was evaluated, even aspects that were not part
of the chip’s normal operation, and which were unknown to
the investigators. By doing so, through ingeniously subtle
means and a complex dynamics, the circuit was very much
smaller than would normally be expected. This was possi-
ble because none of the conventional restrictive design rules
were applied, since evolution does not have the same need
for simplifying constraints. A decisive conclusion of the se-
quence of experiments [23, 22] was: Evolution can explore



beyond the scope of conventional design.
Adaptive control algorithms (which could be evolution-

ary) have been proposed for the on-line tuning of nano-
electronic circuit parameters [16]. Evolutionary algorithms
have also been applied to the characterisation of fabricated
nanoelectronic devices [8], but not to the design of nano-
electronic systems. Through an initial exploratory case-
study, this paper aims to illustrate that the abilities of evolu-
tionary design identified above may have particular impact
in this area. The findings will be summarised in the con-
cluding section.

2 Case Study:
Evolving a Single-Electron NOR Gate

We begin by investigating the evolution of a single-
electron NOR gate because a simulator suitable for this pur-
pose is available [25], a NOR gate is a simple circuit but
a universal logic primitive, and single-electron NOR gates
have been studied before [5]. Evolution of a small building-
block to be used repeatedly in larger systems is attractive:
The task is susceptible to contemporary evolutionary algo-
rithms, which can be allowed to exploit subtly the physics
of the medium at a fine level of detail, while leaving the
higher-level logical composition of the building-blocks to
more conventional methods.

In a single-electron circuit, the movement and position
of a single or small number of electrons are controlled; in
particular the controllable quantum-mechanical tunnelling
of electrons across thin insulators formed at the nano- or
meso- scale is exploited. Circuit design and construction
based around these ‘tunnel junctions’ (and other such de-
vices) has been much explored since the late 1980’s, but
still faces major challenges. A popular account is provided
in [11], and a database of publications is available at [1].

The designs were represented as a two-dimensional array
of nodes. The size was kept fixed at 7 rows � 4 columns.
Between each pair of nodes was a component selected from
the set fNONE, CAPACITOR, JUNCTION, WIREg, where
JUNCTION refers to a tunnel junction. Associated with
each capacitor or junction was a real-valued capacitance
in the range

�
4:0� 10�19; 1:0� 10�13

�
F. Also associated

with each junction was a tunnel resistance in the range�
5:0� 104; 1:0� 109

�

. NONE indicated the absence of a

component between two nodes. A WIRE between two nodes
was a virtual construct, signifying that the connected nodes
should be amalgamated into one when the circuit is to be
evaluated. Taking an example from the experiment to fol-
low, Fig. 3 shows the representation of a circuit as manipu-
lated by the evolutionary algorithm, while Fig. 4 shows the
actual design so represented.

The top row of nodes was supplied with a constant bias
voltage Vb in the range

�
�1:0� 10�4;�1:0� 10�6

�
V. The

bottom row of nodes was connected to 0V. No components
were allowed between the nodes in the top row, or between
the nodes in the bottom row.

The two inputs to the NOR gate were always attached to
the same nodes, as seen at the left in Fig. 3. Also shown is
the fixed position of the ‘preferred’ output node. The actual
output was taken from a valid output node closest in Man-
hattan distance to the preferred output node. A node was a
valid output node if there was a connected path to it from
each of the inputs that was at no point shorted to Vb or 0V.
In the case of multiple valid output nodes of equal minimum
distance from the preferred position, the one furthest to the
right (and furthest down if there was still a tie) was chosen.

Although the array of nodes was fixed in size, the use
of NONE and WIRE components, together with the output
position selection method, gave considerable freedom for
circuits to be of different sizes within the boundaries.

Underlying the choice of circuit representation was the
notion that elements that interact should be adjacent to each
other, since the usual action of a ‘wire’ is difficult to achieve
[9]. To this end, regular cellular architectures have been
proposed, e.g. [2]. Within a primitive (which may be re-
peated in some sort of array), the representation scheme
adopted here is more flexible than a regular array, yet in-
teracting elements can still be brought next to each other
through a topology-preserving deformation of the layout
once nodes connected by a virtual WIRE have been amal-
gamated.

The fitness of a candidate circuit was evaluated by ap-
plying the voltage waveforms shown in Fig. 1 to the inputs,
while monitoring the voltage at the output node. The input
voltage sources were coupled to the circuit through fixed
series capacitors of 3:333 � 10�13F in a small attempt to
model the situation where the inputs would be driven by the
outputs of similar adjacent NOR gates; the output node was
loaded by a 1pF capacitor to ground. These arrangements
can be seen in Figs. 3 and 4.

Also shown in Fig. 1 is the ideal (target) output voltage
waveform Videal(t). If the actual observed output of a can-
didate circuit was Vout(t), then its fitness over the trial of
length T was calculated as:

Fitness =
�1

T jVtrue � Vfalsej

Z T

0

jVout(t)� Videal(t)j dt

(1)
or�1:0�106 if the individual was not viable. An individual
was unviable if no valid output node could be found, or if
an input was shorted to 0V or Vb. The fitness of a viable
circuit, given by the equation, is just �1� the normalised
mean error of the output voltage over the trial, so the perfect
circuit would score 0.0.

The voltages Vtrue and Vfalse defining the logic levels
of both the inputs and the ideal output could be varied by
evolution (along with Vb) as part of the description of an
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Figure 1. The input waveforms for a fitness
evaluation (dotted and dashed) and the ideal
output Videal(t) (solid).

individual circuit. They could assume any values, subject
to the constraint that jVtrue � Vfalsej � 0:75Vb, and they
were initially randomly chosen from the interval [V b; 0:0]V
(again subject to the constraint). The input waveforms have
nonzero rise and fall times, whereas the ideal output re-
sponds instantly at a logic threshold of (Vtrue + Vfalse) =2.
This provides a selection pressure for the evolution of noise
margins.

The circuits were simulated using the SIMON package
[1, 24, 25], with the parameter settings given in the foot-
note.1 The first phases of the experiment were conducted at
absolute zero temperature (0K), and neglected co-tunnelling
(only first order tunnelling was simulated). In the Phase 2
we will go on to describe how the temperature can be in-
creased and higher-order tunnelling accounted for.

2.1 Experiment Phase 0

To start the experiment, an absolutely random search was
conducted to find a prototype design with which to seed
evolution. Each random individual was generated by select-
ing the component between each pair of nodes uniformly
at random from fNONE, CAPACITOR, JUNCTION, WIREg,
then choosing the associated capacitances, resistances, Vb,
Vtrue and Vfalse uniformly at random from their permitted
ranges. 58470 random circuits were evaluated, and the best

1All simulations used the quasi-stationary monte-carlo mode. For evo-
lutionary fitness evaluations, where speed is important, a somewhat noisy
simulation was used, with 3000 events simulated per timestep of 5ns. For
Figs. 5, 6, 9 and 10, higher resolution tests were performed, using 10000
events per 0.5ns timestep. The nodes always had zero initial charge, and
a different random-number seed was supplied to the simulator for each
fitness trial.

one chosen. At this very early stage, the fitness values could
be dominated by worthless transient charging/discharging,
so the evaluations were preceded by the simulation of an
initial settling time of 0.3125�s. During the settling time,
the input voltages were both at Vfalse and the output was
irrelevant. This settling time was not necessary during the
evolutionary phases to follow.

2.2 Experiment Phase 1

The evolutionary algorithm was a fairly standard genera-
tional Genetic Algorithm (GA) [6]. A fixed-size population
of 30 candidate circuit designs was maintained. Once their
fitnesses had been evaluated, all except the single fittest
member were replaced by offspring (a ‘generation’). Indi-
viduals were selected (with replacement) to parent offspring
with a probability proportional to the rank order of their fit-
ness within the population, such that the fittest member’s
expected number of offspring was 2.0, the median-fittest’s
expected number was 1.0, and the least fit would get none.
Baker’s stochastic universal selection method [3] was used.

For each offspring individual, there was a probability of
0.7 that it would be generated through a crossover operation
on two parents. Crossover was done by selecting uniformly
at random a pair of rows and a pair of columns in the array
of nodes. The rectangular region circumscribed by these
limits would be taken from one parent, and the remainder
from the other. If crossover was not performed (probability
0.3), then just one parent was taken.

To finish the formation of an offspring, it would be mu-
tated as follows. Taking each component in turn, with a
small probability it would be altered to a different uniformly
randomly chosen component type. This probability was set
such that the expected number of component-type muta-
tions per individual was 0.7. Then, considering each com-
ponent position in turn, with a small probability the capaci-
tance value associated with that position would be perturbed
(whether or not the component at that position happened to
be currently of a type that used the capacitance value). The
same perturbation procedure was then repeated for the re-
sistance values. The probabilities of perturbations were set
such that the expected number of capacitances altered per
individual was 2.8, and the expected number of resistances
altered was also 2.8. Finally, the global voltages associated
with the circuit (Vb, Vfalse and Vtrue) were taken in turn
and with a probability of 0.1 each, were perturbed.

The perturbations to the real-valued parameters were
performed using the ‘Breeder-GA (BGA)’ mutation op-
erator [14]. This operator takes the range of the vari-
able as a parameter, and generates small perturbations with
a higher probability than large ones. If, after mutation,
jVtrue � Vfalsej broke the separation constraint, the two
voltages were symmetrically moved further apart until they
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Figure 2. Evolution at 0K: Fitness of the best
individual in the population.

were valid. In the case of resistances and capacitances,
which both range over many orders of magnitude, the log
of the variable (and its range) was taken, the BGA muta-
tion applied, and then the antilog of the result became the
variable’s new value.

Starting from a population of identical copies of the best
circuit found through random search (Phase 0), the GA’s
operation consisted of many iterations of the generational
cycle of fitness evaluations, selection of parents, offspring
formation, and replacement of all but the currently fittest in-
dividual by the new offspring. Fig. 2 shows how the fitness
rapidly increased at first, and then was slowly fine-tuned
over a much longer period.

The GA was stopped after 8000 generations, and the best
individual at that time is shown in Figs. 3 and 4. The be-
haviour shown in Fig. 5 is very close to the ideal, but it is
also seen to be completely destroyed if we now enable the
simulation of higher-order tunnelling events. If the temper-
ature is increased (Fig. 6), the behaviour is completely lost
at only 30mK.

In a similar earlier experiment at zero temperature [20]
it was found that if evolution was continued from this point,
but now with second-order tunnelling enabled, it took many
generations to regain the original fitness. If third-order tun-
nelling was then enabled in the simulation, then again much
more evolution was needed. Given that simulation of higher
order tunnelling is extremely computationally expensive,
the approach of gradually increasing the order of simulated
tunnelling events, at zero temperature, does not appear fruit-
ful. Attempts to conduct the experiment at a temperature
of 500mK, even simulating only first order tunnelling, met
with total failure: no initial circuits could be found (either
through random search, or by the GA) that were above base-
line fitness.
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Figure 3. The circuit evolved at 0K, in the rep-
resentation manipulated by the evolutionary
algorithm. The large dots are nodes, and the
‘preferred output’ node is shown circled.

The way forward is suggested by noticing that the loss
of behaviour with increasing temperature seen in Fig. 6 is
gradual, although rapid.

2.3 Phase 2

Taking the final population of Phase 1, evolution was
continued, still with only first-order tunnelling simulated.
Whenever the fitness of the best individual reached a thresh-
old of -0.25, the temperature was increased by 10mK. It
can be seen in Fig. 7 that although these small temperature
increases usually caused some loss in fitness, the popula-
tion had enough residual performance for the evolutionary
process to work on, in adapting the individuals to the new
conditions. The fact that co-tunnelling and increased tem-
perature both smear out the Coulomb blockade in a very
similar way further supports the soundness of this approach.
Higher-order tunnel events are thus lumped into a larger ef-
fective temperature.

Due to time constraints, the temperature was held con-
stant once it reached 340mK, to allow a recognisable NOR-
gate to be formed. When the experiment was terminated,
the best circuit (Fig. 8) certainly would not work in a com-
putational circuit, but can be seen to be roughly approxi-
mating the target NOR response 5.

The circuit has some interesting properties. Its response
deteriorates only slightly if second-order tunnelling events
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Figure 4. The circuit evolved at 0K, as seen by
the simulator: Nodes joined by ‘virtual wires’
have been amalgamated, and shorted or dan-
gling components have been removed.
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Figure 5. The input/output relationship of the
circuit evolved at 0K (see Fig. 4). The dark
solid line is the output considering only first
order tunnelling events, as used in the sim-
ulations to evaluate fitness during evolution.
The gray solid line is the output when second-
order (or second and third-order) events are
also simulated.
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Figure 6. The thermal response of the circuit
evolved at 0K (see Fig. 4).
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Figure 7. Continued evolution, at increasing
temperature. The solid upper line is best
fitness (left axis), and the lower dotted line
is temperature (right axis). The temperature
was increased by 10mK whenever the fitness
reached -0.25, then was held constant upon
reaching 340mK.

are now included in the simulation, and there is no further
degradation if third-order events are also modelled. The
thermal response of the circuit, considering only first-order
tunnelling, is fascinating. Fig. 10 shows that the behaviour
deteriorates not only when the temperature is increased, but
also when it is decreased. The best performance is seen at
340mK — the temperature during the final stage of evolu-
tion. The simulation does not model thermal drift of the
parameter values, so this curve implies that the circuit ex-
ploits or relies upon the particular thermal energies of the
electrons at around 340mK. Further investigation is under-
way to verify the physical realism of this phenomenon, as it
is possible that it arises as a simulation artifact.

Although we have not produced an ideal NOR gate, this
thermal response indicates that evolution has been exploring
the utilisation of the physical medium in ways not normally
imagined.

3 Conclusion

We argued that evolutionary design is different from the
usual processes in which human designers or conventional
CAD tools engage. One consequence is that it is possible to
evolve designs that take unusual leverage from the physics
of their medium of implementation. This can be done even
if there is no tractable analytical model to predict how the
overall behaviour will emerge from the interactions of the
components. At least for small systems, it can also be done
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Figure 9. The input/output relationship of
the circuit evolved at 340mK (see Fig. 8).
Top: Simulation only of first-order tunnelling
events. Middle: Simulation including second-
order tunnelling. Bottom: Simulation includ-
ing third-order tunnelling.
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Figure 10. The thermal response of the circuit
evolved for 340mK (see Fig. 8).

with little prior conception of what kinds of design might
be appropriate or effective. These properties are alluring for
contemporary single-electronics, and the experiments were
encouraging.

A representation scheme was developed that allows more
flexibility than a regular array, yet maintains adjacency of
interacting components. Some freedom was available to ex-
plore circuits of different sizes, and with their output in dif-
ferent positions. The bias voltage and the signal levels could
co-evolve with the circuit structure. A method was found
for the evolution of circuits to perform at nonzero temper-
ature, which also appears to lessen the impact of multiple-
order tunnelling events, which we would rather not have to
simulate during evolution. The resulting circuit does not
serve as a good NOR gate, but does exhibit the ability of
evolutionary techniques to navigate into intriguing unchar-
tered territories of design.

Some important issues were not part of this first study.
Perhaps the possibility of signal representation schemes
other than voltage levels would be fruitful (e.g. [15]), and
the issues surrounding the composition of evolved primi-
tives into larger systems are worth closer attention. We ig-
nored the effects of background charge and component tol-
erances, drift, and control, although parallel work has ad-
dressed the challenge of robustness in evolutionary micro-
electronics design [22].

It may be that a better NOR gate was not obtained be-
cause the fitness evaluations were quite noisy (visible in
Fig. 7). In common with many of the future demands
mentioned above, perhaps more computationally expensive
fitness evaluations will be required. The set of experi-
ments reported here took about 3 weeks on a dual-processor
466MHz PC. The computational demands are not neces-
sarily terminal, as evolutionary algorithms parallelize very



well to loosely-coupled MIMD parallel machines, such as
cost-effective Beowulf-style clusters [4].

Nanoelectronics design seeks to employ subtle physics
to do useful work. Natural evolution has done this in biol-
ogy, and so can evolutionary algorithms in artificial media.
Our experiments tentatively suggest that evolutionary meth-
ods may be a useful exploratory tool into novel kinds of de-
sign that may help to make such new technologies viable.
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