
This is a preprint of an article accepted for publication in Int. J. Circuit
Theory and Applications Copyright c© 2000 John Wiley & Sons, Inc.

Design of Single Electron Systems through

Artificial Evolution

Adrian Thompson∗and Christoph Wasshuber†

Abstract

We show how evolutionary methods can help in the design of single-
electronic circuits with an example of evolving a simple NOR gate. Evolu-
tionary algorithms, capturing the bare essentials of Darwinian evolution,
work differently from conventional design methods, and have the potential
to explore new territory. Our preliminary evolved circuit is far from an
ideal NOR gate, but has interesting properties. It was evolved to work
at a temperature of 340mK, and its performance deteriorates if the tem-
perature is lowered, as well as if it is increased. This is contrary to the
usual behaviour of single-electronic circuits, which generally improve with
decreasing temperature. We hypothesise that the circuit exploits or relies
upon the simulated effects of the particular thermal energies of the elec-
trons at around 340mK.

Keywords: Nanoelectronic circuit design, evolutionary algorithms,
design automation, single-electron circuit simulation, physics of computa-
tion.

1 Introduction

This paper discusses the use of evolutionary algorithms to design single electron
systems, and describes a first exploratory experiment. Although evolutionary
design does not circumvent all of the design challenges faced in making the
technology viable, we show that some of its differences from conventional design
can be helpful.

An evolutionary algorithm, while very different from evolution in nature,
captures the bare essentials of Darwinian evolution: selection acting repeatedly
upon heritable variation. Such algorithms [1] have been used in engineering
design and optimisation since the 1960s [2], developed under the names of Evo-
lution Strategies [2, 3], Evolutionary Programming [4], Genetic Algorithms [5]
and Genetic Programming [6].

∗Centre for Computational Neuroscience & Robotics, and Centre for the Study of Evo-
lution, School of Cognitive & Computing Sciences, University of Sussex, UK. Email: adri-
anth@cogs.susx.ac.uk WWW: http://www.cogs.susx.ac.uk/users/adrianth/

†4106 Springhill Estates Drive, Parker, TX 75002, USA. Email:
wasshub@parallelcomputers.com.

1

Applied to electronic circuit design, an evolutionary algorithm (EA) typically
proceeds as follows. An initial population of one or more candidate circuit
designs is created. These initial designs might be created entirely at random,
or could be the product of a design or search procedure; perhaps they are even
the results of a previous run of the evolutionary algorithm on some related or
simpler problem [7]. Each individual candidate design in the population is then
evaluated to give a single scalar measure of its performance, often referred to as
‘fitness’.

The fitness evaluation procedure may take account of several performance
criteria [8]. The primary criterion is usually the quality of behaviour, relative
to a specification of the desired behaviour. The desired behaviour might be
defined in terms of a target input⇒output relationship of the circuit, in the
time or frequency domain. It is also possible to require a candidate circuit to
induce a desired behaviour into a system in which it is embedded or to which
it is coupled: for example a control circuit might be evaluated according to
the behaviour of the robot it controls [9]. Non-behavioural criteria such as
size, power consumption, fault-tolerance and testability can also be included
in the fitness evaluation if they can be measured [10, 11, 12]. The candidate
circuit’s operation is often simulated in software for all these tests, but for some
microelectronic circuits reconfigurable hardware such as Field-Programmable
Gate Arrays (FPGAs) can be used [13, 14, 15].

Once all of the individual candidate designs in the population have been
evaluated, some or all of them are selected to be ‘parents’. One or more off-
spring are then created from these parents through the application of variation
operators. The main variation operators are ‘mutation’, which introduces small
stochastic changes, and ‘crossover’ (or recombination) which takes parts from
two or more parents and brings them together into one offspring. The fitnesses
of these new offspring designs are then evaluated, and some (or all) of the orig-
inal population is replaced by some (or all) of the offspring. The procedure of
this paragraph is repeated many times.

It is essential that the fitness values influence at least one of the three points
of selection above: the selection of parents, the selection of individuals to be
replaced by offspring, and the selection of offspring to be those replacements.
If this is done so that the fitter individuals are more likely to survive to be
parents, then the ingredients of Darwinian evolution are present. All being
well, fitness values will increase over time until a circuit design adequate to the
desired purpose is produced, at which point the process is stopped.

The evolutionary approach can only work when it is sufficiently likely that a
pathway from the initial circuits to a satisfactory final one will be found through
the successive application of the variation operators, guided through selection
according to the fitness values. This depends not only on the fundamental
structure of the design problem, but also on the fitness evaluation method, the
selection method(s) and the variation operators. Note that if the operators are
applied to an intermediate ‘genetic’ representation of the circuit design, then the
way in which the actual design is encoded into this representation will influence
the operators’ effects. The search is seldom for a globally optimum design, but

2

instead for any one of many possible adequate solutions.
Clearly, not all of electronics design can be tackled in this way. Since around

1995 there has been a considerable impetus of research to discern when, how, and
why evolutionary techniques can be useful in electronics design [16, 17, 18, 19,
20, 21, 22]. In particular, a sequence of experiments at the University of Sussex,
UK (summarised in [23, 24]) provides the basis for our evolution of single-
electron designs to follow. These experiments were designed to determine how
radically different evolved circuits can be from those produced by conventional
design methods (see also [25]).

In practice, there are many important differences between evolutionary de-
sign and conventional methods. The most fundamental is that evolution pro-
ceeds through the accumulated action of the variation operators, and these can
be largely blind. For example, a typical mutation operator considers each part
of the design in turn, and with a small probability applies a random change
to it. The consequences of the variation do not need to be predicted in ad-
vance; evolution works by taking account of the resulting changes induced into
the measured performance of the system. Although it is possible to introduce
context-sensitive or heuristic variation operators, it is this essentially stochastic
and cumulative action of the variation operators that distinguishes evolution
from other forms of heuristic search, and even from the iterative loop of design
and testing often present in bottom-up electronics design.

Hence, circuits can be designed through evolution even when there is no
feasible way of analysing how the individual interactions of the components
give rise to the overall behaviour. This may be because the dynamics of the
interactions are too complex, or simply because a tractable analytical model
of the components is not available. For example, when one evolved microelec-
tronic circuit was investigated [26], it was found that it had acutely exploited
the semiconductor physics of the reconfigurable FPGA chip on which it was
evaluated, even aspects that were not part of the chip’s normal operation, and
which were unknown to the investigators. By doing so, through ingeniously
subtle means and a complex dynamics, the circuit was very much smaller than
would normally be expected. This was possible because none of the conven-
tional restrictive design rules were applied, since evolution does not have the
same need for simplifying constraints. A decisive conclusion of the sequence of
experiments [23, 24] was: Evolution can explore beyond the scope of
conventional design.

Adaptive control algorithms (which could be evolutionary) have been pro-
posed for the on-line tuning of nanoelectronic circuit parameters [27]. Evolu-
tionary algorithms have also been applied to the characterisation of fabricated
nanoelectronic devices [28], but not to the design of nanoelectronic systems.
This paper now provides a case-study, as an initial exploration, and finishes
by offering some conclusions. The experiments will be seen to hint at exciting
prospects for the approach.

3

2 Case Study:
Evolving a Single-Electron NOR Gate

We begin by investigating the evolution of a single-electron NOR gate because a
simulator suitable for this purpose is available [29], a NOR gate is a simple circuit
but a universal logic primitive, and single-electron NOR gates have been studied
before [30]. Evolution of a small building-block to be used repeatedly in larger
systems is attractive: The task is susceptible to contemporary evolutionary
algorithms, which can be allowed to exploit subtly the physics of the medium
at a fine level of detail, while leaving the higher-level logical composition of the
building-blocks to more conventional methods.

The designs were represented as a two-dimensional array of nodes. The size
was kept fixed at 7 rows × 4 columns. Between each pair of nodes was a compo-
nent selected from the set {none, capacitor, junction, wire}, where junc-
tion refers to a tunnel junction. Associated with each capacitor or junction was
a real-valued capacitance in the range

[
4.0× 10−19, 1.0× 10−13

]
F. Also associ-

ated with each junction was a tunnel resistance in the range
[
5.0× 104, 1.0× 109

]
Ω.

None indicated the absence of a component between two nodes. A wire be-
tween two nodes was a virtual construct, signifying that the connected nodes
should be amalgamated into one when the circuit is to be evaluated. Taking
an example from the experiment to follow, Fig. 3 shows the representation of
a circuit as manipulated by the evolutionary algorithm, while Fig. 4 shows the
actual design so represented.

The top row of nodes was supplied with a constant bias voltage Vb in the
range

[−1.0× 10−4,−1.0× 10−6
]
V. The bottom row of nodes was connected to

0V. No components were allowed between the nodes in the top row, or between
the nodes in the bottom row.

The two inputs to the NOR gate were always attached to the same nodes,
as seen at the left in Fig. 3. Also shown is the fixed position of the ‘preferred’
output node. The actual output was taken from a valid output node closest in
Manhattan distance to the preferred output node. A node was a valid output
node if there was a connected path to it from each of the inputs that was at no
point shorted to Vb or 0V. In the case of multiple valid output nodes of equal
minimum distance from the preferred position, the one furthest to the right
(and furthest down if there was still a tie) was chosen.

Although the array of nodes was fixed in size, the use of none and wire com-
ponents, together with the output position selection method, gave considerable
freedom for circuits to be of different sizes within the boundaries.

Underlying the choice of circuit representation was the notion that elements
that interact should be adjacent to each other, since the usual action of a ‘wire’
is difficult to achieve [31]. To this end, regular cellular architectures have been
proposed, e.g. [32]. Within a primitive (which may be repeated in some sort of
array), the representation scheme adopted here is more flexible than a regular
array, yet interacting elements can still be brought next to each other through a
topology-preserving deformation of the layout once nodes connected by a virtual

4

wire have been amalgamated.
The fitness of a candidate circuit was evaluated by applying the voltage

waveforms shown in Fig. 1 to the inputs, while monitoring the voltage at the
output node. The input voltage sources were coupled to the circuit through fixed
series capacitors of 3.333 × 10−13F in a small attempt to model the situation
where the inputs would be driven by the outputs of similar adjacent NOR gates;
the output node was loaded by a 1pF capacitor to ground. These arrangements
can be seen in Figs. 3 and 4.

Also shown in Fig. 1 is the ideal (target) output voltage waveform Videal(t).
If the actual observed output of a candidate circuit was Vout(t), then its fitness
over the trial of length T was calculated as:

Fitness =
−1

T |Vtrue − Vfalse|
∫ T

0

|Vout(t)− Videal(t)| dt (1)

or −1.0 × 106 if the individual was not viable. An individual was unviable if
no valid output node could be found, or if an input was shorted to 0V or Vb.
The fitness of a viable circuit, given by the equation, is just −1× the normalised
mean error of the output voltage over the trial, so the perfect circuit would score
0.0.

The voltages Vtrue and Vfalse defining the logic levels of both the inputs and
the ideal output could be varied by evolution (along with Vb) as part of the
description of an individual circuit. They could assume any values, subject to
the constraint that |Vtrue − Vfalse| ≥ 0.75Vb, and they were initially randomly
chosen from the interval [Vb, 0.0]V (again subject to the constraint). The input
waveforms have nonzero rise and fall times, whereas the ideal output responds
instantly at a logic threshold of (Vtrue + Vfalse) /2. This provides a selection
pressure for the evolution of noise margins.

The circuits were simulated using the SIMON package [33, 34, 29], with the
parameter settings given in the footnote.1 The first phases of the experiment
were conducted at absolute zero temperature (0K), and neglected co-tunnelling
(only first order tunnelling was simulated). In Phase 2 we will go on to describe
how the temperature can be increased and higher-order tunnelling accounted
for.

2.1 Experiment Phase 0

To start the experiment, an absolutely random search was conducted to find
a prototype design with which to seed evolution. Each random individual was
generated by selecting the component between each pair of nodes uniformly at

1All simulations used the quasi-stationary monte-carlo mode. For evolutionary fitness
evaluations, where speed is important, a somewhat noisy simulation was used, with 3000
events simulated per timestep of 5ns. For Figs. 5, 6, 9, 10, and 11, higher resolution tests
were performed, using 10000 events per 0.5ns timestep. The nodes always had zero initial
charge, and a different random-number seed was supplied to the simulator for each fitness
trial.

5

random from {none, capacitor, junction, wire}, then choosing the asso-
ciated capacitances, resistances, Vb, Vtrue and Vfalse uniformly at random from
their permitted ranges. 58470 random circuits were evaluated, and the best
one chosen. At this very early stage, the fitness values could be dominated by
worthless transient charging/discharging, so the evaluations were preceded by
the simulation of an initial settling time of 0.3125µs. During the settling time,
the input voltages were both at Vfalse and the output was irrelevant. This
settling time was not necessary during the evolutionary phases to follow.

2.2 Experiment Phase 1

The evolutionary algorithm was a fairly standard generational Genetic Algo-
rithm (GA) [35]. A fixed-size population of 30 candidate circuit designs was
maintained. Once their fitnesses had been evaluated, all except the single fittest
member were replaced by offspring (a ‘generation’). Individuals were selected
(with replacement) to parent offspring with a probability proportional to the
rank order of their fitness within the population, such that the fittest member’s
expected number of offspring was 2.0, the median-fittest’s expected number was
1.0, and the least fit would get none. Baker’s stochastic universal selection
method [36] was used.

For each offspring individual, there was a probability of 0.7 that it would be
generated through a crossover operation on two parents. Crossover was done
by selecting uniformly at random a pair of rows and a pair of columns in the
array of nodes. The rectangular region circumscribed by these limits would be
taken from one parent, and the remainder from the other. If crossover was not
performed (probability 0.3), then just one parent was taken.

To finish the formation of an offspring, it would be mutated as follows. Tak-
ing each component in turn, with a small probability it would be altered to a
different uniformly randomly chosen component type. This probability was set
such that the expected number of component-type mutations per individual was
0.7. Then, considering each component position in turn, with a small proba-
bility the capacitance value associated with that position would be perturbed
(whether or not the component at that position happened to be currently of a
type that used the capacitance value). The same perturbation procedure was
then repeated for the resistance values. The probabilities of perturbations were
set such that the expected number of capacitances altered per individual was
2.8, and the expected number of resistances altered was also 2.8. Finally, the
global voltages associated with the circuit (Vb, Vfalse and Vtrue) were taken in
turn and with a probability of 0.1 each, were perturbed.

The perturbations to the real-valued parameters were performed using the
‘Breeder-GA (BGA)’ mutation operator [37]. This operator takes the range of
the variable as a parameter, and generates small perturbations with a higher
probability than large ones. If, after mutation, |Vtrue − Vfalse| broke the sep-
aration constraint, the two voltages were symmetrically moved further apart
until they were valid. In the case of resistances and capacitances, which both
range over many orders of magnitude, the log of the variable (and its range) was

6

taken, the BGA mutation applied, and then the antilog of the result became
the variable’s new value.

Starting from a population of identical copies of the best circuit found
through random search (Phase 0), the GA’s operation consisted of many it-
erations of the generational cycle of fitness evaluations, selection of parents,
offspring formation, and replacement of all but the currently fittest individual
by the new offspring. Fig. 2 shows how the fitness rapidly increased at first, and
then was slowly fine-tuned over a much longer period.

The GA was stopped after 8000 generations, and the best individual at that
time is shown in Figs. 3 and 4. The behaviour shown in Fig. 5 is very close
to the ideal, but it is also seen to be completely destroyed if we now enable
the simulation of higher-order tunnelling events. If the temperature is increased
(Fig. 6), the behaviour is completely lost at only 30mK.

In a similar earlier experiment at zero temperature [38] it was found that if
evolution was continued from this point, but now with second-order tunnelling
enabled, it took many generations to regain the original fitness. If third-order
tunnelling was then enabled in the simulation, then again much more evolu-
tion was needed. Given that simulation of higher order tunnelling is extremely
computationally expensive, the approach of gradually increasing the order of
simulated tunnelling events, at zero temperature, does not appear fruitful. At-
tempts to conduct the experiment at a temperature of 500mK, even simulating
only first order tunnelling, met with total failure: no initial circuits could be
found (either through random search, or by the GA) that were above baseline
fitness.

The way forward is suggested by noticing that the loss of behaviour with
increasing temperature seen in Fig. 6 is gradual, although rapid.

2.3 Phase 2

Taking the final population of Phase 1, evolution was continued, still with only
first-order tunnelling simulated. Whenever the fitness of the best individual
reached a threshold of -0.25, the temperature was increased by 10mK. It can be
seen in Fig. 7 that although these small temperature increases usually caused
some loss in fitness, the population had enough residual performance for the
evolutionary process to work on, in adapting the individuals to the new condi-
tions.

Due to time constraints, the temperature was held constant once it reached
340mK, to allow a recognisable NOR-gate to be formed. When the experiment
was terminated, the best circuit (Fig. 8) certainly would not work in a compu-
tational circuit, but can be seen to be roughly approximating the target NOR
response.

The circuit has some interesting properties. Its response deteriorates only
slightly if second-order tunnelling events are now included in the simulation,
and there is no further degradation if third-order events are also modelled. Co-
tunnelling and increased temperature both smear out the Coulomb blockade in

7

a very similar way; higher-order tunnel events are thus lumped into a larger
effective temperature.

The thermal response of the circuit, considering only first-order tunnelling,
is fascinating. Fig. 10 shows that the behaviour deteriorates not only when the
temperature is increased, but also when it is decreased. The best performance
is seen at 340mK — the temperature during the final stage of evolution. The
simulation does not model thermal drift of the parameter values, so this curve
means that the circuit exploits or relies upon the simulated effects of the par-
ticular thermal energies of the electrons at around 340mK. Further work would
be needed to verify that these observations are physically realistic: perhaps this
unusual circuit exercises the simulator outside of its normal validated domain
of operation.

Although we have not produced an ideal NOR gate, its thermal response
indicates that evolution has been exploring the utilisation of the (simulated)
physical medium in ways not normally imagined.

3 Conclusion

We argued that evolutionary design is different from the usual processes in which
human designers or conventional CAD tools engage. One consequence is that
it is possible to evolve designs that take unusual leverage from the physics of
their medium of implementation. This can be done even if there is no tractable
analytical model to predict how the overall behaviour will emerge from the
interactions of the components. At least for small systems, it can also be done
with little prior conception of what kinds of design might be appropriate or
effective. These properties are alluring for contemporary single-electronics, and
the experiments were encouraging.

A representation scheme was developed that allows more flexibility than a
regular array, yet maintains adjacency of interacting components. Some freedom
was available to explore circuits of different sizes, and with their output in
different positions. The bias voltage and the signal levels could co-evolve with
the circuit structure. A method was found for the evolution of circuits to perform
at nonzero temperature, which also appears to lessen the impact of co-tunnelling
events, which we would rather not have to simulate during evolution. The
resulting circuit does not serve as a good NOR gate, but does exhibit the ability
of evolutionary techniques to navigate into intriguing unchartered territories of
design.

Some important issues were not part of this first study. Perhaps the possibil-
ity of signal representation schemes other than voltage levels would be fruitful
(e.g. [39]), and the issues surrounding the composition of evolved primitives into
larger systems are worth closer attention. We ignored the effects of background
charge and component tolerances, drift, and control, although parallel work has
addressed the challenge of robustness in evolutionary microelectronics design
[24].

It may be that a better NOR gate was not obtained because the fitness

8

evaluations were quite noisy (visible in Fig. 7). By increasing the resolution
of the simulation2, and using a slightly different fitness function that penalises
larger errors more heavily, a circuit with the improved response shown in Fig. 11
was obtained after a further 375 generations. When this circuit is simulated with
multiple tunnelling events enabled, however, the response is no better than that
seen in the main experiment (Fig. 9). Hence, although we might speculate that
multiple tunnelling events may have less of an effect as the circuit becomes
more closely adapted to the target response, or that evolution at temperatures
higher than 340mK might also reduce this problem, it remains to be seen what
experimental conditions are necessary for the evolution of a really practical NOR
gate.

Most of the future directions mentioned above imply the use of more com-
putationally expensive fitness evaluations. The set of experiments reported here
(phases 0–2) took about 3 weeks on a dual-processor 466MHz PC. The com-
putational demands are not necessarily terminal, as evolutionary algorithms
parallelize very well to loosely-coupled MIMD parallel machines, such as cost-
effective Beowulf-style clusters [40].

Nanoelectronics design seeks to employ subtle physics to do useful work.
Natural evolution has done this in biology, and so can evolutionary algorithms in
artificial media. Our experiments tentatively suggest that evolutionary methods
may be a useful exploratory tool into novel kinds of design that may help to
make such new technologies viable.

Acknowledgements

Thompson’s work was funded under EPSRC grant GR/L60531. Special thanks
to Phil Husbands for supporting this work within the Sussex Centre for Com-
putational Neuroscience & Robotics.

References

[1] T. Bäck, D. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Institute of Physics Publishing, 1997.

[2] I. Rechenberg. Cybernetic solution path of an experimental problem. Royal
Aircraft Establishment, Library Translation 1122, 1965. Reprinted in ‘Evo-
lutionary Computation — The fossil record’, D. B. Fogel, ed., chap. 8,
pp297-309, IEEE Press 1998.

[3] H.-P. Schwefel and G. Rudolph. Contemporary evolution strategies. In
F. Morán, A. Moreno, J. J. Merelo, and P. Chacon, editors, Advances in
Artificial Life: Proc. 3rd Eur. Conf. on Artificial Life, volume 929 of LNAI,
pages 893–907. Springer-Verlag, 1995.

210000 events were now simulated per 1ns timestep during evolutionary trials.

9

[4] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence Through
Simulated Evolution. John Wiley & Sons, Inc., 1966.

[5] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

[6] J R Koza. Genetic Programming: On the programming of computers by
means of natural selection. MIT Press, Cambridge, Mass., 1992.

[7] P. Husbands, I. Harvey, D. Cliff, and G. Miller. Artificial evolution: A new
path for artificial intelligence? Brain and Cognition, 34:130–159, 1997.

[8] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algo-
rithms in multiobjective optimisation. Evolutionary Computation, 3(1):1–
16, 1995.

[9] A. Thompson. Evolving electronic robot controllers that exploit hardware
resources. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacon, edi-
tors, Advances in Artificial Life: Proc. 3rd Eur. Conf. on Artificial Life
(ECAL95), volume 929 of LNAI, pages 640–656. Springer-Verlag, 1995.

[10] T. Kalganova and J. Miller. Evolving more efficient digital circuits by
allowing circuit layout evolution and multi-objective fitness. In A. Stoica,
D. Keymeulen, and J. Lohn, editors, Proc. 1st NASA/DoD Workshop on
Evolvable Hardware, pages 54–63. IEEE Computer Society, 1999.

[11] R.S. Zebulum, M.A. Pacheco, and M. Vellasco. A multi-objective opti-
misation methodology applied to the synthesis of low-power operational
amplifiers. In I.J. Chueiri and C.A. dos Reis Filho, editors, Proc. XIII Int.
Conf. on Microelectronics and Packaging, volume I, pages 264–271. The
Brazilian Microelectronics Society, 1998.

[12] Adrian Thompson. Evolving inherently fault-tolerant systems. Proc Instn
Mechanical Engrs, Part I, 211:365–371, 1997.

[13] A. Thompson. Silicon evolution. In J. R. Koza, D. E. Goldberg, D. B. Fogel,
and R. L. Riolo, editors, Genetic Programming 1996: Proc. 1st Annual
Conf. (GP96), pages 444–452. Cambridge, MA: MIT Press, 1996.

[14] Paul Layzell. Reducing hardware evolution’s dependency on FPGAs. In
Proc. 7th Int. Conf. on microelectronics for neural, fuzzy and bio-inspired
systems (MicroNeuro’99), pages 171–178. IEEE Comp. Soc. Press, 1999.

[15] A. Stoica, C. Salazar-Lazaro, D. Keymeulen, and K. Hayworth. Evolu-
tion of CMOS circuits in simulations and directly in hardware on a pro-
grammable chip. In W. Banzhaf, J. Daida, A. E. Eiben, et al., editors, Proc.
Genetic and Evolutionary Computation conference (GECCO-99), pages
1198–1203. Morgan Kaufmann, 1999.

10

[16] E. Sanchez and M. Tomassini, editors. Towards Evolvable Hardware: The
evolutionary engineering approach, volume 1062 of LNCS. Springer-Verlag,
1996.

[17] T. Higuchi, M. Iwata, and L. Weixin, editors. Proc. 1st Int. Conf. on Evolv-
able Systems: From Biology to Hardware, volume 1259 of LNCS. Springer-
Verlag, 1997.

[18] M. Sipper, D. Mange, and A. Pérez-Uribe, editors. Proc. 2nd Int. Conf. on
Evolvable Systems (ICES98), volume 1478 of LNCS. Springer-Verlag, 1998.

[19] J. Miller, A. Thompson, P. Thomson, and T. Fogarty, editors. Proc. 3rd
Int. Conf. on Evolvable Systems (ICES2000): From Biology to Hardware,
volume 1801 of LNCS. Springer-Verlag, 2000.

[20] X. Yao (Guest Editor). Special section on evolvable hardware. Communi-
cations of the ACM, 42(4):47–79, April 1999.

[21] M. Sipper and D. Mange (Guest Editors). Special issue on biology to hard-
ware and back. IEEE Trans. Evolutionary Computation, 3(3), September
1999.

[22] A. Stoica, D. Keymeulen, and J. Lohn, editors. Proc. 1st NASA/DoD
workshop on Evolvable Hardware. IEEE Computer Society, 1999.

[23] A. Thompson, P. Layzell, and R. S. Zebulum. Explorations in design space:
Unconventional electronics design through artificial evolution. IEEE Trans.
Evol. Comp., 3(3):167–196, 1999.

[24] A. Thompson and P. Layzell. Evolution of robustness in an electronics
design. In J. Miller, A. Thompson, P. Thomson, and T. Fogarty, editors,
Proc. 3rd Int. Conf. on Evolvable Systems (ICES2000): From biology to
hardware, volume 1801 of LNCS, pages 218–228. Springer-Verlag, 2000.

[25] J. R. Koza, F. H. Bennett III, M. A. Keane, et al. Searching for the impos-
sible using genetic programming. In W. Banzhaf, J. Daida, A. E. Eiben,
et al., editors, Proc. Genetic and Evolutionary Computation conference
(GECCO-99), pages 1083–1091. Morgan Kaufmann, 1999.

[26] Adrian Thompson and Paul Layzell. Analysis of unconventional evolved
electronics. Communications of the ACM, 42(4):71–79, April 1999.

[27] R. W. Rendell and M. G. Ancona. Adaptive computation by interacting
quantum dots. Superlattices and microstructures, 20(4):479–491, 1996.

[28] G. Klimeck, C. H. Salazar-Lazaro, A. Stoica, and T. Cwik. “genetically
engineered” nanoelectronics. In A. Stoica, D. Keymeulen, and J. Lohn,
editors, Proc. 1st NASA/DoD Workshop on Evolvable Hardware, pages
247–248. IEEE Computer Society, 1999.

11

[29] C. Wasshuber, H. Kosina, and S. Selberherr. SIMON – a simulator
for single-electron tunnel devices and circuits. IEEE Transactions on
Computer-Aided Design, 16:937–944, September 1997.

[30] R.H. Chen, A.N. Korotkov, and K.K. Likharev. Single-electron transistor
logic. Appl. Phys. Lett., 68(14):1954–1956, 1996.

[31] A. N. Korotkov, R. H. Chen, and K. K. Likharev. Possible performance of
capacitively-coupled single-electron transistors in digital circuits. Journal
of Applied Physics, 78(4):2520–2530, 1995.

[32] M. G. Ancona. Design of computationally useful single-electron digital
circuits. J. Appl. Phys, 79(1):526–539, 1996.

[33] The Single-Electron Repository. http://home1.gte.net/kittypaw/.

[34] C. Wasshuber. About Single-Electron Devices and Circuits. PhD thesis,
Technical University of Wien, Österreichischer Kunst- und Kulturverlag,
1997.

[35] D. E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison Wesley, 1989.

[36] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In
J. J. Grefenstette, editor, Genetic Algorithms and their Applications: Proc.
2nd Int. Conf. on Genetic Algorithms (ICGA), pages 14–21. Lawrence Erl-
baum Associates, 1987.

[37] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the
breeder genetic algorithm. Evolutionary Computation, 1(1):25–49, 1993.

[38] A. Thompson. Evolutionary design for novel technologies. In IEE Collo-
quium on Evolutionary Hardware Systems, page 4/1, Savoy Place, London,
June 1999.

[39] R. W. Rendell. Adaptive control of single-electron circuit signatures for
computation. In M. Cahay, D. J. Lockwood, J.-P. Leburton, and S. Bandy-
opadhyay, editors, Proc. of the ECS 98-19 Quantum Confinement V:
Nanostructures, pages 574–581. Electrochemical Society, 1999.

[40] F. H. Bennett III, J. R. Koza, J. Shipman, and O. Stiffelman. Building
a parallel computer system for $18,000 that performs a half-petaflop per
day. In W. Banzhaf, J. Daida, A. E. Eiben, et al., editors, Proc. Genetic
and Evolutionary Computation conference (GECCO-99), pages 1484–1490.
Morgan Kaufmann, 1999.

12

0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

V
o
lt
a
g
e

Time (s)

Vtrue

Vfalse

Figure 1: The input waveforms for a fitness evaluation (dotted and dashed) and
the ideal output Videal(t) (solid).

13

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

1 10 100 1000 10000

F
itn

es
s

Generations (logarithmic scale)

Figure 2: Evolution at 0K: Fitness of the best individual in the population.

14

Vb
����

Vb
������

Vb
����

Vb
������

����

0V
������

0V
������

0V
����

0V

��
��
��
��

��
��
��
��

����

��
��
��
��

����

���
���
���
���

��
��
��
��

���� ���� ������

��
��
��
��

���
���
���
���

��������������

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

Output

load
modelmodel

coupling

In2

In1

C8

C9

C1

C4

J2

J3 C2

C3
J7

C5 C7

C6 J11 J12

C10

J5

J1
J4

J6

J8 J10J9

C12
C11

J13

Figure 3: The circuit evolved at 0K, in the representation manipulated by the
evolutionary algorithm. The large dots are nodes, and the ‘preferred output’
node is shown circled.

15

Fixed Values:
C8 3.333e-13 F
C9 3.333e-13 F
C10 1.000e-12 F

Evolved Values:
C1 6.416e-19 F
C2 4.001e-19 F
C3 5.387e-19 F
C4 4.645e-17 F
C5 9.597e-16 F
C6 4.638e-18 F
C7 1.000e-13 F
J2 9.462e-16 F 2.756e+05 Ω
J3 2.466e-16 F 3.114e+05 Ω
J5 8.867e-14 F 2.900e+08 Ω
J7 9.861e-18 F 9.571e+08 Ω
J8 1.472e-15 F 2.668e+08 Ω
J10 3.946e-18 F 5.000e+04 Ω
J11 4.000e-19 F 5.000e+04 Ω
J12 4.000e-19 F 5.024e+04 Ω
J13 4.000e-19 F 8.902e+07 Ω
Vb -1.000e-04 V

Vfalse -1.538e-05 V
Vtrue -9.923e-05 V

Vb

������

������

���
���
���
���

������

���
���
���
���

������

����

����������

0V

Output

load
modelmodel

coupling

In2

In1

C8

C9

C1

C4

J2

J3 C2

C3
J7

J10
J8

C5 C7

C6 J11 J12 J13

C10

J5

Figure 4: The circuit evolved at 0K, as seen by the simulator: Nodes joined
by ‘virtual wires’ have been amalgamated, and shorted or dangling components
have been removed.

16

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

V
o

lt
a

g
e

(V
)

Time (s)

Figure 5: The input/output relationship of the circuit evolved at 0K (see Fig. 4).
The dark solid line is the output considering only first order tunnelling events,
as used in the simulations to evaluate fitness during evolution. The gray solid
line is the output when second-order (or second and third-order) events are also
simulated.

17

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 10 20 30 40 50 60 70 80 90

F
itn

es
s

Temperature (mK)

Figure 6: The thermal response of the circuit evolved at 0K (see Fig. 4).

18

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

8000 9000 10000 11000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
itn

es
s

T
em

pe
ra

tu
re

 (
K

)

Generations (linear scale)

Figure 7: Continued evolution, at increasing temperature. The solid upper line
is best fitness (left axis), and the lower dotted line is temperature (right axis).
The temperature was increased by 10mK whenever the fitness reached -0.25,
then was held constant upon reaching 340mK.

19

Fixed Values:
C2 1.000e-12 F
C8 3.333e-13 F
C9 3.333e-13 F

Evolved Values:
C1 4.858e-19 F
C3 9.969e-14 F
C4 2.052e-16 F
C5 1.000e-13 F
C6 3.393e-16 F
C7 2.975e-15 F
J1 4.000e-19 F 4.950e+06 Ω
J2 4.000e-19 F 5.766e+05 Ω
J3 4.059e-19 F 9.024e+04 Ω
J4 4.237e-19 F 5.854e+04 Ω
J5 3.632e-16 F 2.886e+07 Ω
J6 4.857e-19 F 5.000e+04 Ω
Vb -1.000e-04 V

Vfalse -8.368e-05 V
Vtrue -8.488e-06 V

Vb

���
���
���
���

������

������ ����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

0V

Output

load
modelmodel

coupling

In2

In1

C8

C9

C1 J1

C3 C4

C2

J2

C5
C7

J3

J6J4

J5

C6

Figure 8: The best circuit so far for 340mK.

20

-9e-05

-8e-05

-7e-05

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

V
o

lt
a

g
e

(V
)

Time (s)

-9e-05

-8e-05

-7e-05

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

V
o

lt
a

g
e

(V
)

Time (s)

-9e-05

-8e-05

-7e-05

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

V
o

lt
a

g
e

(V
)

Time (s)

Figure 9: The input/output relationship of the circuit evolved at 340mK (see
Fig. 8). Top: Simulation only of first-order tunnelling events. Middle: Simu-
lation including second-order tunnelling. Bottom: Simulation including third-
order tunnelling.

21

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

0 100 200 300 400 500 600 700

F
itn

es
s

Temperature (mK)

Figure 10: The thermal response of the circuit evolved for 340mK (see Fig. 8).

22

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

V
o

lt
a

g
e

(V
)

Time (s)

Figure 11: An improved input/output relationship at 340mK, but only if mul-
tiple tunnelling events are neglected.

23

