ECS 2001 Joint Intenational Meeting, San Francisco Sept. 2-7, 2001 Sixth International Symposium on Quantum Confinement

Quantum Devices and Integrated Circuits Based on Quantum Confinement in III-V Nanowire Networks Controlled by Nano-Schottky Gates

Hideki Hasegawa

Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Electronics and Information Engineering Hokkaido University, Japan

Outline

Hokkaido University

RC

1. Introduction

- 2. Hexagonal BDD Quantum Circuits
- 3. GaAs-Based Quantum BDD Node Devices and Circuits
 - Novel nanometer-scale Schottky gates
 - GaAs-based quantum BDD node devices
 - Integration of BDD node devices on hexagonal nanowire networks
- 4. Toward Room Temperature Operation and High Density Integration
 - Formation of InP-based high density hexagonal nanowire networks
 - Surface related key issue
- 5. Conclusion

Collaborators

RCIQE staff

Dr. S. Kasai, Dr. C. Jiang and Dr. T. Sato

Students

T. Muranaka, A. Ito and M. Yumoto

High Density Integration ?

Semi-classical devices

First Monolithic Integrated Circuit in the World (Noyce, 1959)

300µm rule

Current Microprocessor (2001)

Hokkaido University

RC

Discrete quantum devices **b** How to make QLSIs ?

Hokkaido University

1. Digital Processing Architecture

Binary Decision Diagram (BDD) logic architecture

2. Nanostucture

Hexagonal nanowire networks by GaAs etched nanowires and InGaAs nanowires by Selective MBE

3. Nanoscale Gate Technology

Schottky in-plane gate (IPG) and wrap gate (WPG)

4. Surface and Interface Control

Nano-Schottky interface Interface control layer (ICL)-based passivation

5. Device

BDD node devices using gate-control quantum wire (QWR) and quantum dot (QD)

Features of Our Approach

Hokkaido University

Basic Schottky Gate Structure

Hokkaido University

rc IQE

Schottky In-Plane Gate (IPG) and Schottky Wrap Gate (WPG) control of AIGaAs/GaAs etched nanowires

Single Electron Transport in 2-WPG SET

Hokkaido University

WPG BDD Quantum Node Device

WPG QWR-based BDD device

WPG single electron BDD devices

Hokkaido University

rc IQE

Circuit Design and Fabrication Technology Towards BDD Quantum Integrated Circuit

Example: BDD 2-bit adder

Fabricated 2-bit adder circuit

Hokkaido University

RC

Conclusion

Hokkaido University

RC IQE

1) A new, simple and realistic approach for quantum LSIs is presented and discussed.

Architecture: BDD logic architecture
Hardware: Schottky WPG control of hexagonal III-V nanowire networks.

- 2) WPG QWR and single electron BDD node devices using GaAs etched nanowires have been fabricated and BDD switching was realized.
- 3) Hexagonal BDD ICs using GaAs etched nanowires have been fabricated. Logic operation has been confirmed.
- 4) Hexagonal InGaAs nanowire network by H* assisted selective MBE combined with IPG/WPG gate technology gives good prospect for high density BDD QLSIs that are operating at delay-power products near the quantum limit at RT.
- 5) Control of surface/interface remains to be a key issue.