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• Novel nanometer-scale Schottky gates
• GaAs-based quantum BDD node devices
• Integration of BDD node devices on hexagonal nanowire networks

• Formation of InP-based high density hexagonal nanowire networks
• Surface related key issue
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Semiconductor Nanoelectronics 
based on Quantum Device and Circuit

Research on 
Semiconductor Nanostructure

Scale-down limit of 
Si CMOS LSIs

Growing demands on 
Information Technology (IT)

Nanotechnology in wide area
~ chemistry, biology, etc.

• delay-power product near quantum limit 
• small-size and high-density 
• nano-sensing, nano-control

But, How to ? So far no realistic approach.
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High Density Integration ?

First Monolithic Integrated Circuit 
in the World (Noyce, 1959)

300µm rule

IBM PowerPC

64-bit
0.18µm rule
700MHz
1.4mm x 1.4mm
SOI technology

Current Microprocessor (2001)

Discrete quantum devices How to make QLSIs ?

Semi-classical devices
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5 µm

QWRTr
(Active Load)

3-gate
WPGSET

input output

QWRTr-load SET  inverter

W = 440 nm
SET:      LG = 50 nm, df = 200 nm
QWRTr: LG = 300 nm

VDD

VG(QWRTr)

Vin

Vout

WPG QWRTr 
(active load)

WPG SET 
(driver Tr.)

(S. Kasai and H. Hasegawa presented at DRC 2000)
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Example of Quantum Logic Circuits
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Novel Approach for III-V QLSI

1. Digital Processing Architecture
Binary Decision Diagram (BDD) logic architecture

5. Device
BDD node devices using gate-control
quantum wire (QWR) and quantum dot (QD)

2. Nanostucture
Hexagonal nanowire networks by
GaAs etched nanowires and
InGaAs nanowires by Selective MBE

3. Nanoscale Gate Technology
Schottky in-plane gate (IPG) and wrap gate (WPG) 

4. Surface and Interface Control
Nano-Schottky interface
Interface control layer (ICL)-based passivation
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Digital Logic Architecture

Digital processing 
(operations on digital functions)

Implementation of digital functions
Representation

Boolean Equation Truth Table Binary Decision 
Diagram (BDD)

etc.

Implementation

Binary Logic Gate Look-Up Table
using Memory

BDD Device

Transistor Switch ROM device
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BDD node device

Hexagonal BDD QLSI Approach

Example: Exclusive OR Logic Function
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Ultra-low delay-power product near the quantum limit

•no precise voltage matching
•no large voltage gain
•no large current drivability
•no large fan-in and fan-out

No direct input-output connection is required
BDD is suited to quantum devices

Conventional Logic 
Gate Architecture

Hexagonal quantum BDD

node

r1 r2

x1 x2

x4x3

xn

xi

1 0

root

terminal

input

Features of Our Approach

The circuit itself works at room temperature
at sacrifice of delay-power product

IPG/WPG QWRTr-based BDD devices act as classical path 
switching devices even under non-quantum conditions.

single electron
regime

few electron
regime

many electron
classical regime

High density integration
•hexagonal closely packed nanowire network
•free from contact problem
•reduced device count



University
Hokkaido

RC

Basic Schottky Gate Structure

Schottky In-Plane Gate (IPG) and Schottky Wrap Gate (WPG) control 
of AlGaAs/GaAs etched nanowires

Schottky 
In-plane Gate (IPG)

AlGaAs

GaAs

GaAs 
nanowire

electrons

Schottky 
Wrap Gate (WPG)

·stronger confinement
 size ~ smaller high temperature operation

·lateral structure suitable for planar integration

AlGaAs/GaAs 
nanowire

depletion layer

quantum wire

2-gate WPG single electron transistor
(SET)

tunnel barrier control
WPGs

quantum dot
WPG quantum wire transistor 

(QWRTr)
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I-V Characteristics of IPG/WPG QWRTrs
AlGaAs/GaAs etched nanowire
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Single Electron Transport in 2-WPG SET

I =   |T(E)|2 [f (E) – f (E+qVDS)] dE
e2

h

Lateral resonant tunnling of single electron
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QWR-based BDD node device

GaAs 
nanowire WPG

entry

IPG

1-branch0-branch

QWR

GaAs nanowire

quantum dot

tunnel 
barrier

WPG

WPG

SET

Single electron BDD node device

Various Types of BDD Node Devices by 
IPG/WPG Control of III-V Nanowires
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WPG BDD Quantum Node Device

500 nm

0-branch 1-branch

GaAs 
nanowire

WPG
xixi

entry

QWRTr
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0-branch 1-branch

entry

WPG QWR-based BDD 
device

WPG single electron BDD devices

branch switch type
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SET
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quantum dot

branch switch type
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tunnel barrier
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entry

0-branch

WPG

GaAs 
nanowire

1 µm

xixi

1-branch

WPG BDD Single Electron Node Device

Conductance oscillation due to single electron transport
Clear path switching
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Quantum BDD Implementation

Quantum BDD large scale integration
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WPG BDD OR Logic Function Block

1000 nm

x1x1

x2

1- terminal

root

WPG

GaAs 
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10
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1
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1-terminal

node 
device
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hexagonal
layout

WPG single electron BDD OR circuit
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Operation of WPG BDD OR Logic 

Input/Output waveform

VDD = 1 mV

clock: 2 Hz x2:      250 mV           
x1:      100 mV          

pulse height     

entry gate: 0 mV
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Time (s)

Half adder (exclusive OR)

pulse h offset
+x1: 0.02 V -0.4 V
- x1: 0.44 -1.2
+x2: 1.7 1.9
- x2: 0.1 1.6
VDD: 250 mVVDD = 0.2 mV

x2:     1000 mV           

pulse height     
x1:     1200 mV          

entry gate: +1000 mV
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WPG BDD Fundamental Logic Family
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Fabricated 2-bit adder circuit

1-terminal

c1 s1 s0

QWRTr
node 
device

WPG

GaAs
nanowire

a1

b1

a0

b0

5 µm

Circuit Design and Fabrication Technology 
Towards BDD Quantum Integrated Circuit

Example: BDD 2-bit adder

augend: a1, a0
addend: b1, b0

a1 a1

b1b1b1b1b1

a01 0

b01 0

a1 1 0 0 11 0

a0a0

b0

0 10 10 11 01 0

1 00 1

1 0 1 0b0

c1 s1 s0

1

root
node

terminal-1
sum: s1, s0
carry:c1

circuit diagram WPG/nanowire layout

augend: a1, a0
addend: b1, b0
sum: s1, s0
carry:c1
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Hexagonal BDD 2 bit Adder

5 µm

C S1
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terminal 1

a1
b1

a0

b0 a1
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InGaAs Ridge Nanowires 
for Room Temperature Operation

InGaAs ridge 
quantum wire InAlAs

InGaAs

patterned InP sub. 3µm

AlGaAs/GaAs etched nanowires: 
possible minimum width = 70-100 nm

Room temperature operation requires sub-10 nm width

Growth of InAlAs/InGaAs/InAlAs

MBE growth
of InGaAs

Pre-growth etching & O desorption
by atomic Hydrogen

InGaAs ridge QWR
InGaAs ridge

(111)A

InP patterned sub. 

4µm

1µm

<110>

Formation Process

T=20K

1.0 1.41.20.8

QWR

23meV

Energy (eV)

PL

Effective width, Weff (nm)

1.4

1.2

1.0

0.8
theory

0 10 20 30 40 50

narrowest QWR 
by H* cleaning

Wire width of 6 nm has been achieved
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SEM image of hexagonal 
InGaAs nanowire network

3 µm

4
3

2
1

µm

1
2

3
4

<100>
<110>

0.4

µm

0.8

AFM image

Hexagonal InGaAs Ridge Nanowire Network

( Ito et al. IPRM01, ICFSI-8)
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Potential Controllability of 
Nanometer-Sized Schottky Gates

φMS = 1.0 eV
Lg = 90nm

nano-Schottky gate

1. Strong pinning (0.88 eV)
2. Unpinning

Semiconductor surface

Control of an environmental Fermi level pinning is important

1. With strong pinned surface 2. With unpinned surface

0 500 1000
(nm)

0.8 ~ -2.0 V step 0.4 V

gate

500 1000
(nm)

0.8 ~ -2.0 V step 0.4 V

gate
0

500

n-GaAs

0
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Conclusion

A new, simple and realistic approach for quantum LSIs is 
presented and discussed.

1)

•Architecture: BDD logic architecture

WPG QWR and single electron BDD node devices using 
GaAs etched nanowires have been fabricated and BDD 
switching was realized.

Hexagonal BDD ICs using GaAs etched nanowires have 
been fabricated. Logic operation has been confirmed.

Hexagonal InGaAs nanowire network by H* assisted 
selective MBE combined with IPG/WPG gate technology gives 
good prospect for high density BDD QLSIs that are operating at 
delay-power products near the quantum limit at RT.

2)

3)

4)

•Hardware: Schottky WPG control of 
hexagonal III-V nanowire networks.

Control of surface/interface remains to be a key issue.5)


