Why quantum computing?

In 1990 Peter Shor proved the following theorem.

Theorem 1 There exists a randomized algorithm for integer factorization which runs in polynomial time on a quantum computer.

On a classical computer, primality testing is ‘easy’ but factorization is ‘hard’. This is the basis of the RSA cryptosystem.

Roughly speaking, a quantum computer is highly parallel; we can run exponentially many computations at the same time, and only those which terminate with a positive result will produce output.

Classical v quantum

In a classical computer, each bit of information is stored by a transistor containing trillions of electrons.

On a quantum computer, a single electron or nucleus in a magnetic field carries a bit of information. Interaction with the environment is much more serious.

Decoherence puts a limit on the space and time resources available to a quantum computer.

In order to get round this limit, the computer must be fault tolerant, that is, it must have error correction built in; and the error correction circuits should not introduce more errors than they correct!

Classical error correction

Let $F = GF(2) = \{0, 1\}$. An element of F is a bit of information. A word of length n (an element of $V = F^n$) contains n bits of information.

A code is a subset C of V such that any two elements of C are far apart. We only use codewords to carry information; if few errors occur, the correct codeword is likely to be the nearest.

For $v, w \in V$, the Hamming distance $d(v, w)$ is the number of coordinates i such that $v_i \neq w_i$.

If the minimum Hamming distance between distinct elements of C is d, then C can correct up to $\lfloor (d - 1)/2 \rfloor$ errors. So an error pattern is correctable if it has weight at most $\lfloor (d - 1)/2 \rfloor$.

The weight of v is $wt(v) = d(v, 0)$. If C is linear, then its minimum distance is equal to its minimum weight.
States and observables

The state of a quantum system is a unit vector in a complex Hilbert space. An observable is a self-adjoint operator on the state space, whose eigenvalues are the possible values of the observable.

The interpretation of the coefficients a_i of a state vector with respect to an orthonormal basis of eigenvectors of an observable is that $|a_i|^2$ is the probability of obtaining the corresponding eigenvalue as the value of a measurement.

Quantum errors

An error, like any physical process, is a unitary transformation of the state space. The space of errors to a single qubit is 4-dimensional, and is spanned by the four unitary matrices:

- I (no error) $e_0 \mapsto e_0, e_1 \mapsto e_1$
- X (bit error) $e_0 \mapsto e_1, e_1 \mapsto e_0$
- Z (phase error) $e_0 \mapsto e_0, e_1 \mapsto -e_1$
- $Y = iXZ$ (combination)

Note that I, X, Y, Z are the Pauli spin matrices.

We can write $X e_v = e_{v+1}, Z e_v = (-1)^v e_v$.

Bits and qubits

The quantum analogue of a bit of information is called a qubit. It is the state of a system in a 2-dimensional Hilbert space \mathbb{C}^2 spanned by e_0 and e_1, where e_0 and e_1 are eigenvectors corresponding to the eigenvalues 0 and 1 of the qubit.

Thus, the qubit is represented by the self-adjoint matrix

$$
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
$$

relative to this basis. So in the state $\alpha e_0 + \beta e_1$, the probabilities of measuring 0 and 1 are $|\alpha|^2$ and $|\beta|^2$ respectively.

An n-tuple of qubits is an element of the tensor product

$$
\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = \mathbb{C}^{2^n}.
$$

a basis for this space consists of all vectors

$$
e_v = e_{v_1} \otimes \cdots \otimes e_{v_n},
$$

for $v = (v_1, \ldots, v_n) \in V$.

Quantum errors

Now the errors to n qubits act coordinatewise, and are generated by $X(a)$ and $Z(b)$ for $a, b \in V$, where

$$
X(a) : e_v \mapsto e_{v+a}, \quad Z(b) : e_v \mapsto (-1)^{v\cdot b} e_v.
$$

These generate the error group, an extraspecial 2-group E of order 2^{2n+1} with centre $Z(E) = \pm I$.

$E = E/Z(E) \cong \text{GF}(2)^{2n}$; we represent the coset $\{\pm X(a)Z(b)\}$ by $(a|b)$.

On E, we have a quadratic form q given by

$$
((X(a)Z(b))^2 = (-1)^{a\cdot b}I
$$

and associated symplectic form \ast given by

$$
[X(a)Z(b),X(a')Z(b')] = (-1)^{(a|b')\ast (a'|b)}I.
$$
Quantum codes

Let S be an abelian subgroup of E such that S is totally singular (w.r.t. q). Then under the action of S, the state space \mathbb{C}^{2^n} is the sum of $|S|$ orthogonal eigenspaces. Let Q be an eigenspace. Then

- the error group permutes the eigenspaces regularly;
- the stabilizer of Q is S^\perp;
- S acts trivially on Q.

Thus, errors in S^\perp are undetectable, while errors in S have no effect. So if \mathcal{E} is a subset of E with the property

$$e, f \in \mathcal{E} \Rightarrow f^{-1}e \notin S^\perp \setminus S,$$

then errors in \mathcal{E} can be corrected. (If two such errors have undetectably different effect, then they have the same effect!)

GF(4) to quantum

The field GF(4) can be written as

$$\{a\omega + b\overline{\omega} : a, b \in GF(2)\}.$$

So we have a bijection θ between E and GF(4)n, given by $\langle a|b \rangle \mapsto a\omega + b\overline{\omega}$.

Moreover, if a subspace of GF(4)n is totally isotropic with respect to the Hermitian inner product on GF(4)n, then its image in E is totally singular.

Also, the quantum weight of $\langle a|b \rangle$ is equal to the Hamming weight of $a\omega + b\overline{\omega}$.

So good GF(4)-codes can be used to construct good quantum codes.

Quantum error correction

The subspace Q is our quantum code. If $|S| = 2^r$, then $\dim(Q) = 2^{n-r}$; we can think of Q as consisting of $n - r$ qubits “smeared out” over the space of n qubits.

Define the quantum weight of $\langle a|b \rangle \in E$ to be the number of coordinates i such that either a_i or b_i (or both) is non-zero, that is, some error has occurred in the ith qubit.

By taking \mathcal{E} to consist of all errors with quantum weight at most $\left\lfloor (d - 1)/2 \right\rfloor$, Calderbank, Rainis, Shor and Sloane proved the following analogue of classical error correction:

Theorem 2 Suppose that the minimum quantum weight of $S^\perp \setminus S$ is d. Then Q corrects $\left\lfloor (d - 1)/2 \right\rfloor$ qubit errors.