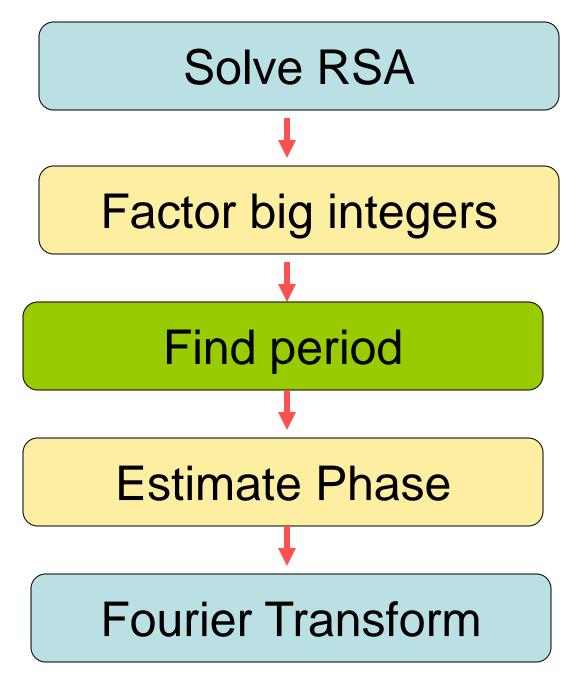
Shor Algorithm (continued)

Use of number theory and reductions

Anuj Dawar

Reductions



RCA ENCRYPTION

RSA encryption

 Named after Rivest, Shamir and Adleman, who came up with the scheme

$$m_1 \times m_2 = N$$

Primes

- Based on the ease with which N can be calculated from m₁ and m₂
- And the difficulty of calculating m₁ and m₂ from N

Easy to multiply but difficult to factor big integers.

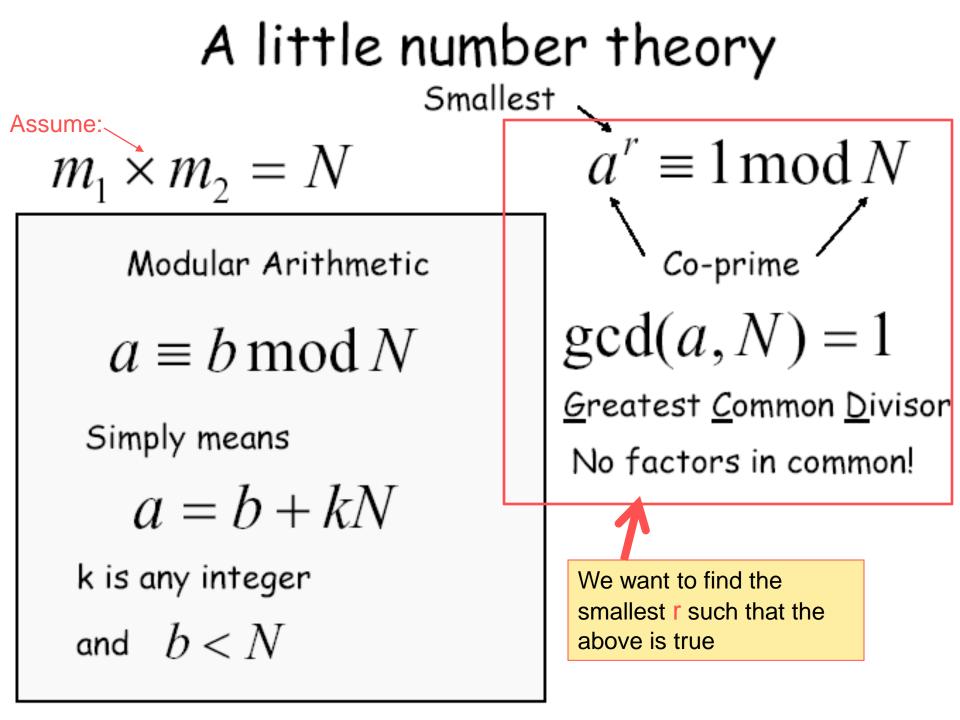
RSA encryption

- N is made publicly available, and is used to encrypt data
- m₁ and m₂ are the secret keys which enable you to decrypt the data
- To crack the code, a code-breaker needs to factor N
- Best current cracking method on a classical computer
 - Number field sieve
 - Requires exp(O(n^{1/3} log^{2/3} n))
 - n is the length of N

Review of Number Theory

Shor knows number theory and uses it!!!

- 1. In many cases, we can use the knowledge from other areas of research in a new and creative way.
- 2. You do not have to invent everything from scratch. You just reuse something that was invented by other people.
- 3. If the two areas are not obviously linked, your invention can be very important.
- 4. This is exactly what was done by Shor.
 - 1. We introduced modular arithmetic in last lecture as a general tool for algorithms and hardware
 - 2. Now we will show how creatively Shor used it in his algorithm.



$$m_{1} \times m_{2} = N \iff a^{r} \equiv 1 \mod N$$

Consider the equation
$$y^{2} \equiv 1 \mod N$$

$$y^{2} = 1 \mod N$$

$$y^{2} - 1 \equiv 0 \mod N$$

$$(y+1)(y-1) \equiv 0 \mod N$$

$$(y+1)(y-1) = kN$$

Now we substitute m_{1}*

Now we substitute m_1 m_2 for N

A little number theory

$$m_1 \times m_2 = N \iff a^r \equiv 1 \mod N$$

$$\stackrel{\text{Greatest}}{\underset{\text{denominator}}{\text{Greatest}}} (y+1)(y-1) = km_1m_2$$

$$gcd(y+1,N) = N$$

$$gcd(y-1,N) = 1$$

$$\stackrel{\text{More interesting case}}{\text{Frivial solutions}} \circ gcd(x+1,N) = m_1$$

$$gcd(y-1,N) = m_1$$

$$gcd(y-1,N) = m_2$$

$$\stackrel{\text{Solutions}}{\text{Solutions}} \circ gcd(x+1,N) = m_1$$

$$gcd(y-1,N) = m_2$$

_ . _ .

$$m_1 \times m_2 = N \quad \Longleftrightarrow \quad a^r \equiv 1 \mod N$$

- If we can find r
- And the r is even

• Then

$$m_1 = \gcd(a^{r/2} + 1, N)$$
$$m_2 = \gcd(a^{r/2} - 1, N)$$

Provided we don't get trivial
 solutions

We want to find the smallest r such that the above is true

Finding the smallest period r

 $v^2 \equiv 1 \mod N$

But we had some additional assumptions on last slide, what if not satisfied?

$$m_1 \times m_2 = N \quad \Longleftrightarrow \quad a^r \equiv 1 \mod N$$

What about the ifs and buts ?!?

Theorem:

Let $N = m_1 m_2$, where m_1 and m_2 are prime numbers not equal to 2. Suppose *a* is chosen at random from the set $\{a : 1 < a < N, \text{gcd}(a, N) = 1\}$. Let *r* be the order of *y* mod *N*. Then the probability

 $\operatorname{Prob}(r \text{ is even and non-trivial}) \geq \frac{1}{2}$

Proof: long, boring and complicated

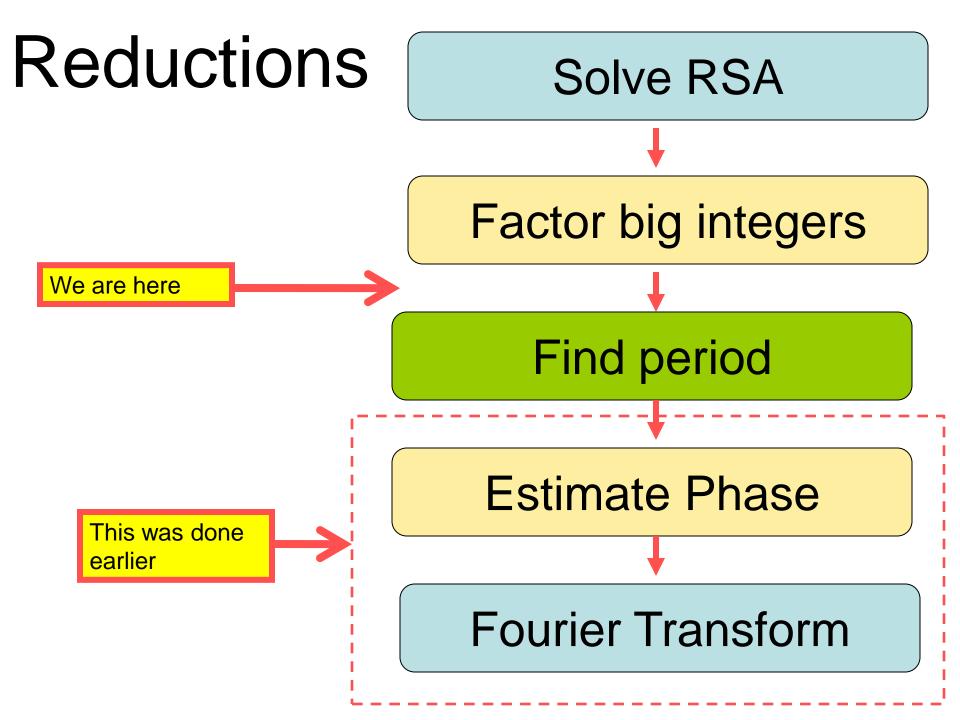
Do not worry now, we are not mathematicians

So now we are quite optimistic!

$$m_1 \times m_2 = N \quad \Longleftrightarrow \quad a^r \equiv 1 \mod N$$

- Finding r is equivalent to factoring N
- Why can't we use a classical computer to find r?
 - It takes O(2ⁿ) operations

So now what remains is to be able to find period, but this is something well done with spectral transforms. Exercise: Using the reduction of factoring to order-finding, and the fact that 10 is co-prime to 21, factor 21



Going Back to Phase Estimation

We will use phase estimation to find period

Choosing the operator U

- 1. It requires modulo multiplication in modular arithmetic
- 2. Not trivial
- 3. Potential research how to do this efficiently

Choosing a U

 $a^r \equiv 1 \mod N$

Consider the operator,

$$U|x\rangle \rightarrow |ax \operatorname{mod} N\rangle$$

- As a and N are co-prime, this operator is unitary
- Can be efficiently implemented on a quantum computer
- What about U^2 , U^4 , U^8 , ..., U^{2^j}

$$U^2 |x\rangle \rightarrow \left| a^2 x \operatorname{mod} N \right\rangle$$

Choosing the initial state for operator U

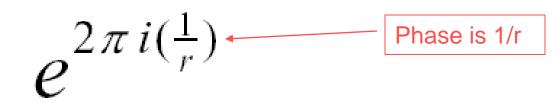
- 1. In general not easy
- 2. But hopefully we find a special case
- 3. Potential research how to do this efficiently for arbitrary cases

Choosing an initial state

· Consider the state,

$$\left|\psi_{1}\right\rangle = \sum_{j=0}^{r-1} e^{\frac{-2\pi i j}{r}} \left|a^{j} \operatorname{mod} N\right\rangle$$

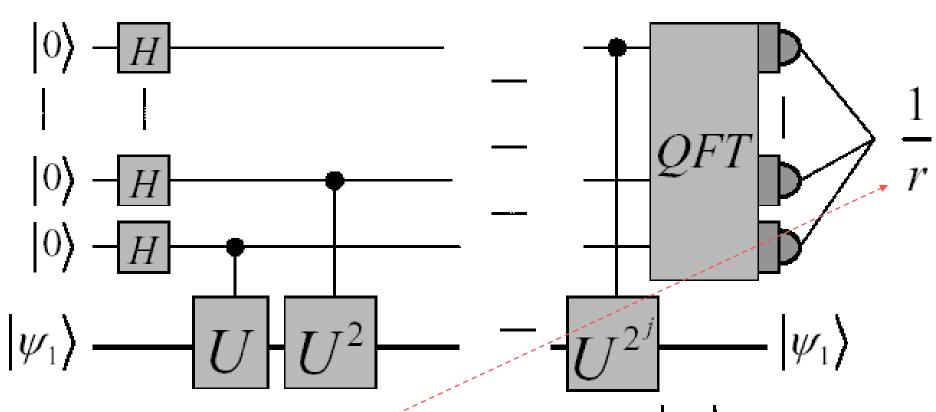
 $|\psi_1\rangle$ is an eigenstate of U, with eigenvalue



 $a^r \equiv 1 \mod N$

• Therefore, if we could prepare $|\psi_1\rangle$, we can use the PE algorithm to efficiently find r, and hence factor N.

Choosing an initial state



• Therefore, if we could prepare $|\psi_1\rangle$, we can use the PE algorithm to efficiently find r, and hence factor N.

Now the problem is reduced to creation of certain quantum state. We published papers – see David Rosenbaum

Choosing an initial state

Consider the states,

$$a^r \equiv 1 \operatorname{mod} N$$

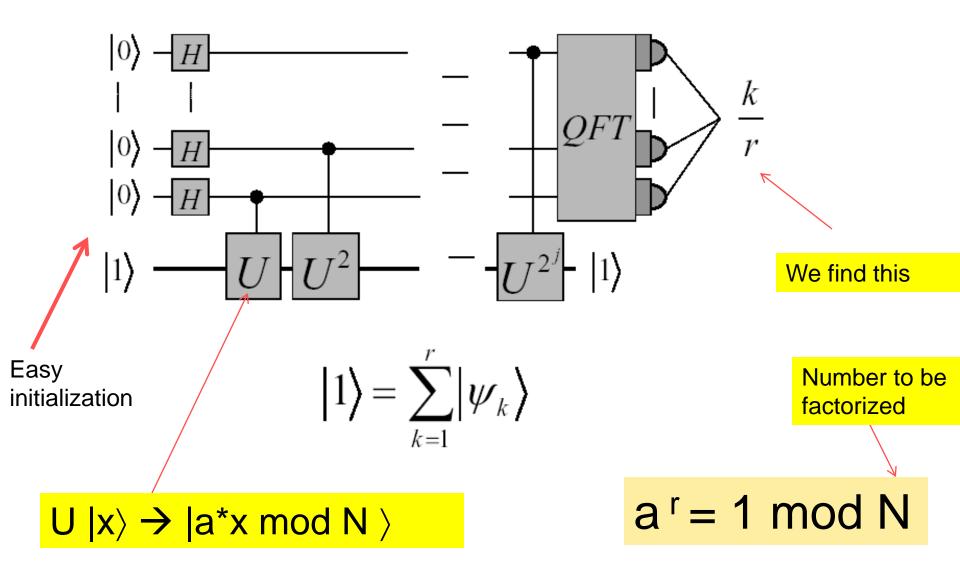
$$|\psi_1\rangle = \sum_{j=0}^{r-1} e^{\frac{-2\pi i j}{r}} |a^j \operatorname{mod} N\rangle$$
$$k \in \{1, \dots, r\}$$

 $|\psi_k\rangle$ is an eigenstate of U, with eigenvalue

$$e^{2\pi i(\frac{k}{r})}$$

Exercise: Show $|1\rangle = \sum_{k=1}^{r} |\psi_k\rangle$

Final circuit for period finding



Now we use a classical computer.

1. Therefore, using the QPE algorithm, we can efficiently calculate

k -- where k and r are unknown r

- 2. If k and r are co-prime, then canceling to an irreducible fraction will yield r.
- 3. If k and r are not co-prime, we try again.

Summary of Shor Algorithm

- 1. We want to find $m_1 * m_2 = N$ where N is the number to factorize
- 2. We prove that this problem is equivalent to solving

a ^r = 1 mod N

- 3. We use the QPE circuit initialized to $\left|0\right\rangle \left|1\right\rangle$
- 4. We calculate each of the circuits U, U², ... U ^{2^2n}
- 5. We apply the Quantum Phase Estimation Algorithm.
- 6. We use standard computer for verification and we repeat QPE if required.