
ECE 510 Introduction to Computational Intelligence
Quantum Computing Assignment

John Gebbie
27 November 2007

Introduction

The purpose of this assignment is to learn the
fundamentals of quantum computing in a hands on
manner. The assignment calls for the design,
implementation, and simulation of a quantum
computer. This paper discusses the design in-depth
and also talks about the relevant pieces of the
implementation.

This quantum computer is not a general purpose
computing platform. Instead, it is tailored to solve a
specific problem. The problem chosen for this
quantum computer to solve is the maximum
independent set problem in graph theory. The
results produced by simulating this problem the
quantum computer are presented and discussed.

Background

Quantum Computing is an entirely new way of
computing. It leverages the quantum nature of
subatomic particles to perform parallel calculations.
When these particles are in a superposition state, they
have a certain probability of collapsing to a zero or
one state when observed. The act of observing and
collapsing the particle causes it to lose information
– namely its superposition as well as its phase. A
quantum computer is built around the idea of
keeping particles in a state of superposition and
manipulating them there in order to use this extra
information as part of its computations.

Two quantum particles both in superposition
states can become entangled. This essentially means
the extra information that each particle contains is
linked with the other one. A quantum circuit uses
these entangled particles to perform parallel
computations. The Grover algorithm is an example
such of a quantum computer.

Overview of Tasks

This section gives an overview of the tasks that
were performed for this project. At a high level, the
project broke down into several major parts:

● implementation of a Grover algorithm
simulator
● development of a framework for
building quantum circuits

● design and implementation of an oracle
for determining if a set of graph nodes is
independent
● design and implementation of an oracle
for comparing the size of an independent
set to a threshold value

The Grover simulator hosts an arbitrary oracle
circuit and searches for good solutions using that
oracle. The simulator can be thought of as a test
harness for oracles; except that the test harness is
the quantum computer itself. The simulator can
also be used to verify that a given oracle circuit
functions correctly. Lastly, seeing the simulator
function properly will indicate the Grover algorithm
has been properly implemented in Matlab code.

The framework code facilitates the construction
of complex oracles and other circuits from simpler
components. The framework can be thought of as a
set of software tools for transforming arbitrary
quantum circuits into a form which is consumable
by the Grover algorithm.

Each oracle implements the logic for testing a
solution to a particular problem. For this project,
several small oracles were built that each implement
a part of an algorithm for solving the “maximum
independent set” mapping problem. These parts
were then put together into a final oracle that
implemented the full algorithm.

Grover

This section talks about the design of the
Grover simulator.

The simulator takes the following inputs:
● the oracle circuit
● the number of input wires
● extra iterations (explained later)

To enable us to use the Grover simulator with
multiple oracles, the oracle circuit is a matrix which
is passed in as a parameter. The size of the oracle
matrix dictates the number of wires the oracle
circuit uses (t). The other parameter is the number
of inputs the oracle itself takes (n) which are all
the wires excluding the ancilla bits. This number is
always less than the total number of wires in the
oracle circuit (nt).

John Gebbie 27 November 2007 2/11

The wires of the oracle circuit are grouped by
inputs first, followed by the oracle bit, and then the
ancilla bits. All bits are initially given the value of
|0> . The following diagram graphically shows the
Grover algorithm. Note the position of the wires
going into and out of the circuit.

Figure 1. Flow of the Grover Algorithm

After initializing all the input wires, just the
inputs are passed through Hadamard gates. This
puts each of the input wires into a superposition
state (initially equal probability of collapsing to a
|0> or |1>). At this stage, the oracle and ancilla
bits are passed through unmodified.

Next the wires are passed to the first Grover
circuit. The Grover circuit uses two Hadamard
gates sandwiched around a zero-state phase shift
gate; which is then fed into the oracle circuit. The
following diagram illustrates this:

Figure 2. Composition of Grover Matrix

Notice the Hadamard and zero-state phase shift
gates are only applied to the input wires; not the
oracle or ancilla wires. But the oracle is passed all
wires.

The number of times the Grover circuit is
applied is given by the following formula:

⌈ N
4 ⌉

Formula 1. Number of Grover Iterations

where N is the number of inputs. In practice, it
was found that the number of iterations required to

produce valid solutions from the algorithm varied
slightly from the above algorithm. The amount of
variation was at most two iterations. This was the
reason for adding the niterExtra parameter to
grover.m. The reason for this discrepancy is unknown
and may be due to a design error.

The output of the algorithm is a vector of
entangled qubits all in superposition. When
observed, the entangled vector snaps into a given
state. Every possible state has associated with it a
probability. Note that the state includes all wires,
not just input wires. In a real quantum computer,
the implementor would need to measure the output
of the Grover circuit multiple times to determine
the probability distribution. If the algorithm was
successful at finding a solution, the states that
contain that solution will have higher probability
than the other, non-solution states and so will be
observed more often.

The simulator, however, produces a vector of
probabilities. So, instead of having to measure to
determine the probability distribution, all that needs
to be done is add up the appropriate probabilities.
Since all wires output from of the Grover circuit are
part of the probabilistic state, we must group
together the probabilities common for every state
of just the input wires. In other words, if the oracle
takes 10 wires but the top four are “inputs” to the
oracle, then we are interested in just every
combination of the four input wires, not every
combination of all wires. After grouping the
probabilities for each combination of inputs, we can
sort by probability to determine if the algorithm
produced any solutions and, if so, what those
solutions are.

The code for the Grover algorithm is contained
in the file grover.m. The merging and printing code
are in the files:

● merge_probs.m
● printresults.m.
● bubblesort.m

Maximum Independent Set

The quantum computer that was built for this
project solves a mapping problem called Maximum
Independent Set. What is an independent set? An
independent set is a set of nodes where no two
nodes in the set are connected by ane edge. A

John Gebbie 27 November 2007 3/11

Maximal independent set is an independent set that
is not a subset of any other independent set.

Consider the following example graph.

Figure 3. Example Graph

In the above graph, {5, 3} is an independent set
but {5, 4} is not. Since {5, 3} is not a subset of
any other independent set, we can say it is maximal.
However, it is not the maximum independent set.
Consider the set {4,2} . This set is independent
but not maximal. However, the set {4, 1, 2} is
maximal. And since {4,1, 2} is bigger than {5,3}
we know {5,3} is not maximum. In this trivially
simple example, we can see that {4,1, 2} is one of
the maximum independent sets, but in a larger
graph this would be less clear. Also, {4,1, 2} is not
the only maximum independent set. There is also
{5,1,2} .

Finding a maximal independent set can be done
relatively easily. Starting at given node, we can
successively visit each node in the graph and either
add it to the set if it is non-adjacent to any node
already in the set, or skip it if it is adjacent. Finding
the maximum independent set is much more difficult
because it involves back tracing to see if prior
decisions caused poor final results. Finding
maximum independent sets is an NP-complete
problem.

Framework

To facilitate the development of complex
quantum circuits, a software framework was
developed for this project. This framework
provided the “glue” necessary for linking smaller
circuits together into bigger, compositional circuits.

It also provided ways of displaying results of the
Grover simulator.

The Subgate
The framework builds on several ideas from

class about reversibility and wire swapping and fits
them into software constructs accessible through
Matlab. The core construct is the subgate. This term
is not intended to be related to any outside concept.

A subgate is a reversible circuit and consists of
an ordered list of matrices. It has a size which is
equal to the number of wires entering and leaving it.
Each matrix has a size of 2n×2n where n is the
size. A subgate is designed to be able to be dropped
into a bigger circuit and connected to an arbitrary
set of wires from the bigger circuit.

When putting a smaller circuit into a bigger
circuit, the smaller circuit is wrapped in a subgate
that routes particular wires to its inputs. This is done
by swapping wires multiple times to shuffle the
wires into the proper place. After the subgate, the
wires need to be un-shuffled back into their original
positions. A subgate always places the wrapped
circuit in the top wires of the containing circuit and
routes the wires up to it rather than placing it
somewhere in the middle. The former approach is
taken because it is simpler but may actually require
more swaps.

When a wrapped circuit covers the top wires of
a containing circuit there are usually extra wires at
the bottom of the containing circuit that need to
pass “underneath” the wrapped circuit. This entails
adding wires to the matrices of the wrapped circuit
by applying the Kronecker product multiple times
to a 2×2 identity matrix (which is the matrix for a
wire) to increase the size of the wrapped circuit
until it exactly fits inside the containing circuit.

One of the motivations for representing a
subgate as a list of matrices is it makes subgates
compose-able. In other words, if subgate A is
nested inside of B which is nested inside of C, the
matrices of A are still valid, perhaps bigger, but
basically unchanged inside C's list. Surrounding A's
matrices are matrices that do the routing from B's
environment to A's and vice-versa. Likewise
bookending B's matrices are routing matrices that
make B a part of C's environment.

John Gebbie 27 November 2007 4/11

A common need in quantum circuit design is to
create logic that computes some value on an ancilla
bit wire and then returns all the other wires to their
original state. To do this, the circuit that computes
the final result can be mirrored over the last step
which essentially un-computes the values on the
other wires. Mirroring a subgate is easy because it
just involves making a copy of the list and reversing
the order of its matrices.

To use a subgate in computations, it is necessary
to collapse all the matrices down to a single matrix.
This is done by computing the dot-product of all
the matrices in the list in reverse order.

The files that implement subgate are:
● subgate.m
● mat_swap_wires.m
● mat_move_wire.m
● mirror_gate.m
● collapse_gate.m

Oracles and Circuits

This section talks about the design of the
maximum independent set oracle used in the
project. The oracle is not a general-purpose oracle
for determining the maximum independent set of
an arbitrary graph. Rather, it is designed to operate
on a particular graph. However, using the principals
embodied in this design, it would be possible to
adapt this oracle to work with any arbitrary graph.

The test graph this oracle is designed to analyze
is represented in the following figure.

Figure 4. Test Graph For This Project

Composition
Several smaller circuits comprise this oracle.

Each of these components focuses on a part of the
overall algorithm of the oracle. This divide and
conquer approach has advantages because it
logically breaks down the algorithm into more
manageable pieces which can be developed,
debugged, and tested more readily.

Conceptually, we can think of the oracle as
having two main parts: the independent set circuit
and the threshold calculation circuit. The former is
concerned with determining whether a set (of
nodes) is independent or not; and the latter focuses
on determining whether the set size is greater than
some threshold value.

The rest of this section will describe each of
these oracles in depth. Each sub section describes
the purpose behind each component and explains
the role it plays. It will then discuss how these parts
fit together into the final full oracle.

Independent Set Circuit
This circuit is at the heart of the maximum

independent set algorithm. It determines whether a
set is independent or not. Recall that a set is
independent if none of its nodes are adjacent. This
circuit does not make any claims about the
maximality of the set; just its independence. If a set
is non-independent (has adjacent nodes) it must be
excluded as a possible solution. This circuit outputs
a boolean value of |1> if the graph is independent
or |0> if not.

The following figure shows this quantum circuit:

Figure 5. Graph Oracle Quantum Circuit

Each of the four edges are passed in on a
separate wire. The value of the wire indicates
whether it is in the test set (|1>) or not (|0>). This
part of the algorithm wants to know whether nodes
are not adjacent. So, for each edge we NAND the

John Gebbie 27 November 2007 5/11

nodes at the endpoint of that edge together. If
either or neither of the nodes are in the test set,
then that edge does not violate the independence
constraint. If, however, both of the nodes are |1>
then we know the entire set is not independent
because there is an edge that connects two of the
nodes.

In the test graph in figure 4, there are three
edges. Correspondingly, there are three NAND
gates in the circuit. These are the three repeated
structures starting at the left and moving to the
right. Each of these NAND gates outputs its value
on an ancilla bit. At the far right a Toffoli gate
ANDs these values together so that the oracle
returns a |1> only if all edges satisfy the
independence constraint.

At the right edge of this circuit, the ancilla bits
carry the result of the NAND operations. Since this
circuit will be part of a larger circuit, we need to
return these wires to their original value of |0> . To
do this, we mirror the whole circuit – excluding the
Toffoli gate – on the right after the Toffoli gate.
This will leave the oracle value (|0> or |1>) on
the last wire but all other wires will appear
unchanged to any circuits that may come after this
circuit.

Node Counter Circuit
This circuit counts the number of wires that

have the value |1> . It returns this as a binary
number. The range of values is, of course, zero
through four. This means that at most three bits are
required to represent the output.

Logically, this is represented in the figure below
as a non-quantum circuit. The binary number that is
produced is the value “c3 s3 s2”.

Figure 6. Node Counter Regular Circuit

When we transform this into a quantum circuit,
we require some ancilla bits – one for each adder.
The following figure shows this circuit.

Figure 7. Node Counter Quantum Circuit

Notice how the half adders re-use the carry lines
from the adders before them. This saves using
unnecessary ancilla bits. The output of this circuit is
a three bit value on the 4th, 7th and 8th wires. This
circuit is intended to be used as part of a bigger
circuit and then re-applied in its mirrored form to
restore the original input values. Since this circuit
actually overwrites one of the edge input values, the
circuit that comes after this must not need this
information. The next circuit is the Comparator
Circuit.

Threshold Comparator Circuit
This circuit compares the number of nodes in

the test set to some predefined threshold value.
This circuit takes both of these inputs as 3-bit
binary numbers and outputs a single bit indicating
whether they are equal.

To test for equality, we must first determine if
any of the individual bits between the two binary
numbers differ. The logical operation that will test
for this on each bit is the XOR operation which
outputs a |1> if two bits differ or a |0> if they are
the same. This is actually the inverse of what we
want so we use the ~XOR instead. The ~XOR
returns |1> if both bits are the same and |0> if
they are not. If we apply this operation to each of
the bits we get a vector of equality values. Since we
are interested in equality over the entire number we
use a simple AND operation to get a single output
value for the total equality.

John Gebbie 27 November 2007 6/11

The following diagram shows this logical flow.

Figure 8. Set Size Threshold Comparator
Regular Circuit

To translate this into a quantum circuit, we
overwrite the second number with the ~XOR
values and then output the resulting AND value on
an ancilla bit wire.

The following figure shows the above regular
circuit translated into a quantum circuit.

Figure 9. Set Size Threshold Comparator
Quantum Circuit

Only if e1=b1 , e2=b2 , and e3=b3 then
the last wire will contain a value of |1> . Since this
circuit overwrites its inputs, it will need to be
mirrored again to reverse its changes.

Full Maximum Independent Set Oracle
We now have circuits for testing whether a set of

nodes is independent. We also have circuits for
counting nodes in a test set and for comparing that
binary number to a threshold value. The last step is

to combine these together into a single circuit that
outputs a |1> if the test set is independent and has
a given number of nodes.

The following figure shows all the circuits
discussed up to this point together in a single full
circuit.

Figure 10. Full Oracle Quantum Circuit

Notice that all circuits are reversed in-place
except for the last Toffoli gate whose value remains
on the last wire after the circuit finishes executing.
This is because this is an oracle circuit and needs a
single output value. This is a requirement for a
circuit to be an oracle.

Another requirement is that the oracle output
wire must come immediately after the inputs but
before the ancilla bits. So something that is not
shown here but is part of this circuit is the bottom
wire is moved into position 5 after the Toffoli gate
at the right. This puts the circuit into a form that is
consumable by the Grover algorithm.

In the circuit, the switch boxes encode the
threshold value. This value is not a true input to the
oracle but rather is encoded in the oracle with
inverter gates as it is constructed. The advantage of
this approach is it reduces the number of inputs
which allows the circuit to be simulated much
faster.

The big blue box contains the 4-bit counter and
3-bit comparator circuits. These are followed by a
single Toffoli gate and then are mirrored again
afterwards. The mirroring undoes any changes to
the other wires so that the independent set circuit
can take these wires as inputs without having to
know about any changes. The counter and
comparator outputs a boolean value for whether
the test set (represented by the four input wires at
the top) matches the threshold. The independent
set oracle outputs a boolean for whether the test set

John Gebbie 27 November 2007 7/11

is independent. The last Toffoli gate ANDs these
two booleans together and puts the result on the
last wire.

Normally the entire shown circuit, excluding the
last Toffoli gate, would be mirrored after the
Toffoli gate. This is not done here because the
remaining values on all the output wires (except the
last) are identical to the input. So the requirement of
an oracle circuit to have only a single output
without modifying any other wires is already met;
and so mirroring the circuit about the Toffoli gate
would be redundant.

Basic Algorithm
So, how does this oracle solve the maximum

independent set problem? Running the oracle inside
the Grover simulator will tell us what test sets
match a particular threshold. But we are interested in
the maximum threshold. So, one possible algorithm
would start with a large threshold value and
decrease it until Grover returns a result. We would
then be sure that we found the largest (and thus
maximum) independent set.

Another approach would be to use a binary
search algorithm that would start with a threshold
somewhere in the “middle” and progressively hone
in on the maximum threshold value.

A third approach would be to start at zero and
increase the threshold until no more independent
sets are found. This last approach was used in this
project even though with such a trivially small graph
this was not technically advantageous in any way.

Results

This section shows the results of running the
maximum independent set oracle in the Grover
simulator. The threshold value is not an input to the
oracle, so a slightly different oracle was built for
each possible threshold value and the Grover
simulator re-ran. The results showed that the oracle
successfully found all the possible independent sets
at every threshold value. As the threshold value
passes the size of the actual maximum independent
set in the graph, we observe that nothing is found.
Based on the algorithm described above, we can
declare that the last threshold value is whatever the
last threshold value to return a result was.

For the raw output from the algorithm, please
refer to main.m.

Threshold Size Zero
When searching for a threshold size of zero, the

empty set is returned. This was expected. The
following shows a graph with no nodes chosen.

Figure 11. Result Size Zero

The Grover algorithm gave the probability of
observing this graph on the output as 0.512. The
next most probable output was 0.033. There were
no extra Grover iterations.

John Gebbie 27 November 2007 8/11

Threshold Size One
When searching for a threshold size of one, four

sets were returned. This was expected. The
following shows the chosen sets.

Figure 12. Result Size One

The Grover algorithm gave equal probability of
observing each of these sets with a value of 0.156.
The next most probable output was 0.031. There
was one extra Grover iteration needed to produce
this result.

Threshold Size Two
When searching for a threshold size of two,

three sets were returned. This was expected. The
following shows the chosen sets.

Figure 13. Result Size Two

The Grover algorithm gave equal probability of
observing each of these sets with a value of 0.190.
The next most probable output was 0.033. There
were two extra Grover iterations needed to produce
this result.

John Gebbie 27 November 2007 9/11

Threshold Size Three
When searching for a threshold size of three,

one set was returned. This was expected. The
following shows the chosen set.

Figure 14. Result Size Thee

The Grover algorithm gave the probability of
observing the chosen set with a value of 0.322. The
next most probable output was 0.045. There was
one extra Grover iteration needed to produce this
result.

Threshold Size Four
When searching for a threshold size of four, no

results with any appreciable probability were
returned. This was expected. The Grover algorithm
gave equal probability to all its (incorrect) outputs
as 0.062. Adjusting the number of extra Grover
iterations did not change these results.

Performance

The performance of the simulator had a big
impact on this project and was a limiting factor for
creating more complex circuits. Ideally it would
have been nice to simulate the algorithm on a larger
graph to see if the algorithm properly extrapolated.
There seemed to be a wall at about 9-10 qubits
before the simulations took many minutes to
complete instead of a few seconds.

The build-in profiler in Matlab was used to hone
in on the problem. The reason for the wall had to
do with the size of matrices being computed. Each
matrix for a circuit of n qubits has a size of 2n×2n .
The total number of elements in this matrix is
2n2=4n giving a space complexity of O4n .

A dot-product performs n multiplications for
every element in the matrix. This means the
number of multiplications to compute a dot
product of is n4n meaning the time complexity is
On4n . Clearly, this was the cause of the wall I
was experiencing.

To partially alleviate this problem, the sparse
matrix feature of Matlab was leveraged to allow the
creation and computation of the dot product of
much larger matrices. The confounding factor was
the n×n Hadamard matrix used inside of Grover.
This matrix is huge and also not sparse, so turning
on the sparse matrix feature does not help here.
This seems to make intuitive sense because what
the Grover algorithm is doing leveraging the
entangled state of all qubits to perform massively
parallel computations. So the fact that simulating
this is hard is not surprising.

Conclusion

Much was learned about quantum computing in
this assignment. I feel I have a better understanding
of the kind of problem contexts this technology will
be well suited for, as well as some of the challenges
and limitations associated with designing a quantum
computer. Admittedly, even though my Grover
algorithm implementation seemed to function
correctly, some of the higher level concepts of why
the Grover algorithm works are still elusive to me.

This project was time consuming mainly due to
development of the supporting framework. With
more time and computing resources, it would have
been possible to adapt the code to simulate a
slightly larger graph, perhaps 5 or 6 nodes large.
Also, by playing around with the adder it would be
possible to compute an inequality which would
make the threshold value a little more interesting.

The Grover algorithm is one technique for
doing quantum computing, and perhaps other
techniques address this differently, but it seems that
creating circuits in the form of oracles does not lead

John Gebbie 27 November 2007 10/11

to the greatest control over the structure of
algorithms. For example, it is unclear how control
flow, or memory, or I/O would be implemented.

Code

<attached>

John Gebbie 27 November 2007 11/11

function [result] = bubblesort(data, funcmphand, stop_after)
%BUBBLESORT bubble sort
% data is a cell array of
% sort the data using comparator funcmphand
% stop_after is the number of elements to stop sorting after

 s = size(data,2);
 for i=1:(s-1)
 if i > stop_after
 break
 end
 for j=(i+1):s
 d1 = data{i};
 d2 = data{j};
 if funcmphand(d1,d2) < 0
 data{i} = d2;
 data{j} = d1;
 end
 end
 end
 result = data;
end

Published with MATLAB® 7.4

function [result] = collapse_gate(mat)
%COLLAPSE_GATE collapse a list of matricies into a single matrix.
% multiply all component matricies together (in reverse order) into a
% single matrix.

 m = mat_wire(log2(size(mat{1,1}.ptr,1)));
 for i=1:size(mat,2)
 m = mat{1,i}.ptr * m;
 end
 result = m;
end

Published with MATLAB® 7.4

function [u] = format_prob_vec(v, n)
%FORMAT_PROB_VEC pretty print output vector
% format the merged output vector into pretty string
% v is a horizontal cell array of structures

 f = strcat('%',int2str(n+1),'s --> %4.3f');
 u = '';
 for i = 1:size(v,2)
 b = v{i}.bits;
 p = v{i}.prob;
 s = sprintf(f, b, p);
 u = strvcat(u, s);
 end
 result = u;
end

Published with MATLAB® 7.4

function [result] = gate_four_bit_counter()
%GATE_FOUR_BIT_COUNTER four bit counter
% produces a 3-bit number for count of input bits with value 1.
% returns a 2^8 by 2^8 matrix with the following configuration
% Input Output
% 1 - e1
% 2 - e2
% 3 - e3
% 4 - e4 R0
% 5 - |0>
% 6 - |0>
% 7 - |0> R1
% 8 - |0> Cout

 n = 8;

 % a cell array of pointers. pointers are used because matlab doesn't
 % know how to store sparse arrays in cells. making the strucutres
 % gets around this problem.
 m = {};

 m = horzcat(m, subgate(n, gate_half_adder(), 1,2,5));
 m = horzcat(m, subgate(n, gate_half_adder(), 3,4,6));
 m = horzcat(m, subgate(n, gate_half_adder(), 2,4,7));
 m = horzcat(m, subgate(n, gate_full_adder(), 5,6,7,8));

 result = m;
end

Published with MATLAB® 7.4

function [result] = gate_full_adder()
%GATE_FULL_ADDER full adder
% returns a 2^4 by 2^4 matrix for full adder.
% wires:
% Input Output
% 1 - a a
% 2 - b b
% 3 - |0> Sum
% 4 - |0> Carry

 n = 4;

 % a cell array of pointers. pointers are used because matlab doesn't
 % know how to store sparse arrays in cells. making the strucutres
 % gets around this problem.
 m = {};

 m = horzcat(m, subgate(n, gate_toffoli(3), 2, 3, 4));
 m = horzcat(m, subgate(n, gate_toffoli(2), 2, 3));
 m = horzcat(m, subgate(n, gate_toffoli(3), 1, 3, 4));
 m = horzcat(m, subgate(n, gate_toffoli(2), 1, 3));

 result = m;
end

Published with MATLAB® 7.4

function [result] = gate_graph_indepset_n4e3_r1()
%GATE_GRAPH_INDEPSET_N4E3_R1 graph with 4 nodes and 3 edges
% edges: 1,3 2,3 3,4
% returns a 2^8 by 2^8 matrix with top 5 wires input and bottom
% five being |0> ancilla bits and last being the single bit output.
% Input Output
% 1 - e1 e1
% 2 - e2 e2
% 3 - e3 e3
% 4 - e4 e4
% 5 - |0> |0>
% 6 - |0> |0>
% 7 - |0> |0>
% 8 - |0> x XOR result

 n = 8;

 % a cell array of pointers. pointers are used because matlab doesn't
 % know how to store sparse arrays in cells. making the strucutres
 % gets around this problem.
 m1 = {};
 m2 = {};

 % edge 1,3 --> working bit 5
 m1 = horzcat(m1, subgate(n, gate_nand(), 1,3,5));
 % edge 2,3 --> working bit 6
 m1 = horzcat(m1, subgate(n, gate_nand(), 2,3,6));
 % edge 3,4 --> working bit 7
 m1 = horzcat(m1, subgate(n, gate_nand(), 3,4,7));

 % toffoli gate anding all edges together
 m2 = horzcat(m2, subgate(n, gate_toffoli(4), 5,6,7,8));

 m = horzcat(m1, m2, mirror_gate(m1));
 result = m;
end

Published with MATLAB® 7.4

function [result] = gate_half_adder()
%GATE_HALF_ADDER half adder
% returns a 2^3 by 2^3 matrix for half adder.
% wires:
% Input Output
% 1 - a a
% 2 - b Sum
% 3 - |0> Carry

 n = 3;

 % a cell array of pointers. pointers are used because matlab doesn't
 % know how to store sparse arrays in cells. making the strucutres
 % gets around this problem.
 m = {};

 m = horzcat(m, subgate(n, gate_toffoli(3), 1,2,3));
 m = horzcat(m, subgate(n, gate_toffoli(2), 1,2));

 result = m;
end

Published with MATLAB® 7.4

function [result] = gate_inverter()
%GATE_INVERTER inverter gate (1-input, 1-output)
% inverts a value

 result = { wrapptr([0 1 ; 1 0]) };
end

Published with MATLAB® 7.4

function [result] = gate_nand()
%GATE_NAND nand gate
% returns an 8x8 matrix with top two wires being inputs and bottom wire
% being result XOR'ed to the input of that wire.

 n = 3;

 m = {};

 m = horzcat(m, subgate(n, gate_inverter(), 1));
 m = horzcat(m, subgate(n, gate_toffoli(2), 1,3));
 m = horzcat(m, subgate(n, gate_inverter(), 1));

 m = horzcat(m, subgate(n, gate_inverter(), 2));
 m = horzcat(m, subgate(n, gate_toffoli(3), 1,2,3));
 m = horzcat(m, subgate(n, gate_inverter(), 2));

 result = m;
end

Published with MATLAB® 7.4

function [result] = gate_three_bit_comparator()
%GATE_THREE_BIT_COMPARATOR compare two 3-bit bit strings
% returns a 2^6 by 2^6 matrix with the following configuration
% Input Output
% 1 - a0 a0
% 2 - a1 a1
% 3 - a2 a2
% 4 - b0 XOR(a0,b0)
% 5 - b1 XOR(a1,b1)
% 6 - b2 XOR(a2,b2)

 n = 6;

 % a cell array of pointers. pointers are used because matlab doesn't
 % know how to store sparse arrays in cells. making the strucutres
 % gets around this problem.
 m = {};

 m = horzcat(m, subgate(n, gate_toffoli(2), 1,4));
 m = horzcat(m, subgate(n, gate_inverter(), 4));

 m = horzcat(m, subgate(n, gate_toffoli(2), 2,5));
 m = horzcat(m, subgate(n, gate_inverter(), 5));

 m = horzcat(m, subgate(n, gate_toffoli(2), 3,6));
 m = horzcat(m, subgate(n, gate_inverter(), 6));

 result = m;
end

Published with MATLAB® 7.4

function [result] = gate_threshold(b3, b2, b1)
%GATE_THRESHOLD count 4 bits and compare result with another 3
% counts 1-bits and compares to 3-bit number.
% returns a 2^12 by 2^12 matrix with the following configuration
% Input Output
% 1 - e1 e1
% 2 - e2 e2
% 3 - e3 e3
% 4 - e4 e4
% 5 - |0> |0>
% 6 - |0> |0>
% 7 - |0> |0>
% 8 - |0> |0>
% 9 - |0> |0>
% 10 - |0> |0>
% 11 - |0> |0>
% 12 - x x XOR result

 n = 12;

 m1 = {};
 m2 = {};

 % put inverters on the wires for each of the 1 'b' bits.
 if b1
 m1 = horzcat(m1, subgate(n, gate_inverter(), 5));
 end
 if b2
 m1 = horzcat(m1, subgate(n, gate_inverter(), 6));
 end
 if b3
 m1 = horzcat(m1, subgate(n, gate_inverter(), 7));
 end

 m1 = horzcat(m1, subgate(n, gate_four_bit_counter(), 1,2,3,4,8,9,10,11)); % 4,7,8 -> 4,10,11
 m1 = horzcat(m1, subgate(n, gate_three_bit_comparator(), 4,10,11,5,6,7));
 m2 = horzcat(m2, subgate(n, gate_toffoli(4), 5,6,7,12));

 result = horzcat(m1, m2, mirror_gate(m1));
end

Published with MATLAB® 7.4

function [result] = gate_toffoli(n)
%GATE_TOFFOLI toffoli gate (n-inputs, n-outputs)
% returns a 2^n by 2^n matrix for a toffoli gate

 s = 2^n;
 r = speye(s);
 if n > 1
 r(s-1, s-1) = 0;
 r(s, s) = 0;
 r(s, s-1) = 1;
 r(s-1, s) = 1;
 end
 result = { wrapptr(r) };
end

Published with MATLAB® 7.4

function [result] = gate_wire(n)
%GATE_WIRE wire gate (n-input, n-output)
% returns a 2^n by 2^n gate for a set of plain wires

 result = { wrapptr(mat_wire(n)) };
end

Published with MATLAB® 7.4

function [result, niter] = grover(oracle, n, niterExtra)
%GROVER grover algorithm
% apply grover algorithm to oracle matrix with n input qubits.
% return final output vector and number of grover iterations.
% all work qubits are initialized to zero.
% oracle matrix dimensions encompass input, oracle, and work qubits.
% output vector is t by 1 where t is one dimension of oracle matrix
% (oracle matrix is square).

 % figure out how many qubits we need for this calculation (this is t)
 t = log2(size(oracle,1));

 % start off with all zeros for input, oracle, and working bits
 % v is the vector we will be operating on
 v = kronpow(qubit(0),t);

 % compute hadamard matrix
 mat_had_n = kronpow((1/sqrt(2)) .* [1 1 ; 1 -1], n);

 % compute the inital circuit that applies hadamards to all the
 % inputs but not the oracle and work qubits
 hadamards_inputs_circuit = kron(mat_had_n, mat_wire(t-n));

 % apply the inital hadamard circuit to the vector v
 v = hadamards_inputs_circuit * v;

 % compute the grover circuit we will apply to v on each iteration
 h = kron(mat_had_n, mat_wire(t-n));
 z = kron(mat_zsps(n), mat_wire(t-n));
 grover_circuit = h * (z * (h * oracle)); % takes a LONG time for inputs > 9

 % compute the number of times we need to apply grover
 niter = ceil(pi*sqrt(t)/4) + niterExtra;

 % do the grover iterations
 for i=1:niter
 v = grover_circuit * v;
 end

 % return the vector
 result = v;
end

Published with MATLAB® 7.4

function [result] = kronchain(varargin)
%KRONCHAIN kronecker product
% apply kronecker product on multiple matricies (in order specified)

 m = varargin{1};
 for i=2:size(varargin,2)
 m = kron(m,varargin{i});
 end
 result = m;
end

Published with MATLAB® 7.4

function [result] = kronpow(mat, n)
%KRONPOW kronecker^n
% apply a kronecker matrix operation n times

 k = [1];
 for i=1:n
 k = kron(mat, k);
 end
 result = k;
end

Published with MATLAB® 7.4

Contents

search for 0-node independent sets
search for 1-node independent sets
search for 2-node independent sets
search for 3-node independent sets
search for 4-node independent sets

search for 0-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,0,0);
printresults(grover(oracle, num_inputs, 0), num_inputs, 10)

ans =

 0000 --> 0.512
 1100 --> 0.033
 1010 --> 0.033
 1001 --> 0.033
 1101 --> 0.033
 1111 --> 0.033
 1000 --> 0.033
 0011 --> 0.033
 0101 --> 0.033
 0110 --> 0.033

search for 1-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,0,1);
printresults(grover(oracle, num_inputs, 1), num_inputs, 10)

ans =

 0001 --> 0.156
 1000 --> 0.156
 0100 --> 0.156
 0010 --> 0.156
 1110 --> 0.031
 1111 --> 0.031
 1101 --> 0.031
 1100 --> 0.031
 0101 --> 0.031
 0011 --> 0.031

search for 2-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,1,0);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 0101 --> 0.190
 1001 --> 0.190
 1100 --> 0.190
 1101 --> 0.033
 1000 --> 0.033

 1011 --> 0.033
 1110 --> 0.033
 0111 --> 0.033
 0100 --> 0.033
 1010 --> 0.033

search for 3-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,1,1);
printresults(grover(oracle, num_inputs, 1), num_inputs, 10)

ans =

 1101 --> 0.322
 1011 --> 0.045
 1100 --> 0.045
 1010 --> 0.045
 1110 --> 0.045
 1111 --> 0.045
 0110 --> 0.045
 1001 --> 0.045
 1000 --> 0.045
 0001 --> 0.045

search for 4-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(1,0,0);
printresults(grover(oracle, num_inputs, 0), num_inputs, 10)

ans =

 1111 --> 0.062
 1101 --> 0.062
 1110 --> 0.062
 1100 --> 0.062
 0111 --> 0.062
 1011 --> 0.062
 0001 --> 0.062
 0000 --> 0.062
 1000 --> 0.062
 1001 --> 0.062

Published with MATLAB® 7.4

function [result] = mat_move_wire(n, from, to)
%MAT_MOVE_WIRE move a wire to a different position
% n - total number of wires
% from - starting position of wire
% to - ending position of wire

 m = mat_wire(n);
 if from < to
 % walk forward
 for i = from:(to-1)
 t1 = mat_wire(i-1);
 t2 = mat_swap();
 t3 = mat_wire(n-(i+1));
 m = kronchain(t1, t2, t3) * m;
 end
 elseif from > to
 % walk backward
 for i = from:-1:(to+1)
 t1 = mat_wire(i-2);
 t2 = mat_swap();
 t3 = mat_wire(n-i);
 m = kronchain(t1, t2, t3) * m;
 end
 end
 result = m;
end

Published with MATLAB® 7.4

function [result] = mat_swap()
%MAT_SWAP swap gate (2-input, 2-output)
% returns a 4 by 4 matrix for swapping two qubits

 result = [1 0 0 0 ; 0 0 1 0 ; 0 1 0 0 ; 0 0 0 1];
end

Published with MATLAB® 7.4

function [result] = mat_swap_wires(n, wire1, wire2)
%MAT_SWAP_WIRES swap wires
% swap position of 2 wires
% n - total number of wires in circuit
% wire1 - position of wire1
% wire2 - position of wire2

 m = mat_wire(n);

 if wire1 < wire2
 m = mat_move_wire(n, wire1, wire2) * m; % wire2 now in wire2-1 pos
 m = mat_move_wire(n, wire2-1, wire1) * m;
 elseif wire1 > wire2
 m = mat_move_wire(n, wire2, wire1) * m; % wire1 now in wire1-1 pos
 m = mat_move_wire(n, wire1-1, wire2) * m;
 end
 result = m;
end

Published with MATLAB® 7.4

function [result] = mat_wire(n)
%MAT_WIRE matrix for 'n' wires
% return a 2^n by 2^n matrix (sparse) for n wires. this is the same as
% the identity matrix.

 result = speye(2^max(n,0));
end

Published with MATLAB® 7.4

function [result] = gate_zsps(n)
%GATE_ZSPS zero-state phase shift gate (n-input, n-output)
% returns a 2^n by 2^n matrix for a zero-state phase shift gate

 m = mat_wire(n);
 m(1,1) = -1;

 result = m;
end

Published with MATLAB® 7.4

function [result] = merge_probs(v, n)
%MERGE_PROBS merge probabilities of grover output vector
% merge non-input qubits in output vector (v) together and return a vector
% of probabilities for just the n input qubits.
% returns a horizontal cell array of structures.

 t = log2(size(v,1));
 u = {};
 for i = 1:(2^n)
 s = 0;
 for j = 1:(2^(t-n))
 idx = (i-1)*(2^(t-n)) + j;
 s = s + abs(v(idx))^2;
 end
 r.bits = dec2bin(i-1,n);
 r.prob = s;
 u = [u r];
 end
 result = u;
end

Published with MATLAB® 7.4

function [result] = mirror_gate(gate)
%MIRROR_GATE compute mirror of gate
% return the mirror of the gate parameter. the mirror is the same as the
% gate itself but with all its element matricies in reverse order.

 m = {};
 for i=size(gate,2):-1:1
 m = horzcat(m, gate{1,i});
 end
 result = m;
end

Published with MATLAB® 7.4

function [result] = oracle_and(n)
%ORACLE_AND oracle that ANDs inputs
% returns matrix is 2^(n+1) by 2^(n+1) for the oracle performing
% the AND operation. the last bit is the oracle bit. there are no
% working bits.
% NOTE: used to test the grover algorithm functions correctly

 result = collapse_gate(gate_toffoli(n+1));
end

Published with MATLAB® 7.4

function [result] = oracle_indep_set(b3, b2, b1)
%ORACLE_INDEP_SET oracle for finding independent sets of given size
% return an oracle (matrix) for testing whether a given independent set
% if of a given size specified by the encoded 3-bit input.
% returns a 2^13 by 2^13 matrix with the following configuration
% Input Output
% 1 - e1 e1
% 2 - e2 e2
% 3 - e3 e3
% 4 - e4 e4
% 5 - |0> |0>
% 6 - |0> |0>
% 7 - |0> |0>
% 8 - |0> |0>
% 9 - |0> |0>
% 10 - |0> |0>
% 11 - |0> |0>
% 12 - |0> |0>
% 13 - x x XOR result

 n = 13;

 % a cell array of pointers. pointers are used because matlab doesn't
 % know how to store sparse arrays in cells. making the strucutres
 % gets around this problem.
 m1 = {};
 m2 = {};

 m1 = horzcat(m1, subgate(n, gate_threshold(b3, b2, b1), ...
 1,2,3,4,5,6,7,8,9,10,11,12));
 m1 = horzcat(m1, subgate(n, gate_graph_indepset_n4e3_r1(), ...
 1,2,3,4,5,6,7,8));
 m2 = horzcat(m2, subgate(n, gate_toffoli(3), 8,12,13));

 % build circuit
 m = horzcat(m1, m2, mirror_gate(m1));

 % take the output and put in on line 5, right below the inputs
 m = subgate(n, m, 1,2,3,4,6,7,8,9,10,11,12,13,5);

 % return the result
 result = collapse_gate(m);
end

Published with MATLAB® 7.4

function [result] = oracle_just_comparator(b3, b2, b1)
%ORACLE_JUST_COMPARATOR test oracle for gate_three_bit_comparator

 n = 7;

 m1 = {};
 m2 = {};

 % put inverters on the wires for each of the 1 'b' bits.
 if b1
 m1 = horzcat(m1, subgate(n, gate_inverter(), 4));
 end
 if b2
 m1 = horzcat(m1, subgate(n, gate_inverter(), 5));
 end
 if b3
 m1 = horzcat(m1, subgate(n, gate_inverter(), 6));
 end

 m1 = horzcat(m1, subgate(n, gate_three_bit_comparator(), 1,2,3,4,5,6));
 m2 = horzcat(m2, subgate(n, gate_toffoli(4), 4,5,6,7));

 m = horzcat(m1, m2, mirror_gate(m1));
% m = subgate(n, m, 1,2,3,5,6,7,4);

 % return result
 result = collapse_gate(m);
end

Published with MATLAB® 7.4

function [result] = oracle_just_counter_comp(b3, b2, b1)
%ORACLE_JUST_COUNTER_COMP test oracle for gate_threshold

 n = 12;

 m = gate_threshold(b3, b2, b1);
 m = subgate(n, m, 1,2,3,4,6,7,8,9,10,11,12,5);

 % return result
 result = collapse_gate(m);
end

Published with MATLAB® 7.4

function [result] = oracle_just_graph()
%ORACLE_JUST_GRAPH test oracle for gate_graph_indepset_n4e3_r1

 % get graph gate
 m = gate_graph_indepset_n4e3_r1();

 % take last bit and put it in position 5
 m = collapse_gate(subgate(8, m, 1,2,3,4,6,7,8,5));

 % return result
 result = m;
end

Published with MATLAB® 7.4

function [result] = oracle_nor(n)
%ORACLE_NOR oracle that NORs inputs
% returns matrix is 2^(n+1) by 2^(n+1) for the oracle performing
% the NOR operation. the last bit is the oracle bit. there are no
% working bits.
% NOTE: used to test the grover algorithm functions correctly

 m1 = {};
 m2 = {};

 for i=1:n
 m1 = horzcat(m1, subgate(n+1, gate_inverter(), i));
 end
 m2 = horzcat(m2, subgate(n+1, gate_toffoli(n+1), 1:n+1));

 m = horzcat(m1, m2, mirror_gate(m1));
 result = collapse_gate(m);
end

Published with MATLAB® 7.4

function [result] = printresults(v, n, t)
%PRINTRESULTS print results vector v
% v is the results vector (size 2^t by 1).
% n is the number of input qubits (n < t).
% t is the number of results to output

 % merge the probabilites into single vector of just inputs
 merged = merge_probs(v,n);

 % number of entries to print
 num_print = min(t,2^n);

 function [result] = cmp_probs(r1,r2)
 if r1.prob < r2.prob
 result = -1;
 elseif r1.prob > r2.prob
 result = 1;
 else
 result = 0;
 end
 end

 % sort the array
 sorted = bubblesort(merged, @cmp_probs, num_print);

 % slice off the top few elements of the array
 sliced = sorted(1:num_print);

 % print out the top few results
 result = format_prob_vec(sliced,n);
end

Published with MATLAB® 7.4

function [result] = qubit(v)
%QUBIT a v-valued qubit
% returns a 2 by 1 vector for qubit of value 0 or 1

 if v == 0
 z = [1 ; 0];
 else
 z = [0 ; 1];
 end
 result = z;
end

Published with MATLAB® 7.4

function [result] = subgate(varargin)
%SUBGATE use gate as sub gate as part of a containing gate
% param n - size containing gate
% param g - gate to use as sub gate
% param 3... - wires from containing gate to apply to sub gate.
% the number of wires must equal size of subgate.
% returns a cell array of matrix pointers of size n-by-n.

 % n - size of circuit
 n = varargin{1};
 % g - sub gate (cell array of matrix pointers)
 g = varargin{2};
 % p - all inputs to gate
 p = [varargin{1,3:size(varargin,2)}];
 % t - input gate matrix
 t = size(p,2); % number of inputs to gate
 % q - size of sub-gate
 q = log2(size(g{1,1}.ptr,1));

 % check dimensions of gate match input count
 if q ~= size(p,2)
 error 'gate size mismatch with input count';
 end
 if q > n
 error 'subgate larger than containing gate';
 end

 m1 = {}; % in circuit order
 m2 = {}; % in circuit order

 % shuffle bits into topmost position
 for i=1:t
 if p(i) ~= i
 % move position p(i) into position i; swap p(i) and i
 m1 = horzcat(m1, wrapptr(mat_swap_wires(n,p(i),i)));
 for j=(i+1):t
 % if i contained one of our elements, rename it in p
 if p(j) == i
 p(j) = p(i);
 end
 end
 end
 end

 % append the sub-gate matricies expanded to fit containing circuit
 for i=1:size(g,2)
 m2 = horzcat(m2, wrapptr(kron(g{1,i}.ptr, mat_wire(n-q))));
 end

% % undo the shuffling from above (apply swaps in reverse order)
% for i=size(swaps,2):-1:1
% op = swaps{i};
% m = horzcat(m, wrapptr(mat_swap_wires(n,op.pos1,op.pos2)));
% end

 result = horzcat(m1, m2, mirror_gate(m1));
end

Published with MATLAB® 7.4

Contents

grover just counter comparator
grover just comparator
grover just graph
grover NOR
grover AND
test half adder
test full adder
test counter
test comparator itself
test comparator oracle

grover just counter comparator

clear;
num_inputs = 4;
oracle = oracle_just_counter_comp(0,1,0);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 0101 --> 0.088
 1001 --> 0.088
 0011 --> 0.088
 1010 --> 0.088
 0110 --> 0.088
 1100 --> 0.088
 1110 --> 0.047
 1111 --> 0.047
 1101 --> 0.047
 0100 --> 0.047

grover just comparator

clear;
num_inputs = 3;
oracle = oracle_just_comparator(1,1,0);
printresults(grover(oracle, num_inputs, -1), num_inputs, 10)

ans =

 011 --> 0.535
 010 --> 0.066
 101 --> 0.066
 001 --> 0.066
 100 --> 0.066
 000 --> 0.066
 110 --> 0.066
 111 --> 0.066

grover just graph

clear;
num_inputs = 4;
oracle = oracle_just_graph();
printresults(grover(oracle, num_inputs, 1), num_inputs, 10)

ans =

 0100 --> 0.084
 0101 --> 0.084
 1001 --> 0.084
 1000 --> 0.084
 0000 --> 0.084
 1100 --> 0.084
 1101 --> 0.084
 0001 --> 0.084
 0010 --> 0.084
 0110 --> 0.035

grover NOR

clear;
num_inputs = 5;
oracle = oracle_nor(num_inputs);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 00000 --> 0.515
 11010 --> 0.016
 11001 --> 0.016
 11111 --> 0.016
 11110 --> 0.016
 11101 --> 0.016
 11100 --> 0.016
 10111 --> 0.016
 11000 --> 0.016
 11011 --> 0.016

grover AND

clear;
num_inputs = 5;
oracle = oracle_and(num_inputs);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 11111 --> 0.515
 10000 --> 0.016
 10010 --> 0.016
 10110 --> 0.016
 10001 --> 0.016
 11101 --> 0.016
 11110 --> 0.016
 00101 --> 0.016
 00100 --> 0.016
 00000 --> 0.016

test half adder

clear;
n = 3;
a = kronchain(qubit(1),qubit(1),qubit(0));
b = mat_swap_wires(n, 2, 3) * collapse_gate(subgate(n, gate_half_adder(), 1:n)) * a;
strvcat(...
 printresults(a, n, 1),...
 printresults(b, n, 1))

ans =

 110 --> 1.000
 110 --> 1.000

test full adder

clear;
n = 4;
a = kronchain(qubit(1),qubit(1),qubit(1),qubit(0));
b = mat_swap_wires(n, 3, 4) * collapse_gate(subgate(n, gate_full_adder(), 1:n)) * a;
strvcat(...
 printresults(a, n, 1),...
 printresults(b, n, 1))

ans =

 1110 --> 1.000
 1111 --> 1.000

test counter

clear;
n = 8;
a = kronchain(qubit(0),qubit(1),qubit(1),qubit(0),qubit(0),qubit(0),qubit(0),qubit(0));
b = mat_move_wire(n, 6,7) * ...
 mat_move_wire(n, 4,8) * ...
 collapse_gate(subgate(n, gate_four_bit_counter(), 1:n)) * a;
strvcat(...
 printresults(a, n, 1),...
 printresults(b, n, 1))

ans =

 01100000 --> 1.000
 01100010 --> 1.000

test comparator itself

clear;
n = 6;
a = kronchain(qubit(0),qubit(0),qubit(1),qubit(0),qubit(0),qubit(1));
b = collapse_gate(subgate(n, gate_three_bit_comparator(), 1:n)) * a;
strvcat(...
 printresults(a, n, 1),...
 printresults(b, n, 1))

ans =

 001001 --> 1.000
 001111 --> 1.000

test comparator oracle

clear;
n = 7;
a = kronchain(qubit(0),qubit(1),qubit(1),qubit(0),qubit(0),qubit(0),qubit(0));
b = oracle_just_comparator(0,1,1) * a;
strvcat(...
 printresults(a, n, 1),...
 printresults(b, n, 1))

ans =

 0110000 --> 1.000
 0110000 --> 1.000

Published with MATLAB® 7.4

function [result] = wrapptr(input)
%WRAPPTR wrap input in a pointer structure
% wrap input in a structure with a single field called 'ptr'.
% this is used to get around matlab limitation of not being
% able to store sparse arrays in cell arrays.

 r.ptr = input;
 result = r;
end

Published with MATLAB® 7.4

