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Introduction

The purpose of this assignment is to learn the
fundamentals of quantum computing in a hands on
manner.  The  assignment  calls  for  the  design,
implementation,  and  simulation  of  a  quantum
computer. This paper discusses the design in-depth
and  also  talks  about  the  relevant  pieces  of  the
implementation.

This quantum computer is not a general purpose
computing platform. Instead, it is tailored to solve a
specific  problem.  The  problem  chosen  for  this
quantum  computer  to  solve  is  the  maximum
independent  set  problem  in  graph  theory.  The
results  produced  by  simulating  this  problem  the
quantum computer are presented and discussed.

Background

Quantum Computing is an entirely new way of
computing.  It  leverages  the  quantum  nature  of
subatomic particles to perform parallel calculations.
When these particles are in a superposition state, they
have a certain probability of collapsing to a zero or
one state when observed. The act of observing and
collapsing the particle causes it to lose information
– namely its superposition as well as its phase. A
quantum  computer  is  built  around  the  idea  of
keeping  particles  in  a  state  of  superposition  and
manipulating them there in order to use this extra
information as part of its computations.

Two  quantum  particles  both  in  superposition
states can become entangled. This essentially means
the extra information that each particle contains is
linked with the other one. A quantum circuit uses
these  entangled  particles  to  perform  parallel
computations. The Grover algorithm is an example
such of a quantum computer.

Overview of Tasks

This section gives an overview of the tasks that
were performed for this project. At a high level, the
project broke down into several major parts:

● implementation  of  a  Grover  algorithm
simulator
● development  of  a  framework  for
building quantum circuits

● design and implementation of an oracle
for determining if a set of graph nodes is
independent
● design and implementation of an oracle
for comparing the size of an independent
set to a threshold value

The Grover simulator hosts an arbitrary oracle
circuit and searches for good solutions using that
oracle. The simulator can be thought of as a test
harness for oracles; except that the test harness is
the  quantum  computer  itself.  The  simulator  can
also  be used  to  verify  that  a  given  oracle  circuit
functions  correctly.  Lastly,  seeing  the  simulator
function properly will indicate the Grover algorithm
has been properly implemented in Matlab code.

The framework code facilitates the construction
of complex oracles and other circuits from simpler
components. The framework can be thought of as a
set  of  software  tools  for  transforming  arbitrary
quantum circuits into a form which is consumable
by the Grover algorithm.

Each oracle implements the logic for testing a
solution to a particular problem. For this project,
several small oracles were built that each implement
a part of an algorithm for solving the “maximum
independent  set”  mapping  problem.  These  parts
were  then  put  together  into  a  final  oracle  that
implemented the full algorithm.

Grover

This  section  talks  about  the  design  of  the
Grover simulator.

The simulator takes the following inputs:
● the oracle circuit
● the number of input wires
● extra iterations (explained later)

To enable us to use the Grover simulator with
multiple oracles, the oracle circuit is a matrix which
is passed in as a parameter. The size of the oracle
matrix  dictates  the  number  of  wires  the  oracle
circuit uses ( t ). The other parameter is the number
of inputs the oracle itself takes ( n ) which are all
the wires excluding the ancilla bits. This number is
always less than the total  number of wires in the
oracle circuit ( nt ).
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The wires of the oracle circuit are grouped by
inputs first, followed by the oracle bit, and then the
ancilla bits. All bits are initially given the value of
|0> . The following diagram graphically shows the
Grover algorithm. Note the position of the wires
going into and out of the circuit.

Figure 1. Flow of the Grover Algorithm

After  initializing  all  the  input  wires,  just  the
inputs  are  passed  through  Hadamard  gates.  This
puts each of the input wires into a superposition
state  (initially  equal  probability  of  collapsing  to  a
|0>  or  |1> ). At this stage, the oracle and ancilla
bits are passed through unmodified.

Next  the wires are passed to the first  Grover
circuit.  The  Grover  circuit  uses  two  Hadamard
gates  sandwiched  around a  zero-state  phase  shift
gate; which is then fed into the oracle circuit. The
following diagram illustrates this:

Figure 2. Composition of Grover Matrix

Notice the Hadamard and zero-state phase shift
gates  are only applied to the  input wires;  not  the
oracle or ancilla wires. But the oracle is passed all
wires.

The  number  of  times  the  Grover  circuit  is
applied is given by the following formula:

⌈ N
4 ⌉

Formula 1. Number of Grover Iterations

where N is the number of inputs. In practice, it
was found that the number of iterations required to

produce valid solutions from the algorithm varied
slightly from the above algorithm. The amount of
variation was at most two iterations. This was the
reason  for  adding  the  niterExtra parameter  to
grover.m. The reason for this discrepancy is unknown
and may be due to a design error.

The  output  of  the  algorithm  is  a  vector  of
entangled  qubits  all  in  superposition.  When
observed, the entangled vector snaps into a given
state. Every possible state has associated with it a
probability.  Note that  the state includes all  wires,
not just input wires. In a real quantum computer,
the implementor would need to measure the output
of the Grover circuit multiple times to determine
the  probability  distribution.  If  the  algorithm was
successful  at  finding  a  solution,  the  states  that
contain  that  solution  will  have  higher  probability
than the other, non-solution states and so will be
observed more often.

The simulator,  however,  produces  a  vector  of
probabilities.  So, instead of having to measure to
determine the probability distribution, all that needs
to be done is add up the appropriate probabilities.
Since all wires output from of the Grover circuit are
part  of  the  probabilistic  state,  we  must  group
together the probabilities common for every state
of just the input wires. In other words, if the oracle
takes 10 wires but the top four are “inputs” to the
oracle,  then  we  are  interested  in  just  every
combination  of  the  four  input  wires,  not  every
combination  of  all  wires.  After  grouping  the
probabilities for each combination of inputs, we can
sort  by  probability  to  determine  if  the  algorithm
produced  any  solutions  and,  if  so,  what  those
solutions are.

The code for the Grover algorithm is contained
in the file  grover.m. The merging and printing code
are in the files:

● merge_probs.m
● printresults.m.
● bubblesort.m

Maximum Independent Set

The quantum computer that was built for this
project solves a mapping problem called Maximum
Independent  Set.  What  is  an  independent  set?  An
independent  set  is  a  set  of  nodes  where  no two
nodes  in  the  set  are  connected  by  ane  edge.  A
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Maximal independent set is an independent set that
is not a subset of any other independent set.

Consider the following example graph.

Figure 3. Example Graph

In the above graph, {5, 3}  is an independent set
but  {5, 4}  is not. Since  {5, 3}  is not a subset of
any other independent set, we can say it is maximal.
However,  it  is  not  the  maximum independent  set.
Consider  the  set  {4,2} .  This  set  is  independent
but  not  maximal.  However,  the  set  {4, 1, 2}  is
maximal. And since {4,1, 2}  is bigger than {5,3}
we know  {5,3}  is not maximum. In this trivially
simple example, we can see that {4,1, 2}  is one of
the  maximum  independent  sets,  but  in  a  larger
graph this would be less clear. Also, {4,1, 2} is not
the  only maximum independent  set.  There  is  also
{5,1,2} .

Finding a maximal independent set can be done
relatively  easily.  Starting  at  given  node,  we  can
successively visit each node in the graph and either
add it to the set if it is non-adjacent to any node
already in the set, or skip it if it is adjacent. Finding
the maximum independent set is much more difficult
because  it  involves  back  tracing  to  see  if  prior
decisions  caused  poor  final  results.  Finding
maximum  independent  sets  is  an  NP-complete
problem.

Framework

To  facilitate  the  development  of  complex
quantum  circuits,  a  software  framework  was
developed  for  this  project.  This  framework
provided the  “glue”  necessary  for  linking  smaller
circuits together into bigger, compositional circuits.

It  also provided ways of displaying results of the
Grover simulator.

The Subgate
The  framework  builds  on  several  ideas  from

class about reversibility and wire swapping and fits
them into  software  constructs  accessible  through
Matlab. The core construct is the subgate. This term
is not intended to be related to any outside concept.

A subgate is a reversible circuit and consists of
an ordered list of matrices. It has a size which is
equal to the number of wires entering and leaving it.
Each matrix has a size of  2n×2n  where  n is the
size. A subgate is designed to be able to be dropped
into a bigger circuit and connected to an arbitrary
set of wires from the bigger circuit.

When  putting  a  smaller  circuit  into  a  bigger
circuit, the smaller circuit is wrapped in a subgate
that routes particular wires to its inputs. This is done
by  swapping  wires  multiple  times  to  shuffle  the
wires into the proper place. After the subgate, the
wires need to be un-shuffled back into their original
positions.  A  subgate  always  places  the  wrapped
circuit in the top wires of the containing circuit and
routes  the  wires  up  to  it  rather  than  placing  it
somewhere in the middle. The former approach is
taken because it is simpler but may actually require
more swaps.

When a wrapped circuit covers the top wires of
a containing circuit there are usually extra wires at
the bottom of the containing circuit that need to
pass “underneath” the wrapped circuit. This entails
adding wires to the matrices of the wrapped circuit
by applying the Kronecker product multiple times
to a 2×2  identity matrix (which is the matrix for a
wire)  to  increase  the  size  of  the  wrapped  circuit
until it exactly fits inside the containing circuit.

One  of  the  motivations  for  representing  a
subgate  as a list  of  matrices  is  it  makes  subgates
compose-able.  In  other  words,  if  subgate  A  is
nested inside of B which is nested inside of C, the
matrices  of  A  are  still  valid,  perhaps  bigger,  but
basically unchanged inside C's list. Surrounding A's
matrices are matrices that do the routing from B's
environment  to  A's  and  vice-versa.  Likewise
bookending B's matrices are routing matrices that
make B a part of C's environment.
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A common need in quantum circuit design is to
create logic that computes some value on an ancilla
bit wire and then returns all the other wires to their
original state. To do this, the circuit that computes
the final result can be mirrored over the last step
which  essentially  un-computes  the  values  on  the
other wires. Mirroring a subgate is easy because it
just involves making a copy of the list and reversing
the order of its matrices.

To use a subgate in computations, it is necessary
to collapse all the matrices down to a single matrix.
This is done by computing the dot-product of all
the matrices in the list in reverse order.

The files that implement subgate are:
● subgate.m
● mat_swap_wires.m
● mat_move_wire.m
● mirror_gate.m
● collapse_gate.m

Oracles and Circuits

This  section  talks  about  the  design  of  the
maximum  independent  set  oracle  used  in  the
project. The oracle is not a general-purpose oracle
for determining the maximum independent set of
an arbitrary graph. Rather, it is designed to operate
on a particular graph. However, using the principals
embodied in  this  design,  it  would be possible  to
adapt this oracle to work with any arbitrary graph.

The test graph this oracle is designed to analyze
is represented in the following figure.

Figure 4. Test Graph For This Project

Composition
Several  smaller  circuits  comprise  this  oracle.

Each of these components focuses on a part of the
overall  algorithm  of  the  oracle.  This  divide  and
conquer  approach  has  advantages  because  it
logically  breaks  down  the  algorithm  into  more
manageable  pieces  which  can  be  developed,
debugged, and tested more readily.

Conceptually,  we  can  think  of  the  oracle  as
having two main parts: the independent set circuit
and the threshold calculation circuit. The former is
concerned  with  determining  whether  a  set  (of
nodes) is independent or not; and the latter focuses
on determining whether the set size is greater than
some threshold value.

The  rest  of  this  section  will  describe  each  of
these oracles in depth. Each sub section describes
the purpose behind each component and explains
the role it plays. It will then discuss how these parts
fit together into the final full oracle.

Independent Set Circuit
This  circuit  is  at  the  heart  of  the  maximum

independent set algorithm. It determines whether a
set  is  independent  or  not.  Recall  that  a  set  is
independent if none of its nodes are adjacent. This
circuit  does  not  make  any  claims  about  the
maximality of the set; just its independence. If a set
is non-independent (has adjacent nodes) it must be
excluded as a possible solution. This circuit outputs
a boolean value of |1>  if the graph is independent
or |0>  if not.

The following figure shows this quantum circuit:

Figure 5. Graph Oracle Quantum Circuit

Each  of  the  four  edges  are  passed  in  on  a
separate  wire.  The  value  of  the  wire  indicates
whether it is in the test set ( |1> ) or not ( |0> ). This
part of the algorithm wants to know whether nodes
are not adjacent. So, for each edge we NAND the
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nodes  at  the  endpoint  of  that  edge  together.  If
either or neither of the nodes are in the test set,
then that edge does not violate the independence
constraint. If, however, both of the nodes are |1>
then  we  know the  entire  set  is  not  independent
because there is an edge that connects two of the
nodes.

In  the  test  graph  in  figure  4,  there  are  three
edges.  Correspondingly,  there  are  three  NAND
gates  in  the  circuit.  These are  the three  repeated
structures  starting  at  the  left  and  moving  to  the
right. Each of these NAND gates outputs its value
on an  ancilla  bit.  At  the  far  right  a  Toffoli  gate
ANDs  these  values  together  so  that  the  oracle
returns  a  |1>  only  if  all  edges  satisfy  the
independence constraint.

At the right edge of this circuit, the ancilla bits
carry the result of the NAND operations. Since this
circuit will be part of a larger circuit, we need to
return these wires to their original value of |0> . To
do this, we mirror the whole circuit – excluding the
Toffoli gate – on the right after the Toffoli gate.
This will leave the oracle value ( |0>  or  |1> ) on
the  last  wire  but  all  other  wires  will  appear
unchanged to any circuits that may come after this
circuit.

Node Counter Circuit
This  circuit  counts  the  number  of  wires  that

have  the  value  |1> .  It  returns  this  as  a  binary
number.  The  range  of  values  is,  of  course,  zero
through four. This means that at most three bits are
required to represent the output.

Logically, this is represented in the figure below
as a non-quantum circuit. The binary number that is
produced is the value “c3 s3 s2”.

Figure 6. Node Counter Regular Circuit

When we transform this into a quantum circuit,
we require some ancilla bits – one for each adder.
The following figure shows this circuit.

Figure 7. Node Counter Quantum Circuit

Notice how the half adders re-use the carry lines
from  the  adders  before  them.  This  saves  using
unnecessary ancilla bits. The output of this circuit is
a three bit value on the 4th, 7th and 8th wires. This
circuit is  intended to be used as part of a bigger
circuit and then re-applied in its mirrored form to
restore the original input values.  Since this circuit
actually overwrites one of the edge input values, the
circuit  that  comes  after  this  must  not  need  this
information.  The  next  circuit  is  the  Comparator
Circuit.

Threshold Comparator Circuit
This circuit compares the number of nodes in

the  test  set  to  some  predefined  threshold  value.
This  circuit  takes  both  of  these  inputs  as  3-bit
binary numbers and outputs a single bit indicating
whether they are equal.

To test for equality, we must first determine if
any of the individual bits between the two binary
numbers differ. The logical operation that will test
for this on each bit is the XOR operation which
outputs a |1>  if two bits differ or a |0>  if they are
the same. This is actually the inverse of what we
want  so we use  the  ~XOR instead.  The ~XOR
returns  |1>  if both bits are the same and  |0>  if
they are not. If we apply this operation to each of
the bits we get a vector of equality values. Since we
are interested in equality over the entire number we
use a simple AND operation to get a single output
value for the total equality.
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The following diagram shows this logical flow.

Figure 8. Set Size Threshold Comparator
Regular Circuit

To  translate  this  into  a  quantum  circuit,  we
overwrite  the  second  number  with  the  ~XOR
values and then output the resulting AND value on
an ancilla bit wire.

The  following  figure  shows  the  above  regular
circuit translated into a quantum circuit.

Figure 9. Set Size Threshold Comparator
Quantum Circuit

Only  if  e1=b1 ,  e2=b2 ,  and  e3=b3  then
the last wire will contain a value of |1> . Since this
circuit  overwrites  its  inputs,  it  will  need  to  be
mirrored again to reverse its changes.

Full Maximum Independent Set Oracle
We now have circuits for testing whether a set of

nodes  is  independent.  We  also  have  circuits  for
counting nodes in a test set and for comparing that
binary number to a threshold value. The last step is

to combine these together into a single circuit that
outputs a |1>  if the test set is independent and has
a given number of nodes.

The  following  figure  shows  all  the  circuits
discussed up to this point together in a single full
circuit.

Figure 10. Full Oracle Quantum Circuit

Notice  that  all  circuits  are  reversed  in-place
except for the last Toffoli gate whose value remains
on the last wire after the circuit finishes executing.
This is because this is an oracle circuit and needs a
single  output  value.  This  is  a  requirement  for  a
circuit to be an oracle.

Another  requirement  is  that  the  oracle  output
wire must  come immediately  after  the inputs  but
before  the  ancilla  bits.  So  something  that  is  not
shown here but is part of this circuit is the bottom
wire is moved into position 5 after the Toffoli gate
at the right. This puts the circuit into a form that is
consumable by the Grover algorithm.

In  the  circuit,  the  switch  boxes  encode  the
threshold value. This value is not a true input to the
oracle  but  rather  is  encoded  in  the  oracle  with
inverter gates as it is constructed. The advantage of
this  approach is  it  reduces the number of inputs
which  allows  the  circuit  to  be  simulated  much
faster.

The big blue box contains the 4-bit counter and
3-bit comparator circuits. These are followed by a
single  Toffoli  gate  and  then  are  mirrored  again
afterwards.  The mirroring undoes any changes to
the other wires so that the independent set circuit
can  take these  wires  as  inputs  without  having to
know  about  any  changes.  The  counter  and
comparator  outputs  a  boolean  value  for  whether
the test set (represented by the four input wires at
the top)  matches the threshold.  The independent
set oracle outputs a boolean for whether the test set
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is independent. The last Toffoli gate ANDs these
two booleans together and puts the result on the
last wire.

Normally the entire shown circuit, excluding the
last  Toffoli  gate,  would  be  mirrored  after  the
Toffoli  gate.  This  is  not  done  here  because  the
remaining values on all the output wires (except the
last) are identical to the input. So the requirement of
an  oracle  circuit  to  have  only  a  single  output
without modifying any other wires is already met;
and so mirroring the circuit about the Toffoli gate
would be redundant.

Basic Algorithm
So,  how does  this  oracle  solve  the  maximum

independent set problem? Running the oracle inside
the  Grover  simulator  will  tell  us  what  test  sets
match a particular threshold. But we are interested in
the maximum threshold. So, one possible algorithm
would  start  with  a  large  threshold  value  and
decrease it until Grover returns a result. We would
then be sure that we found the largest  (and thus
maximum) independent set.

Another  approach  would  be  to  use  a  binary
search algorithm that would start with a threshold
somewhere in the “middle” and progressively hone
in on the maximum threshold value.

A third approach would be to start at zero and
increase the threshold until  no more independent
sets are found. This last approach was used in this
project even though with such a trivially small graph
this was not technically advantageous in any way.

Results

This  section shows the  results  of  running the
maximum  independent  set  oracle  in  the  Grover
simulator. The threshold value is not an input to the
oracle,  so a  slightly  different  oracle  was built  for
each  possible  threshold  value  and  the  Grover
simulator re-ran. The results showed that the oracle
successfully found all the possible independent sets
at  every  threshold  value.  As  the  threshold  value
passes the size of the actual maximum independent
set in the graph, we observe that nothing is found.
Based on the algorithm described above,  we can
declare that the last threshold value is whatever the
last threshold value to return a result was.

For the raw output from the algorithm, please
refer to main.m.

Threshold Size Zero
When searching for a threshold size of zero, the

empty  set  is  returned.  This  was  expected.  The
following shows a graph with no nodes chosen.

Figure 11. Result Size Zero

The Grover  algorithm gave  the  probability  of
observing this graph on the output as 0.512. The
next most probable output was 0.033. There were
no extra Grover iterations.
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Threshold Size One
When searching for a threshold size of one, four

sets  were  returned.  This  was  expected.  The
following shows the chosen sets.

Figure 12. Result Size One

The Grover algorithm gave equal probability of
observing each of these sets with a value of 0.156.
The next most probable output was 0.031. There
was one extra Grover iteration needed to produce
this result.

Threshold Size Two
When  searching  for  a  threshold  size  of  two,

three sets  were returned.  This was expected.  The
following shows the chosen sets.

Figure 13. Result Size Two

The Grover algorithm gave equal probability of
observing each of these sets with a value of 0.190.
The next most probable output was 0.033. There
were two extra Grover iterations needed to produce
this result.
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Threshold Size Three
When searching for  a  threshold  size  of  three,

one  set  was  returned.  This  was  expected.  The
following shows the chosen set.

Figure 14. Result Size Thee

The Grover  algorithm gave  the  probability  of
observing the chosen set with a value of 0.322. The
next most probable output was 0.045. There was
one extra Grover iteration needed to produce this
result.

Threshold Size Four
When searching for a threshold size of four, no

results  with  any  appreciable  probability  were
returned. This was expected. The Grover algorithm
gave equal probability to all its (incorrect) outputs
as  0.062.  Adjusting  the  number  of  extra  Grover
iterations did not change these results.

Performance

The  performance  of  the  simulator  had  a  big
impact on this project and was a limiting factor for
creating  more  complex  circuits.  Ideally  it  would
have been nice to simulate the algorithm on a larger
graph to see if the algorithm properly extrapolated.
There  seemed to  be  a  wall  at  about  9-10  qubits
before  the  simulations  took  many  minutes  to
complete instead of a few seconds.

The build-in profiler in Matlab was used to hone
in on the problem. The reason for the wall had to
do with the size of matrices being computed. Each
matrix for a circuit of n qubits has a size of 2n×2n .
The  total  number  of  elements  in  this  matrix  is
2n2=4n  giving a space complexity of O4n .

A  dot-product  performs  n multiplications  for
every  element  in  the  matrix.  This  means  the
number  of  multiplications  to  compute  a  dot
product of is n4n  meaning the time complexity is
On4n . Clearly, this was the cause of the wall I
was experiencing.

To  partially  alleviate  this  problem,  the  sparse
matrix feature of Matlab was leveraged to allow the
creation  and  computation  of  the  dot  product  of
much larger matrices. The confounding factor was
the n×n  Hadamard matrix used inside of Grover.
This matrix is huge and also  not sparse, so turning
on the sparse  matrix  feature  does  not help here.
This seems to make intuitive sense because what
the  Grover  algorithm  is  doing  leveraging  the
entangled state of all  qubits to perform massively
parallel  computations.  So the  fact  that  simulating
this is hard is not surprising.

Conclusion

Much was learned about quantum computing in
this assignment. I feel I have a better understanding
of the kind of problem contexts this technology will
be well suited for, as well as some of the challenges
and limitations associated with designing a quantum
computer.  Admittedly,  even  though  my  Grover
algorithm  implementation  seemed  to  function
correctly, some of the higher level concepts of why
the Grover algorithm works are still elusive to me.

This project was time consuming mainly due to
development  of  the  supporting  framework.  With
more time and computing resources, it would have
been  possible  to  adapt  the  code  to  simulate  a
slightly  larger  graph,  perhaps  5 or  6  nodes  large.
Also, by playing around with the adder it would be
possible  to  compute  an  inequality  which  would
make the threshold value a little more interesting.

The  Grover  algorithm  is  one  technique  for
doing  quantum  computing,  and  perhaps  other
techniques address this differently, but it seems that
creating circuits in the form of oracles does not lead
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to  the  greatest  control  over  the  structure  of
algorithms. For example, it is unclear how control
flow, or memory, or I/O would be implemented.

Code

<attached>
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function [ result ] = bubblesort( data, funcmphand, stop_after )
%BUBBLESORT bubble sort
%   data is a cell array of
%   sort the data using comparator funcmphand
%   stop_after is the number of elements to stop sorting after

    s = size(data,2);
    for i=1:(s-1)
        if i > stop_after
            break
        end
        for j=(i+1):s
            d1 = data{i};
            d2 = data{j};
            if funcmphand(d1,d2) < 0
                data{i} = d2;
                data{j} = d1;
            end
        end
    end
    result = data;
end

Published with MATLAB® 7.4



function [ result ] = collapse_gate( mat )
%COLLAPSE_GATE collapse a list of matricies into a single matrix.
%   multiply all component matricies together (in reverse order) into a
%   single matrix.

    m = mat_wire(log2(size(mat{1,1}.ptr,1)));
    for i=1:size(mat,2)
        m = mat{1,i}.ptr * m;
    end
    result = m;
end

Published with MATLAB® 7.4



function [ u ] = format_prob_vec( v, n )
%FORMAT_PROB_VEC pretty print output vector
%   format the merged output vector into pretty string
%   v is a horizontal cell array of structures

    f = strcat('%',int2str(n+1),'s --> %4.3f');
    u = '';
    for i = 1:size(v,2)
        b = v{i}.bits;
        p = v{i}.prob;
        s = sprintf(f, b, p);
        u = strvcat(u, s);
    end
    result = u;
end

Published with MATLAB® 7.4



function [ result ] = gate_four_bit_counter()
%GATE_FOUR_BIT_COUNTER four bit counter
%   produces a 3-bit number for count of input bits with value 1.
%   returns a 2^8 by 2^8 matrix with the following configuration
%           Input       Output
%   1 -      e1
%   2 -      e2
%   3 -      e3
%   4 -      e4           R0
%   5 -      |0>
%   6 -      |0>
%   7 -      |0>          R1
%   8 -      |0>          Cout

    n = 8;

    % a cell array of pointers. pointers are used because matlab doesn't
    %   know how to store sparse arrays in cells. making the strucutres
    %   gets around this problem.
    m = {};

    m = horzcat(m, subgate(n, gate_half_adder(), 1,2,5));
    m = horzcat(m, subgate(n, gate_half_adder(), 3,4,6));
    m = horzcat(m, subgate(n, gate_half_adder(), 2,4,7));
    m = horzcat(m, subgate(n, gate_full_adder(), 5,6,7,8));

    result = m;
end
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function [ result ] = gate_full_adder()
%GATE_FULL_ADDER full adder
%   returns a 2^4 by 2^4 matrix for full adder.
%   wires:
%           Input       Output
%       1 -   a           a
%       2 -   b           b
%       3 -  |0>         Sum
%       4 -  |0>         Carry

    n = 4;

    % a cell array of pointers. pointers are used because matlab doesn't
    %   know how to store sparse arrays in cells. making the strucutres
    %   gets around this problem.
    m = {};

    m = horzcat(m, subgate(n, gate_toffoli(3), 2, 3, 4));
    m = horzcat(m, subgate(n, gate_toffoli(2), 2, 3));
    m = horzcat(m, subgate(n, gate_toffoli(3), 1, 3, 4));
    m = horzcat(m, subgate(n, gate_toffoli(2), 1, 3));

    result = m;
end
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function [ result ] = gate_graph_indepset_n4e3_r1()
%GATE_GRAPH_INDEPSET_N4E3_R1 graph with 4 nodes and 3 edges
%   edges:  1,3  2,3  3,4
%   returns a 2^8 by 2^8 matrix with top 5 wires input and bottom
%   five being |0> ancilla bits and last being the single bit output.
%           Input       Output
%   1 -      e1           e1
%   2 -      e2           e2
%   3 -      e3           e3
%   4 -      e4           e4
%   5 -      |0>          |0>
%   6 -      |0>          |0>
%   7 -      |0>          |0>
%   8 -      |0>         x XOR result

    n = 8;

    % a cell array of pointers. pointers are used because matlab doesn't
    %   know how to store sparse arrays in cells. making the strucutres
    %   gets around this problem.
    m1 = {};
    m2 = {};

    % edge 1,3 --> working bit 5
    m1 = horzcat(m1, subgate(n, gate_nand(), 1,3,5));
    % edge 2,3 --> working bit 6
    m1 = horzcat(m1, subgate(n, gate_nand(), 2,3,6));
    % edge 3,4 --> working bit 7
    m1 = horzcat(m1, subgate(n, gate_nand(), 3,4,7));

    % toffoli gate anding all edges together
    m2 = horzcat(m2, subgate(n, gate_toffoli(4), 5,6,7,8));

    m = horzcat(m1, m2, mirror_gate(m1));
    result = m;
end
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function [ result ] = gate_half_adder()
%GATE_HALF_ADDER half adder
%   returns a 2^3 by 2^3 matrix for half adder.
%   wires:
%           Input       Output
%       1 -   a           a
%       2 -   b          Sum
%       3 -  |0>         Carry

    n = 3;

    % a cell array of pointers. pointers are used because matlab doesn't
    %   know how to store sparse arrays in cells. making the strucutres
    %   gets around this problem.
    m = {};

    m = horzcat(m, subgate(n, gate_toffoli(3), 1,2,3));
    m = horzcat(m, subgate(n, gate_toffoli(2), 1,2));

    result = m;
end
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function [ result ] = gate_inverter()
%GATE_INVERTER inverter gate (1-input, 1-output)
%   inverts a value

    result = { wrapptr([ 0 1 ; 1 0 ]) };
end
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function [ result ] = gate_nand()
%GATE_NAND nand gate
%   returns an 8x8 matrix with top two wires being inputs and bottom wire
%   being result XOR'ed to the input of that wire.

    n = 3;

    m = {};

    m = horzcat(m, subgate(n, gate_inverter(), 1));
    m = horzcat(m, subgate(n, gate_toffoli(2), 1,3));
    m = horzcat(m, subgate(n, gate_inverter(), 1));

    m = horzcat(m, subgate(n, gate_inverter(), 2));
    m = horzcat(m, subgate(n, gate_toffoli(3), 1,2,3));
    m = horzcat(m, subgate(n, gate_inverter(), 2));

    result = m;
end
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function [ result ] = gate_three_bit_comparator()
%GATE_THREE_BIT_COMPARATOR compare two 3-bit bit strings
%   returns a 2^6 by 2^6 matrix with the following configuration
%           Input       Output
%   1 -       a0          a0
%   2 -       a1          a1
%   3 -       a2          a2
%   4 -       b0          XOR(a0,b0)
%   5 -       b1          XOR(a1,b1)
%   6 -       b2          XOR(a2,b2)

    n = 6;

    % a cell array of pointers. pointers are used because matlab doesn't
    %   know how to store sparse arrays in cells. making the strucutres
    %   gets around this problem.
    m = {};

    m = horzcat(m, subgate(n, gate_toffoli(2), 1,4));
    m = horzcat(m, subgate(n, gate_inverter(), 4));

    m = horzcat(m, subgate(n, gate_toffoli(2), 2,5));
    m = horzcat(m, subgate(n, gate_inverter(), 5));

    m = horzcat(m, subgate(n, gate_toffoli(2), 3,6));
    m = horzcat(m, subgate(n, gate_inverter(), 6));

    result = m;
end
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function [ result ] = gate_threshold( b3, b2, b1 )
%GATE_THRESHOLD count 4 bits and compare result with another 3
%   counts 1-bits and compares to 3-bit number.
%   returns a 2^12 by 2^12 matrix with the following configuration
%           Input       Output
%   1 -      e1           e1
%   2 -      e2           e2
%   3 -      e3           e3
%   4 -      e4           e4
%   5 -      |0>          |0>
%   6 -      |0>          |0>
%   7 -      |0>          |0>
%   8 -      |0>          |0>
%   9 -      |0>          |0>
%   10 -     |0>          |0>
%   11 -     |0>          |0>
%   12 -     x          x XOR result

    n = 12;

    m1 = {};
    m2 = {};

    % put inverters on the wires for each of the 1 'b' bits.
    if b1
        m1 = horzcat(m1, subgate(n, gate_inverter(), 5));
    end
    if b2
        m1 = horzcat(m1, subgate(n, gate_inverter(), 6));
    end
    if b3
        m1 = horzcat(m1, subgate(n, gate_inverter(), 7));
    end

    m1 = horzcat(m1, subgate(n, gate_four_bit_counter(), 1,2,3,4,8,9,10,11)); % 4,7,8 -> 4,10,11
    m1 = horzcat(m1, subgate(n, gate_three_bit_comparator(), 4,10,11,5,6,7));
    m2 = horzcat(m2, subgate(n, gate_toffoli(4), 5,6,7,12));

    result = horzcat(m1, m2, mirror_gate(m1));
end
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function [ result ] = gate_toffoli( n )
%GATE_TOFFOLI toffoli gate (n-inputs, n-outputs)
%   returns a 2^n by 2^n matrix for a toffoli gate

    s = 2^n;
    r = speye(s);
    if n > 1
        r(s-1, s-1) = 0;
        r(s, s) = 0;
        r(s, s-1) = 1;
        r(s-1, s) = 1;
    end
    result = { wrapptr(r) };
end
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function [ result ] = gate_wire( n )
%GATE_WIRE wire gate (n-input, n-output)
%   returns a 2^n by 2^n gate for a set of plain wires

    result = { wrapptr(mat_wire(n)) };
end
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function [result, niter] = grover(oracle, n, niterExtra)
%GROVER grover algorithm
%   apply grover algorithm to oracle matrix with n input qubits.
%   return final output vector and number of grover iterations.
%   all work qubits are initialized to zero.
%   oracle matrix dimensions encompass input, oracle, and work qubits.
%   output vector is t by 1 where t is one dimension of oracle matrix
%       (oracle matrix is square).

    % figure out how many qubits we need for this calculation (this is t)
    t = log2(size(oracle,1));

    % start off with all zeros for input, oracle, and working bits
    % v is the vector we will be operating on
    v = kronpow(qubit(0),t);

    % compute hadamard matrix
    mat_had_n = kronpow((1/sqrt(2)) .* [ 1 1 ; 1 -1 ], n);

    % compute the inital circuit that applies hadamards to all the
    % inputs but not the oracle and work qubits
    hadamards_inputs_circuit = kron(mat_had_n, mat_wire(t-n));

    % apply the inital hadamard circuit to the vector v
    v = hadamards_inputs_circuit * v;

    % compute the grover circuit we will apply to v on each iteration
    h = kron(mat_had_n, mat_wire(t-n));
    z = kron(mat_zsps(n), mat_wire(t-n));
    grover_circuit = h * (z * (h * oracle)); % takes a LONG time for inputs > 9

    % compute the number of times we need to apply grover
    niter = ceil(pi*sqrt(t)/4) + niterExtra;

    % do the grover iterations
    for i=1:niter
        v = grover_circuit * v;
    end

    % return the vector
    result = v;
end
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function [ result ] = kronchain( varargin )
%KRONCHAIN kronecker product
%   apply kronecker product on multiple matricies (in order specified)

    m = varargin{1};
    for i=2:size(varargin,2)
        m = kron(m,varargin{i});
    end
    result = m;
end
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function [ result ] = kronpow( mat, n )
%KRONPOW kronecker^n
%   apply a kronecker matrix operation n times

    k = [ 1 ];
    for i=1:n
        k = kron(mat, k);
    end
    result = k;
end
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Contents

search for 0-node independent sets
search for 1-node independent sets
search for 2-node independent sets
search for 3-node independent sets
search for 4-node independent sets

search for 0-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,0,0);
printresults(grover(oracle, num_inputs, 0), num_inputs, 10)

ans =

 0000 --> 0.512
 1100 --> 0.033
 1010 --> 0.033
 1001 --> 0.033
 1101 --> 0.033
 1111 --> 0.033
 1000 --> 0.033
 0011 --> 0.033
 0101 --> 0.033
 0110 --> 0.033

search for 1-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,0,1);
printresults(grover(oracle, num_inputs, 1), num_inputs, 10)

ans =

 0001 --> 0.156
 1000 --> 0.156
 0100 --> 0.156
 0010 --> 0.156
 1110 --> 0.031
 1111 --> 0.031
 1101 --> 0.031
 1100 --> 0.031
 0101 --> 0.031
 0011 --> 0.031

search for 2-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,1,0);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 0101 --> 0.190
 1001 --> 0.190
 1100 --> 0.190
 1101 --> 0.033
 1000 --> 0.033



 1011 --> 0.033
 1110 --> 0.033
 0111 --> 0.033
 0100 --> 0.033
 1010 --> 0.033

search for 3-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(0,1,1);
printresults(grover(oracle, num_inputs, 1), num_inputs, 10)

ans =

 1101 --> 0.322
 1011 --> 0.045
 1100 --> 0.045
 1010 --> 0.045
 1110 --> 0.045
 1111 --> 0.045
 0110 --> 0.045
 1001 --> 0.045
 1000 --> 0.045
 0001 --> 0.045

search for 4-node independent sets

clear;
num_inputs = 4;
oracle = oracle_indep_set(1,0,0);
printresults(grover(oracle, num_inputs, 0), num_inputs, 10)

ans =

 1111 --> 0.062
 1101 --> 0.062
 1110 --> 0.062
 1100 --> 0.062
 0111 --> 0.062
 1011 --> 0.062
 0001 --> 0.062
 0000 --> 0.062
 1000 --> 0.062
 1001 --> 0.062
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function [ result ] = mat_move_wire( n, from, to )
%MAT_MOVE_WIRE move a wire to a different position
%   n    - total number of wires
%   from - starting position of wire
%   to   - ending position of wire

    m = mat_wire(n);
    if from < to
        % walk forward
        for i = from:(to-1)
            t1 = mat_wire(i-1);
            t2 = mat_swap();
            t3 = mat_wire(n-(i+1));
            m = kronchain(t1, t2, t3) * m;
        end
    elseif from > to
        % walk backward
        for i = from:-1:(to+1)
            t1 = mat_wire(i-2);
            t2 = mat_swap();
            t3 = mat_wire(n-i);
            m = kronchain(t1, t2, t3) * m;
        end
    end
    result = m;
end
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function [ result ] = mat_swap()
%MAT_SWAP swap gate (2-input, 2-output)
%   returns a 4 by 4 matrix for swapping two qubits

    result = [ 1 0 0 0 ; 0 0 1 0 ; 0 1 0 0 ; 0 0 0 1 ];
end
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function [ result ] = mat_swap_wires( n, wire1, wire2 )
%MAT_SWAP_WIRES swap wires
%   swap position of 2 wires
%   n     - total number of wires in circuit
%   wire1 - position of wire1
%   wire2 - position of wire2

    m = mat_wire(n);

    if wire1 < wire2
        m = mat_move_wire(n, wire1, wire2) * m; % wire2 now in wire2-1 pos
        m = mat_move_wire(n, wire2-1, wire1) * m;
    elseif wire1 > wire2
        m = mat_move_wire(n, wire2, wire1) * m; % wire1 now in wire1-1 pos
        m = mat_move_wire(n, wire1-1, wire2) * m;
    end
    result = m;
end
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function [ result ] = mat_wire( n )
%MAT_WIRE matrix for 'n' wires
%   return a 2^n by 2^n matrix (sparse) for n wires. this is the same as
%   the identity matrix.

    result = speye(2^max(n,0));
end
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function [ result ] = gate_zsps( n )
%GATE_ZSPS zero-state phase shift gate (n-input, n-output)
%   returns a 2^n by 2^n matrix for a zero-state phase shift gate

    m = mat_wire(n);
    m(1,1) = -1;

    result = m;
end
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function [ result ] = merge_probs( v, n )
%MERGE_PROBS merge probabilities of grover output vector
%   merge non-input qubits in output vector (v) together and return a vector
%   of probabilities for just the n input qubits.
%   returns a horizontal cell array of structures.

    t = log2(size(v,1));
    u = {};
    for i = 1:(2^n)
        s = 0;
        for j = 1:(2^(t-n))
            idx = (i-1)*(2^(t-n)) + j;
            s = s + abs(v(idx))^2;
        end
        r.bits = dec2bin(i-1,n);
        r.prob = s;
        u = [ u r ];
    end
    result = u;
end
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function [ result ] = mirror_gate( gate )
%MIRROR_GATE compute mirror of gate
%   return the mirror of the gate parameter. the mirror is the same as the
%   gate itself but with all its element matricies in reverse order.

    m = {};
    for i=size(gate,2):-1:1
        m = horzcat(m, gate{1,i});
    end
    result = m;
end

Published with MATLAB® 7.4



function [ result ] = oracle_and( n )
%ORACLE_AND oracle that ANDs inputs
%   returns matrix is 2^(n+1) by 2^(n+1) for the oracle performing
%   the AND operation. the last bit is the oracle bit. there are no
%   working bits.
%   NOTE: used to test the grover algorithm functions correctly

    result = collapse_gate(gate_toffoli(n+1));
end
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function [ result ] = oracle_indep_set( b3, b2, b1 )
%ORACLE_INDEP_SET oracle for finding independent sets of given size
%   return an oracle (matrix) for testing whether a given independent set
%   if of a given size specified by the encoded 3-bit input.
%   returns a 2^13 by 2^13 matrix with the following configuration
%           Input       Output
%   1 -      e1           e1
%   2 -      e2           e2
%   3 -      e3           e3
%   4 -      e4           e4
%   5 -      |0>          |0>
%   6 -      |0>          |0>
%   7 -      |0>          |0>
%   8 -      |0>          |0>
%   9 -      |0>          |0>
%   10 -     |0>          |0>
%   11 -     |0>          |0>
%   12 -     |0>          |0>
%   13 -     x          x XOR result

    n = 13;

    % a cell array of pointers. pointers are used because matlab doesn't
    %   know how to store sparse arrays in cells. making the strucutres
    %   gets around this problem.
    m1 = {};
    m2 = {};

    m1 = horzcat(m1, subgate(n, gate_threshold(b3, b2, b1), ...
        1,2,3,4,5,6,7,8,9,10,11,12));
    m1 = horzcat(m1, subgate(n, gate_graph_indepset_n4e3_r1(), ...
        1,2,3,4,5,6,7,8));
    m2 = horzcat(m2, subgate(n, gate_toffoli(3), 8,12,13));

    % build circuit
    m = horzcat(m1, m2, mirror_gate(m1));

    % take the output and put in on line 5, right below the inputs
    m = subgate(n, m, 1,2,3,4,6,7,8,9,10,11,12,13,5);

    % return the result
    result = collapse_gate(m);
end
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function [ result ] = oracle_just_comparator( b3, b2, b1 )
%ORACLE_JUST_COMPARATOR test oracle for gate_three_bit_comparator

    n = 7;

    m1 = {};
    m2 = {};

    % put inverters on the wires for each of the 1 'b' bits.
    if b1
        m1 = horzcat(m1, subgate(n, gate_inverter(), 4));
    end
    if b2
        m1 = horzcat(m1, subgate(n, gate_inverter(), 5));
    end
    if b3
        m1 = horzcat(m1, subgate(n, gate_inverter(), 6));
    end

    m1 = horzcat(m1, subgate(n, gate_three_bit_comparator(), 1,2,3,4,5,6));
    m2 = horzcat(m2, subgate(n, gate_toffoli(4), 4,5,6,7));

    m = horzcat(m1, m2, mirror_gate(m1));
%     m = subgate(n, m, 1,2,3,5,6,7,4);

    % return result
    result = collapse_gate(m);
end
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function [ result ] = oracle_just_counter_comp(b3, b2, b1)
%ORACLE_JUST_COUNTER_COMP test oracle for gate_threshold

    n = 12;

    m = gate_threshold(b3, b2, b1);
    m = subgate(n, m, 1,2,3,4,6,7,8,9,10,11,12,5);

    % return result
    result = collapse_gate(m);
end
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function [ result ] = oracle_just_graph()
%ORACLE_JUST_GRAPH test oracle for gate_graph_indepset_n4e3_r1

    % get graph gate
    m = gate_graph_indepset_n4e3_r1();

    % take last bit and put it in position 5
    m = collapse_gate(subgate(8, m, 1,2,3,4,6,7,8,5));

    % return result
    result = m;
end
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function [ result ] = oracle_nor( n )
%ORACLE_NOR oracle that NORs inputs
%   returns matrix is 2^(n+1) by 2^(n+1) for the oracle performing
%   the NOR operation. the last bit is the oracle bit. there are no
%   working bits.
%   NOTE: used to test the grover algorithm functions correctly

    m1 = {};
    m2 = {};

    for i=1:n
        m1 = horzcat(m1, subgate(n+1, gate_inverter(), i));
    end
    m2 = horzcat(m2, subgate(n+1, gate_toffoli(n+1), 1:n+1));

    m = horzcat(m1, m2, mirror_gate(m1));
    result = collapse_gate(m);
end
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function [ result ] = printresults( v, n, t )
%PRINTRESULTS print results vector v
%   v is the results vector (size 2^t by 1).
%   n is the number of input qubits (n < t).
%   t is the number of results to output

    % merge the probabilites into single vector of just inputs
    merged = merge_probs(v,n);

    % number of entries to print
    num_print = min(t,2^n);

    function [ result ] = cmp_probs(r1,r2)
        if r1.prob < r2.prob
            result = -1;
        elseif r1.prob > r2.prob
            result = 1;
        else
            result = 0;
        end
    end

    % sort the array
    sorted = bubblesort(merged, @cmp_probs, num_print);

    % slice off the top few elements of the array
    sliced = sorted(1:num_print);

    % print out the top few results
    result = format_prob_vec(sliced,n);
end
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function [ result ] = qubit( v )
%QUBIT a v-valued qubit
%   returns a 2 by 1 vector for qubit of value 0 or 1

    if v == 0
        z = [ 1 ; 0 ];
    else
        z = [ 0 ; 1 ];
    end
    result = z;
end
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function [ result ] = subgate( varargin )
%SUBGATE use gate as sub gate as part of a containing gate
%   param n     - size containing gate
%   param g     - gate to use as sub gate
%   param 3...  - wires from containing gate to apply to sub gate.
%                   the number of wires must equal size of subgate.
%   returns a cell array of matrix pointers of size n-by-n.

    % n - size of circuit
    n = varargin{1};
    % g - sub gate (cell array of matrix pointers)
    g = varargin{2};
    % p - all inputs to gate
    p = [varargin{1,3:size(varargin,2)}];
    % t - input gate matrix
    t = size(p,2); % number of inputs to gate
    % q - size of sub-gate
    q = log2(size(g{1,1}.ptr,1));

    % check dimensions of gate match input count
    if q ~= size(p,2)
        error 'gate size mismatch with input count';
    end
    if q > n
        error 'subgate larger than containing gate';
    end

    m1 = {}; % in circuit order
    m2 = {}; % in circuit order

    % shuffle bits into topmost position
    for i=1:t
        if p(i) ~= i
            % move position p(i) into position i; swap p(i) and i
            m1 = horzcat(m1, wrapptr(mat_swap_wires(n,p(i),i)));
            for j=(i+1):t
                % if i contained one of our elements, rename it in p
                if p(j) == i
                    p(j) = p(i);
                end
            end
        end
    end

    % append the sub-gate matricies expanded to fit containing circuit
    for i=1:size(g,2)
        m2 = horzcat(m2, wrapptr(kron(g{1,i}.ptr, mat_wire(n-q))));
    end

%     % undo the shuffling from above (apply swaps in reverse order)
%     for i=size(swaps,2):-1:1
%         op = swaps{i};
%         m = horzcat(m, wrapptr(mat_swap_wires(n,op.pos1,op.pos2)));
%     end

    result = horzcat(m1, m2, mirror_gate(m1));
end
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Contents

grover just counter comparator
grover just comparator
grover just graph
grover NOR
grover AND
test half adder
test full adder
test counter
test comparator itself
test comparator oracle

grover just counter comparator

clear;
num_inputs = 4;
oracle = oracle_just_counter_comp(0,1,0);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 0101 --> 0.088
 1001 --> 0.088
 0011 --> 0.088
 1010 --> 0.088
 0110 --> 0.088
 1100 --> 0.088
 1110 --> 0.047
 1111 --> 0.047
 1101 --> 0.047
 0100 --> 0.047

grover just comparator

clear;
num_inputs = 3;
oracle = oracle_just_comparator(1,1,0);
printresults(grover(oracle, num_inputs, -1), num_inputs, 10)

ans =

 011 --> 0.535
 010 --> 0.066
 101 --> 0.066
 001 --> 0.066
 100 --> 0.066
 000 --> 0.066
 110 --> 0.066
 111 --> 0.066

grover just graph

clear;
num_inputs = 4;
oracle = oracle_just_graph();
printresults(grover(oracle, num_inputs, 1), num_inputs, 10)

ans =



 0100 --> 0.084
 0101 --> 0.084
 1001 --> 0.084
 1000 --> 0.084
 0000 --> 0.084
 1100 --> 0.084
 1101 --> 0.084
 0001 --> 0.084
 0010 --> 0.084
 0110 --> 0.035

grover NOR

clear;
num_inputs = 5;
oracle = oracle_nor(num_inputs);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 00000 --> 0.515
 11010 --> 0.016
 11001 --> 0.016
 11111 --> 0.016
 11110 --> 0.016
 11101 --> 0.016
 11100 --> 0.016
 10111 --> 0.016
 11000 --> 0.016
 11011 --> 0.016

grover AND

clear;
num_inputs = 5;
oracle = oracle_and(num_inputs);
printresults(grover(oracle, num_inputs, 2), num_inputs, 10)

ans =

 11111 --> 0.515
 10000 --> 0.016
 10010 --> 0.016
 10110 --> 0.016
 10001 --> 0.016
 11101 --> 0.016
 11110 --> 0.016
 00101 --> 0.016
 00100 --> 0.016
 00000 --> 0.016

test half adder

clear;
n = 3;
a = kronchain(qubit(1),qubit(1),qubit(0));
b = mat_swap_wires(n, 2, 3) * collapse_gate(subgate(n, gate_half_adder(), 1:n)) * a;
strvcat(...
    printresults(a, n, 1),...
    printresults(b, n, 1))

ans =



 110 --> 1.000
 110 --> 1.000

test full adder

clear;
n = 4;
a = kronchain(qubit(1),qubit(1),qubit(1),qubit(0));
b = mat_swap_wires(n, 3, 4) * collapse_gate(subgate(n, gate_full_adder(), 1:n)) * a;
strvcat(...
    printresults(a, n, 1),...
    printresults(b, n, 1))

ans =

 1110 --> 1.000
 1111 --> 1.000

test counter

clear;
n = 8;
a = kronchain(qubit(0),qubit(1),qubit(1),qubit(0),qubit(0),qubit(0),qubit(0),qubit(0));
b = mat_move_wire(n, 6,7) * ...
    mat_move_wire(n, 4,8) * ...
    collapse_gate(subgate(n, gate_four_bit_counter(), 1:n)) * a;
strvcat(...
    printresults(a, n, 1),...
    printresults(b, n, 1))

ans =

 01100000 --> 1.000
 01100010 --> 1.000

test comparator itself

clear;
n = 6;
a = kronchain(qubit(0),qubit(0),qubit(1),qubit(0),qubit(0),qubit(1));
b = collapse_gate(subgate(n, gate_three_bit_comparator(), 1:n)) * a;
strvcat(...
    printresults(a, n, 1),...
    printresults(b, n, 1))

ans =

 001001 --> 1.000
 001111 --> 1.000

test comparator oracle

clear;
n = 7;
a = kronchain(qubit(0),qubit(1),qubit(1),qubit(0),qubit(0),qubit(0),qubit(0));
b = oracle_just_comparator(0,1,1) * a;
strvcat(...
    printresults(a, n, 1),...
    printresults(b, n, 1))



ans =

 0110000 --> 1.000
 0110000 --> 1.000
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function [ result ] = wrapptr( input )
%WRAPPTR wrap input in a pointer structure
%   wrap input in a structure with a single field called 'ptr'.
%   this is used to get around matlab limitation of not being
%   able to store sparse arrays in cell arrays.

    r.ptr = input;
    result = r;
end
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