
Study of Existing Quantum Search
Algorithms and Problem

Formulations to Determine the Most
Efficient Method to Solve Constraint

Satisfaction Problems

By Sidharth Dhawan

GROVER ALGORITHM

Applications of Quantum Computers

• Classical computers today are fast.

• However, in some cases, quantum computers
are significantly faster.

– For example, Shor’s algorithm can solve semiprime
factorization problems with exponential speedups
over classical computers.

– Grover’s algorithm can achieve polynomial
speedups in large, non-polynomial problems using
unstructured search.

Superposition and Quantum Computers

• A classical bit is represented by a
classical entity, like a current of
electrons

• Thus, it is confined to two
discrete states, “0” and “1”

• It is relatively easy to determine
its state.

Superposition and Quantum Computers
• A quantum bit represents information

in a quantum mechanical entity, like
an electron’s spin axis

• Our tools cannot determine the
precise state of a quantum entity

• Thus, a qubit can exist in any
combination of the states “0” and “1”
(in other words, any point on the
bloch sphere).

• A classical bit is confined to the
“poles”

The Bloch Sphere
represents all possible
quantum states.

Superposition and Search

• We can use the Hadamard transform to create an
even superposition between the |0> and |1> state in
one qubit.

• If I perform a collective Hadamard transform to a
system of two qubits, the system as a whole can
represent |00>, |01>, |10>, and |11>.

• For this reason, quantum bits store more information
than classical bits – I can represent 2ⁿ classical states
with n qubits

Quantum Unstructured Search (“Grover”)
• Grover’s Algorithm uses this property of

quantum information to perform an
unstructured search more quickly

• The initial input qubits are superposed to
represent all possible solutions

• The Oracle operation tags the phase of the
solution states in this superposition

• Another circuit then changes the phase
information (which is hidden) into amplitude
information (which we can detect).

• This process is iterated √N times (as opposed
to N iterations in classical logic) to maximally
amplify the states.

… …

H

H

H

H

ORACLE

H

H

H

Grover Loop (* √N)

… …

Circuit level representation of Grover

Applications of Grover Algorithm

• Grover’s algorithm can provide quadratic
speedup in NP Complete problems:

• Examples of NP Complete problems are:

– Graph Coloring

– Maximum Clique

– Satisfiability

– Travelling Salesman

– DNA Sequencing

– Scheduling

– Sudoku

THE ORACLE

The Oracle

• The most important part of the Grover Circuit is
the oracle.

• An oracle is essentially a classical circuit that can
recognize a state (combination of inputs) that is a
solution.

• In the Grover loop, the oracle searches through
every solution simultaneously and “tags” the
solution state with a phase change

The Oracle

• Since the oracle operation is iterated √N times, a
decrease in cost of one basic gate for the oracle would
decrease the cost of the entire Grover loop by many
more gates.

• The number of input qubits is also important, because
the Grover Circuit must be iterated 2⁽n/2⁾ times.

• For example, the Grover Circuit for SEND MORE
MONEY costs 17 thousand trillion trillion more basic
gates with the less efficient method

Graph Coloring

• Graph coloring is an NP
complete problem

• It involves finding a
“good” coloration for a
system of n nodes
connected by e edges

• No two nodes connected
by an edge can have the
same color

1

3

2

Perkowski’s Method

• Since there are three nodes,
each can take on up to three
colors

• Each node is represented with
||log2(3)|| = 2 qubits so that
the total number of possible
collective states per node is
more than three.

≠ ≠

Node 1

Node 2

Node 3

≠

• For example, the states|00> and |01> represent different colors.

• I have to make sure no two nodes that are connected are
assigned the same color using bit-by-bit inequality gates.

V1

V2

V3

V4

V5

V6

V7

V8

V9

V1

V4

V7

V2

V5

V8

V3

V6

O
n

e
co

lo
r

/
n

o
d

e
G

o
o

d
 C

o
lo

ri
n

g

Hogg’s Method
• In this method, each

assignment of a color to a
node is represented by a
qubit, v1-v9.

• No two elements of a row
can coexist, because only
one color can be assigned
to a node. I use NAND
gates to ensure this

• If, for example, nodes one
and two are connected, we
must do: v1 NAND v4, v2
NAND v5, and v3 NAND v6.

Reversible Logic and Quantum Cost

• An alternative classical logic
implementation is called AND –
EXOR logic.

• It is reversible because you can
determine inputs from the
outputs.

• This kind of logic is easier to
simulate with most quantum
technologies.

X

Y

X

X Y

Y

Z

Y

Y Z

X X

X

Z Z '

Reversible and Non Reversible Circuits

ab

Quantum Cost

Gates Cost in Basic Gates

Quantum NOT 1

Hadamard Gate 1

CNOT Gate 1

3 input Toffoli Gate 5

N input Toffoli Gate
Best Case: 32n-96

Worst Case: (2n+1) -3

N-Bit Toffoli Cost

• I have used two estimates to calculate the cost of a
toffoli gate.
– 32m – 96, plus one garbage bit, for m > 5

– 2⁽m+1⁾ – 3 , where m is the number of controlling bits

• The difference between these costs should be
underscored.

• For example, one technique for building the SEND
MORE MONEY oracle costs about 100,000 basic
gates with the best case method and over a googol
with the worst case method.

Goal

In this paper, the costs of these two data-
encoding methods for building Grover Oracles
are compared by testing both for four problems:

• Satisfiability (SAT),

• Maximum Clique,

• SEND MORE MONEY

• Graph Coloring

COST DERIVATION FOR GRAPH
COLORING

Graph Coloring

• Graph coloring is an NP
complete problem

• It involves finding a
“good” coloration for a
system of n nodes
connected by e edges

• No two nodes connected
by an edge can have the
same color

1

3

2

Cost Derivation for Graph Coloring

1

3

2

V1

V2

V3

V4

V5

V6

V7

V8

V9

V1

V4

V7

V2

V5

V8

V3

V6

O
n

e
co

lo
r

/
n

o
d

e
G

o
o

d
 C

o
lo

ri
n

g

Step 1: An oracle is
created for a specific
case of each

problem.

≠ ≠

Node 1

Node 2

Node 3

≠

Cost Derivation for Graph Coloring

Step 2: How many gates are
needed in a generic case
with n nodes and e edges?

1

6

3
2

4

5

n…

n²(n-1)/2
NAND gates

e*n NAND
gates

AND with n²(n-
1)/2+en inputs

V1

V2

V3

V4

V5

V6

V7

V8

V9

V1

V4

V7

V2

V5

V8

V3

V6

O
n

e
co

lo
r

/
n

o
d

e
G

o
o

d
 C

o
lo

ri
n

g

Cost Derivation for Graph Coloring

STEP 1:
2-input NAND

= Toffoli = 5
basic gates

STEP 3:
m – input NAND =
32m – 96 pulses

(best case)

STEP 2:
e*n + n²(n-1)/2

NANDs =
5(en+n²(n-1)/2)

pulses

STEP 4:
Final NAND =

32(en+n²(n-1)/2)-96
basic gates

Total Cost:

(2*STEP 2+ STEP 4)=

42(en+n²(n-1)/2) – 96
Basic gates

Step 3: Convert gates to
cost with cost formulas

The Mirror Circuit
• At the end of the oracle, the qubits in the “Work space” must

be returned to their original states for the next oracle
operation.

• Because this is reversible logic, we can simply use the reverse of
the gates originally applied – this is called a mirror circuit, and it
must be factored into cost estimates

The Oracle

The Mirror
circuit

Cost Derivation – Perkowski’s Method

Step 2: How many gates are
needed in a generic case
with n nodes and e edges?

1

6

3
2

4

5

n…
e Inequality

gates

AND with e
inputs

≠ ≠

Node 1

Node 2

Node 3

≠

The Inequality Gate

a1

a2

b1

b2

output

• The Feynman gate outputs “1”
when both inputs are not
equal

• Thus, we create Feynman
gates between corresponding
qubits of different nodes

• All the results are ORed with a
final Toffoli gate – the output
will be one if ANY inputs are
one

• Thus, because there are 2q+1
NOT gates, 2q Feynman gates,
and a q-input Toffoli gate, the
cost is (2q+1)+(2q)+(32q-96) =
36q-95

Cost Derivation – Perkowski’s Method

STEP 1:
Inequality

Gate = 36q-95
basic gates

STEP 3:
e – input NAND =
32e – 96 pulses

(best case)

STEP 2:
e Inequality

Gates = e(36q-95)

Total Cost:

(2*STEP 2+ STEP 3)=

2e(36q-79)-96
Basic gates

Step 3: Convert gates to
cost with cost formulas

Cost Derivation for Graph Coloring

Step 4: Once I figured out my formulas for all problems, I graphed them
and compared the results to see which method works better.

42

SEND MORE MONEY

SEND MORE MONEY

• The goal of this problem is to
find a correct integer
assignment to each of the
letters so that the equation
above is satisfied

• We can tackle this problem
better by reducing it to smaller
equations, as shown

D + E = 10*C1 + Y
C1 + N + R = 10*C2 + E
C2 + E + O = 10*C3 + N
C3 + S + M =10*M + O

S E N D

M O R E

M O N E Y

+

SEND MORE MONEY - Perkowski
S

E

N

D

O

R

Y

C1

C2

C3

M

10

+
+

+

+

=

=

=

=

+

+

+

+

/4

/4

/4

/4

/4

/4

/4

/4

/1

/1

/1

/1

/5

/5

/5

/5

/5

/5

/5

/5

/5

=/

S

E

N

D

O

R

Y

M

Perkowski’s method:

• The oracle on the right uses
Perkowski’s method to solve
the problem

• Each letter is represented by
four qubits and can take on
ten values.

• This emulates the formulas with gates
– for example, the conditions D + E and 10*c1+Y are plugged into the

bottom equality gate

• Best case cost:
5,186 basic gates and 126 Qubits

S

E

N

D

O

R

Y

C1

C2

C3

M

10

+
+

+

+

=

=

=

=

+

+

+

+

/4

/4

/4

/4

/4

/4

/4

/4

/1

/1

/1

/1

/5

/5

/5

/5

/5

/5

/5

/5

/5

=/

S

E

N

D

O

R

Y

M

Inequality Gates

• Every combination of two letters
must be inputs to an inequality gate

• Thus, we need n(n-1)/2 inequality
gates.

• Recall that the cost of an inequality
gate is 4n+1 in Feynmans and
inverters, plus (in this case) a four-
controlled toffoli gate (29). Thus,
our gate costs 46 basic gates.

• Since n=8 (letters) and q=4, the
total cost of this step is 8(7)/2 * (46)
= 1288 basic gates.

<10 Block
• Each letter should have a value of less than ten

• A simple “<10” block could be created by the operation
(a1*(a2+a3))’,
– Since 10 is 1010 in binary, both the most significant bit and

either the second or third must be one if a number is
greater than ten.

• This circuit will consist of a toffoli gate, an OR gate
(which is a Toffoli gate plus four inverters), and a final
inverter. It will cost 16 basic gates

• Seven of these are required, one per letter. Thus the
cost of this step is 112 basic gates.

S

E

N

D

O

R

Y

C1

C2

C3

M

10

+
+

+

+

=

=

=

=

+

+

+

+

/4

/4

/4

/4

/4

/4

/4

/4

/1

/1

/1

/1

/5

/5

/5

/5

/5

/5

/5

/5

/5

=/

S

E

N

D

O

R

Y

M

D + E = 10*C1 + Y
C1 + N + R = 10*C2 + E
C2 + E + O = 10*C3 + N
C3 + S + M =10*M + O

There are two types of equations that must be described
with adder circuits.

For example, there is c1+ N+ R, which requires full adders.

Also, there is 10*c1 + Y, which must be described using
half-adders

Adder Gates
• A half adder circuit is shown on the right

– This circuit adds two inputs
– As shown in the truth tables below, sum is

represented by EXOR, while carry is
represented by AND.

• The cost of this gate is 6 basic gates.

• A full adder gate is shown on the bottom
right:
– In a full adder gate, the sum is represented by:

a EXOR b EXOR c.
– The carry is represented by ab EXOR ac EXOR

bc.

• The cost is 12 basic gates.

0

0

1

1

a\b

sum

carry

a

b

a

b
c

sum

carry

00 01 10 01

01 10 11 10

a\bc 00 01 11 10

0

1

Adder Tree

• The cost of one of these trees is four full adder gates, plus one
feynman gate to bring the “carry” gate down to one ancilla bit.
Thus, it costs 4(12) +1 = 49 basic gates.

C1+N+R:

• A full adder tree can be
used to add two letters, as
shown

• The “carry” from the first
full adder is carried into the
second

Adders for 10*c1 + Y
• In binary, 10 = 1010.
• Since all the carries are one

qubit, 10*c1 = c1, 0, c1, 0.

• Thus, S1 will equal Y1

• C1+Y2 will be a half-adder,
because only two qubits are
being added

• C1 only needs to be added to Y2 and Y4, thus, the only Full
adder will come at the end, because this is the only time three
qubits are being added.

• Thus, the cost is 2 feynmans, two half-adders, and a full adder
= 26 basic gates

Special Case: E+D

• In this case, only the
first adder is a half
adder, and the rest are
full adders, because
there is no carry bit.

• Thus, the cost is 43
basic gates

Total Cost of adders

• There are three equations of type: c1+N+R

• There are four equations of type: 10*c1+Y

• There is one equation of type: E+D

• Thus, total cost of all adders is:

3(49) + 4(26) + (43) = 294 basic gates.

S

E

N

D

O

R

Y

C1

C2

C3

M

10

+
+

+

+

=

=

=

=

+

+

+

+

/4

/4

/4

/4

/4

/4

/4

/4

/1

/1

/1

/1

/5

/5

/5

/5

/5

/5

/5

/5

/5

=/

S

E

N

D

O

R

Y

M

Equality Gates

• This circuit will have four
equality gates. They will each
operate on two five-qubit inputs
(the outputs of the adder gates)

• An equality gate costs 4n, plus a
(in this case) five-controlled
Toffoli gate, which costs 52
qubits, best case

• Thus, the total cost will be 72
per circuit, and 288 basic gates
for all four circuits.

S

E

N

D

O

R

Y

C1

C2

C3

M

10

+
+

+

+

=

=

=

=

+

+

+

+

/4

/4

/4

/4

/4

/4

/4

/4

/1

/1

/1

/1

/5

/5

/5

/5

/5

/5

/5

/5

/5

=/

S

E

N

D

O

R

Y

M

The Letter M

• The letter M is represented by four qubits, so that
we can use it in inequality gates. However, it can
only be zero or one, because it is a carry.

• Thus, we need a three-input NOR gate to make
sure that three of its qubits all equal zero.

• This will cost 6 inverters and a 3-controlled Toffoli
(13), or 19 basic gates total.

Final Toffoli Gate

• There are 8(8-1)/2 = 28 outputs from the first
inequality section

• There are 4 outputs from the equations, and 1
output from the letter M.

• There are 7 outputs from the “<10” block.

• Thus, there are 40 inputs, so the cost is 32(40)-96
= 1184 basic gates.

S

E

N

D

O

R

Y

C1

C2

C3

M

10

+
+

+

+

=

=

=

=

+

+

+

+

/4

/4

/4

/4

/4

/4

/4

/4

/1

/1

/1

/1

/5

/5

/5

/5

/5

/5

/5

/5

/5

=/

S

E

N

D

O

R

Y

M

Total cost: 2(1288 + 112+ 294 + 288 + 19)+1184 = 5186 basic gates

Hogg’s Method

Since

• each one of 8 letters can take 9 values (1 to
9), and

• each one of 3 carry’s can take 2 values(0,1),

• this oracle requires 78 variables

SEND MORE MONEY – Hogg’s Method

Hogg’s oracle will require us to figure out
all possible assignments to the four
formulas

D + E = 10*C1 + Y
C1 + N + R = 10*C2 + E
C2 + E + O = 10*C3 + N
C3 + S + M =10*M + O

• For example, the assignments 1,2,0,3 and 1,3,0,4 for the
variables D, E, c1, and Y, (respectively) satisfy the first equation

• We then use AND and OR gates to make sure that at least one of
these assignments are satisfied

• There are about 160 such equations; each of these will require a
five or six input Toffoli gate, and then a massive OR gate at the
end.

• The total cost of all these gates is 35213 basic gates, and four
output qubits.

No two letters can be assigned the same value

• This will require n(n-1)/2 NAND gates, times
the number of values(10) = 10(8)(7)/2 = 280
NAND gates

• The total cost of this step is thus 1400 basic
gates

• 280 output qubits are involved

SEND MORE MONEY – Hogg’s Method

Next, no two values can be assigned to the same
letter

• This will require n(n-1)/2 NAND gates, where n
= 10, and this will need to be repeated 8
times, for a total of 360 NAND gates

• Thus, the total cost is 1800 basic gates

• 360 output qubits are involved

SEND MORE MONEY – Hogg’s Method

SEND MORE MONEY – Hogg’s Method

• For the final Toffoli gate, there are 4+360+280 =
644 controlling qubits

• Thus, the best case cost is 32(644)-96 = 20512
basic gates
– The worst case cost is 2⁶⁴⁵ - 3, which is over a googol.

• The overall cost amounts to 2(1800+1400+35213)
+ 20512 = 97216 basic gates, best case, including
mirror circuits.

SATISFIABILITY

Satisfiability
The Problem: Find a Boolean (1 or 0) assignment of

variables that gives an output of one in a
formula such as the one shown on the top right.

Perkowski’s method:
• This formula is emulated by gates. In other

words, I simply do: {(a NOT) OR b OR c} AND {a
OR (b NOT) OR (c NOT)} with quantum gates.
NOT gates are represented by X’s in the figure.

Hogg’s method
• This is exactly the same, except that no NOT

gates are needed; instead, inputs are taken from
different qubits. However, we also need
inequality (CNOT) gates to make sure no two
representative qubits have the same value.

For a large number of AND-ed terms and NOT-ed
terms, and few variables, it is possible that
Hogg’s method could be more efficient than
Perkowski’s method because Perkowski’s
method requires more NOT gates.

(a’+b+c)(a+b’+c’)

a

b

c

Perkowski’s method

Hogg’s Method – costs more qubits

MAXIMUM CLIQUE

Maximum Clique
The Problem: Find the largest number

of interconnected nodes in a graph

Perkowski’s Method:
1. I created the oracle for the 4 node

graph as shown on the right.
2. I created this oracle by

representing each node with a 1 if
it was “activated”, i.e. part of the
proposed clique, and with a 0 if it
wasn’t.

3. I then NAND-ed all nodes that
were not connected, because the
maximum clique must have all
nodes interconnected, so no two
non – connected nodes can be
part of the clique

Perkowski’s method

Maximum Clique – Hogg’s method
1. The oracle I created using

Hogg’s method for this problem
is very similar to the previous
oracle. It creates two qubits per
node: one representing the
deactivated node, and the other
representing an activated node

2. First, I create similar gates to
Perkowski’s method to check
that the given assignment
actually is a clique

3. In addition, I have to create NAND gates between each node’s
representative qubits to make sure that no qubit is simultaneously
activated and deactivated.

Results – Costs of Oracles

Problems and Methods Cost in Basic Gates Cost in Qubits

Graph

Coloring

Hogg’s
Best: Worst:

Perkowski’s
Best: Worst:

Maximum

Clique

Hogg’s Perkowski’s method + 42n Perkowski’s + 2n

Perkowski’s
Best: Worst:

Satisfiability

Hogg’s

Best: Worst:

4v+2m*(2n+1-3)+32(m+v)-96 4v+2m(2n+1-3)+2m+v+1-3

v+m+2

Perkowski’s
Best: Worst:

2m*(2n+1-3)+2t+32m-96 2m*(2n+1-3)+2t+2m+1-3

3v+m+2

SEND MORE

MONEY

Hogg’s Best: 93,138 Worst: 10165 949

Perkowski’s
Best: 3952 Worst: 2.2*10¹² 126

Results: Max Clique and Graph Coloring
Max Clique

N 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hogg's best case Pulses 282 492 744 1038 1374 1752 2172 2634 3138 3684 4272 4902 5574 6288 7044

e=2n Qubits 23 30 38 47 57 68 80 93 107 122 138 155 173 192 212

Hogg's Worst case Pulses 1.E+03 3.E+04 2.E+06 3.E+08 7.E+10 4.E+13 4.E+16 7.E+19 3.E+23 2.E+27 4.E+31 1.E+36 9.E+40 1.E+46 3.E+51

Perkowski's Best Case N 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

e=2n Pulses 30 198 408 660 954 1290 1668 2088 2550 3054 3600 4188 4818 5490 6204

Qubits 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172

Perkowski's Worst CasePulses 4.E+01 3.E+02 8.E+03 5.E+05 7.E+07 2.E+10 9.E+12 9.E+15 2.E+19 8.E+22 6.E+26 1.E+31 3.E+35 2.E+40 3.E+45

Graph Coloring

N 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hogg's best case Pulses 6708 10194 14688 20316 27204 35478 45264 56688 69876 84954 102048 121284 142788 166686 193104

e=2n Qubits 200 296 418 569 752 970 1226 1523 1864 2252 2690 3181 3728 4334 5002

Hogg's Worst case
(e=2n) Pulses 1.E+49 1.E+74 2.E+106 4.E+146 9.E+195 2.E+255 Excel can not calculate any more

Hogg with e = 3n Pulses 8220 12252 17376 23718 31404 40560 51312 63786 78108 94404 112800 133422 156396 181848 209904

Complete Hogg Pulses 7464 12252 18720 27120 37704 50724 66432 85080 106920 132204 161184 194112 231240 272820 319104

Perkowski's Best Case Pulses 625 970 1344 1744 2168 2612 3075 3555 4052 4563 5088 5626 6176 6738 7311

e=2n Qubits 42 50 58 67 75 84 93 102 111 121 130 139 149 159 168

Perkowski's Worst CasePulses 9.E+21 6.E+29 7.E+38 1.E+49 3.E+60 1.E+73 1.E+87 1.E+102 2.E+118 6.E+135 3.E+154 2.E+174 2.E+195 4.E+217 1.E+241

Perkowski with e = 3n Pulses 986 1503 2064 2664 3299 3966 4660 5381 6125 6892 7680 8487 9313 10155 11015

Complete Perkowski Pulses 355 703 1164 1744 2451 3289 4264 5381 6644 8057 9624 11348 13233 15281 17496

Results - SAT
t = mn/2
Perkowski's Method
n\m 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 124 168 212 256 300 344 388 432 476 520 564 608 652 696 740 784
3 209 270 331 392 453 514 575 636 697 758 819 880 941 1002 1063 1124
4 374 468 562 656 750 844 938 1032 1126 1220 1314 1408 1502 1596 1690 1784
5 699 858 1017 1176 1335 1494 1653 1812 1971 2130 2289 2448 2607 2766 2925 3084

Hogg's Method (v = n)

2 186 228 270 312 354 396 438 480 522 564 606 648 690 732 774 816
3 302 360 418 476 534 592 650 708 766 824 882 940 998 1056 1114 1172
4 498 588 678 768 858 948 1038 1128 1218 1308 1398 1488 1578 1668 1758 1848
5 854 1008 1162 1316 1470 1624 1778 1932 2086 2240 2394 2548 2702 2856 3010 3164

t = mn/3
Perkowski's Method
n\m

2 120.6667 164 207.3333 250.6667 294 337.3333 380.6667 424 467.3333 510.6667 554 597.3333 640.6667 684 727.3333 770.6667
3 204 264 324 384 444 504 564 624 684 744 804 864 924 984 1044 1104
4 367.3333 460 552.6667 645.3333 738 830.6667 923.3333 1016 1108.667 1201.333 1294 1386.667 1479.333 1572 1664.667 1757.333
5 690.6667 848 1005.333 1162.667 1320 1477.333 1634.667 1792 1949.333 2106.667 2264 2421.333 2578.667 2736 2893.333 3050.667

Hogg's Method(v = n)

2 186 228 270 312 354 396 438 480 522 564 606 648 690 732 774 816
3 302 360 418 476 534 592 650 708 766 824 882 940 998 1056 1114 1172
4 498 588 678 768 858 948 1038 1128 1218 1308 1398 1488 1578 1668 1758 1848
5 854 1008 1162 1316 1470 1624 1778 1932 2086 2240 2394 2548 2702 2856 3010 3164

t = 2mn/3
Perkowski's Method
n\m

2 127.3333 172 216.6667 261.3333 306 350.6667 395.3333 440 484.6667 529.3333 574 618.6667 663.3333 708 752.6667 797.3333
3 214 276 338 400 462 524 586 648 710 772 834 896 958 1020 1082 1144
4 380.6667 476 571.3333 666.6667 762 857.3333 952.6667 1048 1143.333 1238.667 1334 1429.333 1524.667 1620 1715.333 1810.667
5 707.3333 868 1028.667 1189.333 1350 1510.667 1671.333 1832 1992.667 2153.333 2314 2474.667 2635.333 2796 2956.667 3117.333

Hogg's Method
n\m

2 186 228 270 312 354 396 438 480 522 564 606 648 690 732 774 816
3 302 360 418 476 534 592 650 708 766 824 882 940 998 1056 1114 1172
4 498 588 678 768 858 948 1038 1128 1218 1308 1398 1488 1578 1668 1758 1848
5 854 1008 1162 1316 1470 1624 1778 1932 2086 2240 2394 2548 2702 2856 3010 3164

Results – SAT Contd..

Worst Case: 3-SAT

Hogg

651 1189 2239 4313 8435 16653 33063 65857 131419 262517 524687 1049001 2097603 4194781 8389111
1677774

5

Pk: (t=mn/3)

201 293 449 733 1273 2325 4401 8525 16745 33157 65953 131517 262617 524789 1049105 2097709

Pk: (t=mn/2)

206 299 456 741 1282 2335 4412 8537 16758 33171 65968 131533 262634 524807 1049124 2097729

Pk: (t=2mn/3)

211 305 463 749 1291 2345 4423 8549 16771 33185 65983 131549 262651 524825 1049143 2097749

Qubits: 3-SAT

Hogg

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Perkowski

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Results: Graph Coloring

Results: Max Clique

RESULTS: SEND MORE MONEY

SEND MORE MONEY
Hogg's Best Case Worst Case

Gates 65033 1.E+164
Qbits 949

Perkowski's Best Case Worst Case
Gates 4628 2.2E12
Qbits 110

Results: SAT

68

Conclusion

• I found that Perkowski’s method was much better than
Hogg’s method when each variable can take on a large
range of values

• However, in cases where each variable could only take
on a few values, like in Max Clique and SAT, they were
closer together

• In special cases of SAT, Hogg’s method was more
efficient (in best case pulses only) than Perkowski’s
method because Perkowski’s method requires more
NOT gates

Resources & Works Cited
1. Cerf, N. J., Grover, L. K., & Williams, C. P. (1999, December 1). Nested

Quantum Search and NP Hard Problems. Applicable Algebra in Engineering,
Communication, and Computing, 10, 311-388

2. Perry, R. T. (April 29,2006). Temple of Quantum Computing

3. Hogg, T. (1996, March). Quantum Computing and Phase Transitions in
Combinatorial Search. Journal of Artificial Intelligence, 4, 91-128

4. Maslov, D., & Dueck, W. R. (2004, March 5). Improved Quantum Cost for n-
Bit Toffoli Gates

5. Lee, S., Lee, J., & Kim, T. (2003, July 7). Cost of Basic Gates in Quantum
Computation. Department of Physics, Korea Advanced Institute of Science
and Technology,

6. Perkowski, M. A. (2009) Quantum Robotics

7. Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computing and Quantum
Information. Cambridge, UK: Cambridge University Press

8. Grover, L. K. (1997). A Fast Quantum Mechanical Algorithm for Database
Search. 28th Annual Symposium on the Theory of Computing, 212 – 219

Future Work
• Perform simulations of Grover Algorithm to test

whether or not my mathematical formulas are correct

• Invent a new, and even more efficient oracle building
method

• Further investigate of Nested Quantum Search
(recursive application of Grover Algorithm)

• Investigate how the Shor Algorithm or the Bernstein –
Vazirani Algorithm can be used for other problems

BACKUP
PRINT ONLY FIRST 25 SLIDES, NOT THE BACKUP

Max Clique - Perkowski
• Ensure that disconnected nodes are not activated

– This will require a NAND (toffoli) gate, because no two
unconnected nodes can both be one.

– The total number of toffoli gates needed is the number of
possible connections minus the number of actual
connections.

– The total possible connections is n(n-1)/2. We denote the
total number of actual connections with e. Thus we need a
total of n(n-1)/2-e toffoli gates, i.e., 13(n(n-1)/2-e)pulses,
and n(n-1)/2-e ancilla qubits.

• Perform a global AND of the results
– Since we need to verify n(n-1)/2 –e outputs of toffoli gates,

we will need an (n(n-1)/2-e)- bit toffoli gate at the end.
This will cost 32(n(n-1)/2-e)-96 pulses and two qubits.

– In the worst case, it will cost pulses and 1
qubit.

73

Max Clique - Hogg
• Hogg’s method is almost exactly like Perkowski’s method, except

that it creates two qubits per node- one of these represents the
activated node, and the other represents the inactivated node.

• If the “inactivated node” qubit of a certain node is zero, the node
is activated. If it is one, the node is inactivated. The “activated
node” qubit for a certain node is analogous to Perkowski’s qubits:
it is one if the node is activated and zero if the node isn’t.

• Thus, we can simply duplicate Perkowski’s method for this oracle
using the “activated node” qubits instead of Perkowski’s qubits.

• There is only one important difference, and that is that Hogg’s
method needs to make sure a qubit isn’t both activated and
inactivated.

• This will cost n more NAND gates and n extra inputs into the final
toffoli gate, or 13n+32n= 45n more pulses, and 2n extra qubits (n
for each additional NAND gate and n for each additional starting
qubit). Thus, for this problem, Hogg’s method is virtually obsolete

74

Satisfiability - Perkowski
• For Perkowski’s method the oracle would be very simple: for

each term of the equation you would have an OR gate for the n
variables, and then a global AND for all the terms- just like in the
formulation of the problem.

• A large scale OR gate can be created in quantum technology by
using a toffoli gate with all the inputs NOTed before and after
the gate (to restore original values).
– Note that for the term a’, we would not have to include an extra NOT

before the Toffoli, because we already are NOT-ing that input.

• The cost of this circuit would be m n-bit toffoli gates, plus 2t
NOT gates (t is the total of un NOT-ed terms), and then a final
m-bit toffoli at the end. Since n is usually small, I will be using
the 2m+1 estimate for OR gates. Thus the best case cost is
m*(2n+1-3)+2t+32m-96 pulses and v+m+2 qubits.

• The worst case cost is m*(2n+1-3)+2t+2m+1-3 pulses

75

Satisfiability - Hogg
• For Hogg’s method, the circuit will be similar to Perkowski’s

method, except that no NOT gates would be needed.

• Since we create a 1 and 0 (regular and NOT-ed) qubit for
every variable, the un-NOT-ed variable can be represented
by the 1 qubit, and the NOT-ed variable can be
represented by the 0 qubit.

• However, there will be 2v qubits instead of v (v is the total
number of variables) qubits in Perkowski’s method.

• Thus the cost is 10v+m*(2n+1-3)+32(m+v)-96 pulses or
10v+m(2n+1-3)+2m+v+1-3 pulses and 3v+m+2 qubits.

• The most efficient method in this case largely depends on t
and v.

76

SEND MORE MONEY - Perkowski
• I will make sure that no two letters are the same value, which will require

inequality gates
• Since there are 9 possible values for the 8 letters, each letter will get four bits. There will be 32 qubits

for the letters.
• Since there are 8 letters, there will have to by 8(8-1)/2 = 28 inequality gates.
• Since there are four bits for each letter, the inequality gates will cost four Feynman gates, four NOT

gates, a four-bit toffoli (which, when costing no garbage bits, costs 61 pulses), and an ancilla bit.
• Thus the cost is 28(4*5+4*1+61)= 2380 pulses and 28 ancilla bits

• I will test the four equations with quantum gates. This will require quantum adder
gates, and it will require us to multiply carry gates by 10.

• In binary, 10 is 1010. With this in mind, c*1010 = c0c0, given that c is a one digit binary number
(which, incidentally, all the carries are). Thus, all we will have to do is create four ancilla bits, and
transfer our preferred “carry” value to two of them using a two Feynman gates. Thus multiplying a
carry by 10 will cost 4 qubits and 10 pulses each.

• We will also have to use a network of quantum adder gates to perform each of our additions. Each
network of adder gates, including the multipliers, costs 330 pulses and 12 qubits.

• Since this must be repeated for four equations, the overall cost will be 1320 pulses and 48 qubits.
Four of these will be output qubits.

• I will create a global AND at the end
– We will need to verify a total of 28+4 = 32 outputs. Thus, the global AND will cost

32(32)-96 = 928 pulses and 2 bits.
– Calculating the worst case cost, we have 232+1-3 = 8.59x109 pulses

• The overall cost of the circuit is 4628 pulses and 110 qubits.
• If we use the worst case estimate, we will have 8589938289 pulses. 77

SEND MORE MONEY - Hogg
• Hogg’s method for this problem is very, very inefficient. Since Hogg’s variables can only take on values of one

and zero, and not the value of the actual assignment that was made to the letter, one cannot use quantum
adder gates. Instead, one has to come up with all possible solutions to the equations above by themselves, and
then input these solutions into one large master circuit.

• For example, the equation D+E = 10*c1+Y can be solved by the assignments (for D, E, Y, c1 respectively) 1,2,3,0;
1,3,4,0; 1,4,5,0; etc. In fact, there are 80 such sets for the first equation. Since there is an additional carry in the
next terms, there are 160 such sets for the second and third equations. For the last equation, there is only one
set of assignments that satisfies the equation, so there is only one set. For Hogg’s method we need the
following:
– We need gates to make sure that one variable does not have two values, and that no two variables are given the same

value
• This is very similar to what was done in graph coloring. It will take n(n-1)/2 NAND gates, where n is one of nine values. Thus, there are

9(8)/2 = 36 NAND gates. This procedure is repeated 8 times (one per letter) for a total of 288 toffoli gates, or 3744 pulses and 288 ancilla
bits.

• To test that no two letters are assigned the same number, we need n(n-1)/2 NAND gates again, except that this time, we have n = 8,
because there is one of each kind of assignment per letter. Since there this procedure is repeated 9 times (once per number), we have
9*8(7)/2 = 252 toffoli gates, or 3276 pulses and 252 ancilla bits.

– We also need gates to make sure that at least one of the possible conditions discussed above is met
• For the first equation of those discussed above, there are 80 possible conditions. Since there are four constraints in each of these possible

solutions, we will need 80 4-control toffoli gates, one for each of the possible sets. This will cost 61*80 = 4880 pulses and 80 ancilla bits.
• For the next two sets of terms, we have 5 constraints and 160 possible solution sets. Thus, we will need 160 5-control toffoli gates, or 125

* 160 = 20,000 pulses and 160 ancilla bits. Because this is being repeated twice, we have 40,000 pulses and 320 ancilla bits total.
• Since there is only one possible solution to the third equation, we only need one 5-control toffoli gate, or 125 pulses and 1 ancilla bit.
• To make sure that at least one of the possible conditions are satisfied after the Toffoli gates, we need to use a large quantum OR gate. As

discussed earlier, an quantum OR gate costs n+32n – 96 = 33n – 96 pulses and two qubits. Since we have to apply a quantum OR gate to
3 sets of inputs, we have 33(80) – 96 + 2(33(160) – 96) = 2640 + 10368 = 13008 pulses and 6 qubits. Three of these are output qubits.

– A final AND gate. This will have 4+288+252 = 544 inputs. Thus it will cost 32(544) – 96 = 17312 pulses and 2 qubits.

• Overall, we calculate 65033 pulses and 949 qubits for best case.
• In the worst case, we will have 10165 + 47718 pulses.

78

