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Grover Algorithm 
Reminder in new light



Graph Coloring
 Building oracle for graph coloring is a better explanation of Grover than 

database search.
 This is not an optimal way to do graph coloring but explains well the principle 

of building oracles.

The Graph Coloring Problem
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Color every node 

with a color. Every 

two nodes that share 

an edge should have 

different colors. 

Number of colors 

should be minimum

This graph is 3-colorable



Simpler Graph Coloring Problem
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Two wires for color of node 1

Two wires for color of node 2

Two wires for color of node 3

Two wires for color of node 4


Gives “1” when nodes 1 and 

2 have different colors

 

12 13 23


24


34

Value 1 for good coloring

We need to give all 

possible colors 

here

F(x)



Simpler Graph Coloring Problem

  

12 13 23


24


34

Value 1 for good coloring

We need to give all 

possible colors 

here

H

H

H

H

H

Give 

Hadamard for 

each wire to 

get 

superposition 

of all state, 

which means 

the set of all 

colorings

|0>
|0>

|0>

Discuss naïve non-

quantum circuit with 

a full counter of 

minterms

Now we will generate whole Kmap at once 

using quantum properties - Hadamard

f(x)



Hadamard Transform

Single qubit H

H

H

Parallel connection of 

two Hadamard gates is 

calculated by Kronecker 

Product (tensor product)



1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

1/2

=

=

Here I calculated Kronecker 

product of two Hadamards



Motivating calculations for 3 variables

 As we remember, these are transformations of Hadamard gate:

H|0> |0> + |1> H|1> |0> - |1>

H|x> |0> + (-1) x |1>

In general:

For 3 bits, vector of 3 Hadamards works as follows:

(|0>+(-1)a|1>) (|0>+(-1)b|1>) (|0>+(-1)c|1>) =
From 

multiplication

|000> +(-1)c |001> +(-1)b |001>+(-1)b+c |001>000> +(-1)a |001> +

(-1)a+c |001> + (-1)a+b |001> (-1)a+b+c |001>

|abc> 



This is like a Kmap with 

every true minterm (1) 

encoded by -1

And every false minterm (0) 

encoded by 1

We can say that Hadamard gates before the oracle 

create the Kmap of the function, setting the function in 

each of its possible minterms (cells) in parallel 

f(x)

o
ra

cle

|0>

|0>



Block Diagram for graph coloring and 
similar problems

Vector 

Of

Hadamards

Vector 

Of

Basic 

States

|0>
Oracle with Comparators, 

Global AND gate

Work 

bits

Output of 

oracle

All good colorings are encoded 

by negative phase

Think about 

this as a very 

big Kmap with 

-1 for every 

good coloring

Vector 

Of

Hadamards



What Grover algorithm does?

 Grover algorithm looks to a very big Kmap and tells where is the -1 in it.

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 -1 1 1 1 1 1

1 1 1 1 1 1 1 1

Here 

is -1



What “Grover for multiple solutions” algorithm does?

 Grover algorithm looks to a very big Kmap and tells where is the -1 in it.

 “Grover for many solutions” will tell all solutions.

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 -1 1 1 1 1 1

1 1 1 -1 -1 1 1 1

Here is -1, 

and here is -

1, and here



Variants of Grover

 With this oracle the “Grover algorithm for many 
solutions” will find all good colorings of the graph.

 If we want to find the coloring, that is good and in 
addition has less than K colors, we need to add 
the cost comparison circuit to the oracle.

 Then the oracle’s answers will be “one” only if the 
coloring is good and has less colors than K.

 The oracle thus becomes more complicated but 
the Grover algorithm can be still used.



1 in 4 search

A practical Example

 This presentation shows clearly how to perform 
a so called 1 in 4 search

 We start out with the basics



Pick your needle and I will find you a haystack

The point of this slide is to show 

examples of 4 different oracles.  

Grovers search can tell between 

these oracles in a single iteration, 

classically we would need 3 

iterations.  



Let  f : {0,1}2
 {0,1} have the property that there is exactly 

one x  {0,1}2 for which f (x) = 1

Goal: find x  {0,1}2 for which f (x) = 1

Classically: 3 queries are necessary

Quantumly: ?

Only after 3 tests can we 

determine with certainty 

that the oracles is 1 for 

only a single input value x

Properties of the oracle



f
x1

x2

y

x2

x1

y  f(x1,x2)

((–1) f(00)00 + (–1) f(01)01 + (–1) f(10)10 + (–1) f(11)11)(0 – 1)

Output state:

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f:

Input state to query: 

(00 + 01 + 10 + 11)(0 – 1)
f

H

H

H1

0

0

A 1-4 search can chose between 4 oracles in one iteration

Here we clearly see the Kmap encoded in phase – the main property of many quantum 

algorithms
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0.3   –0,3

0.3   –0,3

- 0.3   0,3

0.3   –0,3

00 

01 

11 

10
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00 
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- 0.3   0,3

0.3    – 0,3
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- 0.5    0,5
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00 

01 

11 

10

0       0 
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ab c 0 1

- 0.5    0,5
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00 

01 

11 
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0       0 

0      0

This slide illustrates how the state of the system is changed as it propagates 

through the quantum network implementation of Grovers Search algorithm.  
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0.5    – 0,5

ab c 0 1

- 0.5    0,5

0.5   - 0.5

00 

01 

11 

10

0       0 

0      0

ab c 0 1

00 

01 

11 

10

ab c 0 1

00 

01 

11 

10

ab c 0 1

00 

01 

11 

10
-1
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-0.3     0.3

0.3     -0.3

- 0.3 0.3
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- 0.3 0.3

0.3   - 0.3

Ibverters flip between 

00 and 11

Hadamard addis  in 

00 and 11

Inverter flips second 

bit when first is 1

Ibverters flip between 

00 and 11

Hadamard of 

affine function



ψ00 = – 00 + 01 + 10 + 11

ψ01 = + 00 – 01 + 10 + 11

ψ10 = + 00 + 01 – 10 + 11

ψ11 = + 00 + 01 + 10 – 11
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The state corresponding to the 

input to the oracle that has a 

output result of 1 is ‘tagged’ with 

a negative 1.

After Hadamard 

the solution is 

“known” in Hilbert 

space by having 

value -1. But it is 

hidded from us

This was a special case where we 

could transform the state vector 

without repeating the oracle.

In general we have to repeat the 

oracle – general Grover



Reed-Muller Transform 

Reminder
 Definition: for a function   , the Reed-Muller 

transform pair is given by :

 The R-M matrix for two variables is

f

1( )    and    ( )s R n f f R n s   

1 1

where  ( ) (1),  1,2,...,

            ( ) (1),  1,2,...,

i

i

R n R i n

R n R i n 

  

 

1 0
(1)

1 1
R

 
  
 

1 0 0 0

1 1 0 0
(2) (1)=

1 0 1 0

1 1 1 1

iR R

 
 
  
 
 
 



FPRM

 Functions can be represented as a Reed-Muller 
expansion of a given polarity using a collection 
of conjunctive terms joined by the modulo-
additive operator such as 

where ai{0,1} 

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

1F a a x a x a x a x x

a x x a x x a x x x

    

  



How to use this? FPRM butterfly

x1’x2’

x1’x2

x1 x2’

x1 x2 

minterms
exors

Spectral 

coefficients

1

x2

x1

x1 x2

Creating 

symbolic 

functions of 

spectral 

coefficient

1 0

1 1
PPRM in this case

Basis 

functions



How to use this? FPRM butterfly

x1’x2’

x1’x2

x1 x2’

x1 x2 

minterms
exors

Spectral 

coefficients

1

x2

x1

x1 x2

1
0

0

0

1

1

1

1

Calculating  

numerical 

values of 

spectral 

coefficients 

from values 

of function 

vector 

(minterms)

Basis 

functions

1

1

0

0



FPRM Butterfly
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 3 inputs function Butterfly diagram for Polarity 0



Negative polarity changes butterfly: polarity of x1 = 1, 
polarity of x2 = 0

x1’x2’

x1’x2

x1 x2’

x1 x2 

minterms
exors

Spectral 

coefficients

x1

X1 X2’

1

x2’

1
0

1

0

1

0

1

1

0

1

1

1

Negative 

polarity for 

X2

x1’x2  x1x2’ = (1  x1)(1  x2’)  x1x2’ =1  x2’  x1 

 x1 x2’  x1 x2’ = 1  x2’  x1 



Problem that we want to solve

 Given is a Boolean function given as a 
vector of its minterms (true and false), 
a truth-table.

 Find one of 2n FPRMs and its polarity for 
which the number of spectral 
coefficients is below some given cost 
bound (a number).



Complete example

a’b’ = (1+a)b’ = b’ + ab’     for polarity ab’ = (10)

a’b’     for polarity a’b’ = (00)

a’b’ = a’(1+b) = a’ + a’ b    for polarity a’b = (01)

a’b’ = (1+a)(1+b) =1+ a + b+ a’b    for polarity ab = (11)

Cost 1

Cost 2

Cost 2

Cost 4

a 

0 

1

b   0      1

For cost 

bound 1

1

0

0

0

Signal YES as a function of FPRM polarity and cost boundpolarity

a 

0 

1

b   0      1

For cost 

bound 2

1

1

1

0

a 

0 

1

b   0      1

For cost 

bound 3

1

1

1

0

a 

0 

1

b   0      1

For cost 

bound 4

1

1

1

1

FPRM polarity



R-M Butterflies Quantum Logic 

Circuit

 A 3*3 Generalized Toffoli Gate

 Butterflies and corresponding Quantum circuit
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Quantum Kernel for FPRM

P

d1

d2

C d2  d1

C’ (C d2  d1)  d2 = C’ d1  d2

C d2  d1



Quantum Data Path for FPRM

P

d1

d2

d3

d4



FPRM Processor

 Data path for all 3 variables FPRMs 

d0

d1

d2

d3

d4

d
5

d6

d7

3 bit for polarity

23 bit for data -

Boolean Function
23 bit for spectrum of

this Boolean function

for given polarity

p
c

pb

pa

e0

e1

e2

e3

e
4

e5

e
6

e7



Components of Grover Loop (called 
also Grover Iterate)

 The Oracle -- O

 The Hadamard Transforms -- H

 The Zero State Phase Shift -- Z

O is an 

Oracle

H is 

Hadamards

H is 

Hadamards

Z is
Zero State 

Phase Shift

Grover Iterate



Grover’s Algorithm

 3 Steps for Grover algorithm

– place a register in an equal superposition of all states

– selectively invert the phase of the marked state

– inversion about the mean operation a number of times

G

Walsh-
Hadamard

GG
 O(N1/2)

Input

|q>

oracle

workspace

Inversion

about mean

o

r

a

c

l

e

Grover Operator

Measured

polarity for

which satisfied



Quantum Architecture of FPRM 

oracle for Grover
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Cost Counter and Comparator
 The first task is to count   , 

 The second task to evaluate the condition          .  

 If  the condition is true. the circuit will output one, 
otherwise zero.

e
0

e
1

e
2

ss
0

cc
0

ss
1

cc
1

ss
2

cc
2

sss
0

ccc
0

sss
1

ccc
1

s
1

cccc
1

s
0

s
2

s
3

F
A

e
3

e
4

e
5

F
A

e
6

e
7

H
A

F
A

F
A

H
A

H
A

s
1

s
0

s
3

b
3

b1

b
0

b2

|0>

e
0

e
1

e
2

e
3

e
4

e5

|0>

|0>
e6

e7

|0>

|0>

|0>

|0>

ss
0

cc
0

ss
1

cc
1

ss
2

cc
2

sss
0

ccc
0

sss
1

ccc
1

cccc
1

|0>

s
2

Count ones

Comparator

T

P T

3 3 3 3 3 2 2 2 3 3 2 2

1 1 1 3 3 2 1 1 0 0 02

( ) ( )( ) ( )( )

( ) ( ) ( )( )( )

out s b b s b s b b s b s b

s b b s b s b s b s b b

        

      



MVL Compressor Tree 

Implementation
 More compact if using MVL compressor tree for 

cost counter and comparator

 Sign-bit adder and its quantum implementation

22

2 2
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S12
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Pre-condition

Sum Carry



Other Problems that we solved 
with variants of this architecture

 Problem 1. Given is function and bound on cost. Find 
the FPRM polarity for which the cost of spectrum is below 
the bound.

 Problem 2. Given is polarity and bound on cost. Find 
the function such that FPRM in this polarity has the cost of 
spectrum that is below the bound.

 Problem 3. Given is polarity and function. Find the 
bound such that this function in this FPRM polarity has the 
cost of spectrum that is below the bound.



Essence of logic 

synthesis 

approach to 

Machine Learning



What oracle knows?

Oracle

Is Angelina 

beautiful?

yes

Oracle
Is Alice 

beautiful?

no

Angelina

Alice

observer

Description of Oracle criteria to 

separate beautiful from not beautiful

We have to learn oracle from examples



Example of Logical Synthesis for 
oracle creation

John
DaveMark Jim

Alan
Nick

Mate Robert



A - size of hair

C - size of beard D - color of eyes

B - size of nose

Dave Jim
John Mark

Good guys

Alan

Nick
Mate Robert

Bad guys



Good guys
John Mark Dave Jim

C - size of beard

D - color of eyes

A - size of hair

B - size of nose

A’ BCD A’ BCD’ A’ B’CD A’ B’CD

00 01 11 10

00 - 1 -
01 – 1 1
11 - – - -
10 - - - -

AB

CD

-

-



C - size of beard

D - color of eyes

A - size of hair

B - size of nose

A’ BC’D’ AB’C’D ABCD A’ B’C’D

00 01 11 10

00 - 1 -
01 0 1 1
11 - – 0 -
10 - 0 - -

AB

CD

-

0

Alan

Nick
Mate Robert

Bad guys

A’C



C - size of beard

D - color of eyes

A - size of hair

B - size of nose
00 01 11 10

00 - 1 -
01 0 1 1
11 - – 0 -
10 - 0 - -

AB

CD

-

0

A’C

Generalization 1:

Bald guys with beards are good

Generalization 2:

All other guys are no good



Problem 4. Given 
is an incompletely 
specified function. Find 
the FPRM polarity for 
which the cost of 
spectrum is the 
minimum.

Other Problems that we solved 
with variants of this architecture

This is the machine learning 

problem just shown

f(x)

o
ra

cle
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When 

in loop

|0> 

|1>

|0>

When 

fixed 

values



Other Applications

 Logic Design

– (also logic minimization for reversible and 
quantum circuits themselves)

 Image Processing

 DSP



Applications

 Quantum Game Theory. 

– For instance, the problem discussed above 
is more general than the game of finding 
the conjunctive formula of literals for a 
given set of data.  



Applications

 All circuits presented here can be generalized to 
ternary quantum gates, allowing for ternary 
butterflies and more efficient arithmetic for larger 
counters and comparators. 



Conclusion

Hi guys, you just learnt a 
method that allows everybody 
who knows how to design a 
reversible oracle to create a 

Grover-based quantum 
algorithm for a new NP-hard 

problem


