
Grover’s Algorithm in
Machine Learning and

Optimization
Applications

Grover Algorithm
Reminder in new light

Graph Coloring
 Building oracle for graph coloring is a better explanation of Grover than

database search.
 This is not an optimal way to do graph coloring but explains well the principle

of building oracles.

The Graph Coloring Problem

2

4

1

3

5

6 7

2

4

1

3

5

6 7

Color every node

with a color. Every

two nodes that share

an edge should have

different colors.

Number of colors

should be minimum

This graph is 3-colorable

Simpler Graph Coloring Problem

2

1

3

4

Two wires for color of node 1

Two wires for color of node 2

Two wires for color of node 3

Two wires for color of node 4


Gives “1” when nodes 1 and

2 have different colors

 

12 13 23


24


34

Value 1 for good coloring

We need to give all

possible colors

here

F(x)

Simpler Graph Coloring Problem

  

12 13 23


24


34

Value 1 for good coloring

We need to give all

possible colors

here

H

H

H

H

H

Give

Hadamard for

each wire to

get

superposition

of all state,

which means

the set of all

colorings

|0>
|0>

|0>

Discuss naïve non-

quantum circuit with

a full counter of

minterms

Now we will generate whole Kmap at once

using quantum properties - Hadamard

f(x)

Hadamard Transform

Single qubit H

H

H

Parallel connection of

two Hadamard gates is

calculated by Kronecker

Product (tensor product)



1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

1/2

=

=

Here I calculated Kronecker

product of two Hadamards

Motivating calculations for 3 variables

 As we remember, these are transformations of Hadamard gate:

H|0> |0> + |1> H|1> |0> - |1>

H|x> |0> + (-1) x |1>

In general:

For 3 bits, vector of 3 Hadamards works as follows:

(|0>+(-1)a|1>) (|0>+(-1)b|1>) (|0>+(-1)c|1>) =
From

multiplication

|000> +(-1)c |001> +(-1)b |001>+(-1)b+c |001>000> +(-1)a |001> +

(-1)a+c |001> + (-1)a+b |001> (-1)a+b+c |001>

|abc> 

This is like a Kmap with

every true minterm (1)

encoded by -1

And every false minterm (0)

encoded by 1

We can say that Hadamard gates before the oracle

create the Kmap of the function, setting the function in

each of its possible minterms (cells) in parallel

f(x)

o
ra

cle

|0>

|0>

Block Diagram for graph coloring and
similar problems

Vector

Of

Hadamards

Vector

Of

Basic

States

|0>
Oracle with Comparators,

Global AND gate

Work

bits

Output of

oracle

All good colorings are encoded

by negative phase

Think about

this as a very

big Kmap with

-1 for every

good coloring

Vector

Of

Hadamards

What Grover algorithm does?

 Grover algorithm looks to a very big Kmap and tells where is the -1 in it.

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 -1 1 1 1 1 1

1 1 1 1 1 1 1 1

Here

is -1

What “Grover for multiple solutions” algorithm does?

 Grover algorithm looks to a very big Kmap and tells where is the -1 in it.

 “Grover for many solutions” will tell all solutions.

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 -1 1 1 1 1 1

1 1 1 -1 -1 1 1 1

Here is -1,

and here is -

1, and here

Variants of Grover

 With this oracle the “Grover algorithm for many
solutions” will find all good colorings of the graph.

 If we want to find the coloring, that is good and in
addition has less than K colors, we need to add
the cost comparison circuit to the oracle.

 Then the oracle’s answers will be “one” only if the
coloring is good and has less colors than K.

 The oracle thus becomes more complicated but
the Grover algorithm can be still used.

1 in 4 search

A practical Example

 This presentation shows clearly how to perform
a so called 1 in 4 search

 We start out with the basics

Pick your needle and I will find you a haystack

The point of this slide is to show

examples of 4 different oracles.

Grovers search can tell between

these oracles in a single iteration,

classically we would need 3

iterations.

Let f : {0,1}2
 {0,1} have the property that there is exactly

one x  {0,1}2 for which f (x) = 1

Goal: find x  {0,1}2 for which f (x) = 1

Classically: 3 queries are necessary

Quantumly: ?

Only after 3 tests can we

determine with certainty

that the oracles is 1 for

only a single input value x

Properties of the oracle

f
x1

x2

y

x2

x1

y  f(x1,x2)

((–1) f(00)00 + (–1) f(01)01 + (–1) f(10)10 + (–1) f(11)11)(0 – 1)

Output state:

Black box for 1-4 search:

Start by creating phases in superposition of all inputs to f:

Input state to query:

(00 + 01 + 10 + 11)(0 – 1)
f

H

H

H1

0

0

A 1-4 search can chose between 4 oracles in one iteration

Here we clearly see the Kmap encoded in phase – the main property of many quantum

algorithms

f
H

H

H1

0

0 H

H

H

H

H

X

X H H

X

X

M

M

M

Time

state =

0

1

0

0

0

0

0

0

state =

0.353

-0.353

0.353

-0.353

0.353

-0.353

0.353

-0.353

state =

0.353

-0.353

0.353

-0.353

0.353

-0.353

-0.353

0.353

state =

0.353

-0.353

0.353

-0.353

0.353

-0.353

-0.353

0.353

state =

-0.353

0.353

0.353

-0.353

0.353

-0.353

0.353

-0.353

state =

0

0

-0.5

0.5

0.5

-0.5

0

0

state =

0

0

-0.5

0.5

0

0

0.5

-0.5

00

01

11

10

ab c 0 1

1
00

01

11

10

ab c 0 1
0.3 –0,3

0.3 –0,3

0.3 –0,3

0.3 –0,3

ab c 0 1
0.3 –0,3

0.3 –0,3

- 0.3 0,3

0.3 –0,3

00

01

11

10

ab c 0 1

0.3 –0,3

- 0.3 0,3

00

01

11

10

0.3 –0,3

0.3 –0,3

ab c 0 1

0.3 –0,3

0.3 - 0,3

00

01

11

10

- 0.3 0,3

0.3 – 0,3

ab c 0 1

- 0.5 0,5

0 0

00

01

11

10

0 0

0.5 – 0,5

ab c 0 1

- 0.5 0,5

0.5 - 0.5

00

01

11

10

0 0

0 0

This slide illustrates how the state of the system is changed as it propagates

through the quantum network implementation of Grovers Search algorithm.

f
H

H

H1

0

0 H

H

H

H

H

X

X H H

X

X

M

M

M

Time

state =

0.353

-0.353

0.353

-0.353

0.353

-0.353

-0.353

0.353

state =

-0.353

0.353

0.353

-0.353

0.353

-0.353

0.353

-0.353

state =

0

0

-0.5

0.5

0.5

-0.5

0

0

state =

0

0

-0.5

0.5

0

0

0.5

-0.5

state =

-0.353

0.353

0.353

-0.353

0.353

-0.353

-0.353

0.353

state =

-0.353

0.353

0.353

-0.353

0.353

-0.353

-0.353

0.353

state =

0

0

0

0

0

0

0

-1

state =

0

0

0

0

0

0

0

1

ab c 0 1

0.3 –0,3

- 0.3 0,3

00

01

11

10

0.3 –0,3

0.3 –0,3

ab c 0 1

0.3 –0,3

0.3 - 0,3

00

01

11

10

- 0.3 0,3

0.3 – 0,3

ab c 0 1

- 0.5 0,5

0 0

00

01

11

10

0 0

0.5 – 0,5

ab c 0 1

- 0.5 0,5

0.5 - 0.5

00

01

11

10

0 0

0 0

ab c 0 1

00

01

11

10

ab c 0 1

00

01

11

10

ab c 0 1

00

01

11

10
-1

-0.3 0.3

0.3 -0.3

-0.3 0.3

0.3 -0.3

- 0.3 0.3

0.3 - 0.3

- 0.3 0.3

0.3 - 0.3

Ibverters flip between

00 and 11

Hadamard addis in

00 and 11

Inverter flips second

bit when first is 1

Ibverters flip between

00 and 11

Hadamard of

affine function

ψ00 = – 00 + 01 + 10 + 11

ψ01 = + 00 – 01 + 10 + 11

ψ10 = + 00 + 01 – 10 + 11

ψ11 = + 00 + 01 + 10 – 11

f
H

H

H1

0

0 H

H

H

H

H

X

X H H

X

X

M

M

M

Time

The state corresponding to the

input to the oracle that has a

output result of 1 is ‘tagged’ with

a negative 1.

After Hadamard

the solution is

“known” in Hilbert

space by having

value -1. But it is

hidded from us

This was a special case where we

could transform the state vector

without repeating the oracle.

In general we have to repeat the

oracle – general Grover

Reed-Muller Transform

Reminder
 Definition: for a function , the Reed-Muller

transform pair is given by :

 The R-M matrix for two variables is

f

1() and ()s R n f f R n s   

1 1

where () (1), 1,2,...,

 () (1), 1,2,...,

i

i

R n R i n

R n R i n 

  

 

1 0
(1)

1 1
R

 
  
 

1 0 0 0

1 1 0 0
(2) (1)=

1 0 1 0

1 1 1 1

iR R

 
 
  
 
 
 

FPRM

 Functions can be represented as a Reed-Muller
expansion of a given polarity using a collection
of conjunctive terms joined by the modulo-
additive operator such as

where ai{0,1}

0 1 1 2 2 3 3 12 1 2

13 1 3 23 2 3 123 1 2 3

1F a a x a x a x a x x

a x x a x x a x x x

    

  

How to use this? FPRM butterfly

x1’x2’

x1’x2

x1 x2’

x1 x2

minterms
exors

Spectral

coefficients

1

x2

x1

x1 x2

Creating

symbolic

functions of

spectral

coefficient

1 0

1 1
PPRM in this case

Basis

functions

How to use this? FPRM butterfly

x1’x2’

x1’x2

x1 x2’

x1 x2

minterms
exors

Spectral

coefficients

1

x2

x1

x1 x2

1
0

0

0

1

1

1

1

Calculating

numerical

values of

spectral

coefficients

from values

of function

vector

(minterms)

Basis

functions

1

1

0

0

FPRM Butterfly

x
3

0
1

0
1

1
0

1
1

0
0

0
0

0
1

0
1

0
1

1
0

0
0

0
1

0
1

1
0

0
1

1
1

x
2

x
1

a
0

a
3

a
2

a
23

a
1

a
13

a
12

a
123

RM

coefficient

minterms

basis

functions

1 0

1 1

1 0

1 1

1 0

1 1

 3 inputs function Butterfly diagram for Polarity 0

Negative polarity changes butterfly: polarity of x1 = 1,
polarity of x2 = 0

x1’x2’

x1’x2

x1 x2’

x1 x2

minterms
exors

Spectral

coefficients

x1

X1 X2’

1

x2’

1
0

1

0

1

0

1

1

0

1

1

1

Negative

polarity for

X2

x1’x2  x1x2’ = (1  x1)(1  x2’)  x1x2’ =1  x2’  x1

 x1 x2’  x1 x2’ = 1  x2’  x1

Problem that we want to solve

 Given is a Boolean function given as a
vector of its minterms (true and false),
a truth-table.

 Find one of 2n FPRMs and its polarity for
which the number of spectral
coefficients is below some given cost
bound (a number).

Complete example

a’b’ = (1+a)b’ = b’ + ab’ for polarity ab’ = (10)

a’b’ for polarity a’b’ = (00)

a’b’ = a’(1+b) = a’ + a’ b for polarity a’b = (01)

a’b’ = (1+a)(1+b) =1+ a + b+ a’b for polarity ab = (11)

Cost 1

Cost 2

Cost 2

Cost 4

a

0

1

b 0 1

For cost

bound 1

1

0

0

0

Signal YES as a function of FPRM polarity and cost boundpolarity

a

0

1

b 0 1

For cost

bound 2

1

1

1

0

a

0

1

b 0 1

For cost

bound 3

1

1

1

0

a

0

1

b 0 1

For cost

bound 4

1

1

1

1

FPRM polarity

R-M Butterflies Quantum Logic

Circuit

 A 3*3 Generalized Toffoli Gate

 Butterflies and corresponding Quantum circuit

A

B

AP 

BQ 

C CABR 

p

d
1

d
2

p'd
1
+p(d

1
 d

2
)

p=1
d

1

d
2 d

2

d
1
 d

2

p=0
d

1

d
2

d
1

d
1
 d

2 p'(d
1

 d
2
)+pd

2

Quantum Kernel for FPRM

P

d1

d2

C d2  d1

C’ (C d2  d1)  d2 = C’ d1  d2

C d2  d1

Quantum Data Path for FPRM

P

d1

d2

d3

d4

FPRM Processor

 Data path for all 3 variables FPRMs

d0

d1

d2

d3

d4

d
5

d6

d7

3 bit for polarity

23 bit for data -

Boolean Function
23 bit for spectrum of

this Boolean function

for given polarity

p
c

pb

pa

e0

e1

e2

e3

e
4

e5

e
6

e7

Components of Grover Loop (called
also Grover Iterate)

 The Oracle -- O

 The Hadamard Transforms -- H

 The Zero State Phase Shift -- Z

O is an

Oracle

H is

Hadamards

H is

Hadamards

Z is
Zero State

Phase Shift

Grover Iterate

Grover’s Algorithm

 3 Steps for Grover algorithm

– place a register in an equal superposition of all states

– selectively invert the phase of the marked state

– inversion about the mean operation a number of times

G

Walsh-
Hadamard

GG
 O(N1/2)

Input

|q>

oracle

workspace

Inversion

about mean

o

r

a

c

l

e

Grover Operator

Measured

polarity for

which satisfied

Quantum Architecture of FPRM

oracle for Grover

p
c

d
0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

p
b

p
a

FPRM

Processor

Cost Counter

and

Comparator

|0>

Polarity

vector

Threshold

value

function spectrum

Yes/No

Inverse

Cost Counter

and

Comparator

Inverse

FPRM

Processor

|0>

|0>

b
2

b
1

b
0

Working

qubits

d
0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

|0>

|0>
e

0

e
1

e
2

e
3

e
4

e
5

e
6

e
7

p
c

p
b

p
a

b
2

b
1

b
0

b
3

b
3

Cost Counter and Comparator
 The first task is to count ,

 The second task to evaluate the condition .

 If the condition is true. the circuit will output one,
otherwise zero.

e
0

e
1

e
2

ss
0

cc
0

ss
1

cc
1

ss
2

cc
2

sss
0

ccc
0

sss
1

ccc
1

s
1

cccc
1

s
0

s
2

s
3

F
A

e
3

e
4

e
5

F
A

e
6

e
7

H
A

F
A

F
A

H
A

H
A

s
1

s
0

s
3

b
3

b1

b
0

b2

|0>

e
0

e
1

e
2

e
3

e
4

e5

|0>

|0>
e6

e7

|0>

|0>

|0>

|0>

ss
0

cc
0

ss
1

cc
1

ss
2

cc
2

sss
0

ccc
0

sss
1

ccc
1

cccc
1

|0>

s
2

Count ones

Comparator

T

P T

3 3 3 3 3 2 2 2 3 3 2 2

1 1 1 3 3 2 1 1 0 0 02

() ()() ()()

() () ()()()

out s b b s b s b b s b s b

s b b s b s b s b s b b

        

      

MVL Compressor Tree

Implementation
 More compact if using MVL compressor tree for

cost counter and comparator

 Sign-bit adder and its quantum implementation

22

2 2

A
i-1

B
i-1

A
i-1

B
i-1

C

+2+2 +1
0

A
i

B
i

0

0

0

0

+2+2 +20

A
i

S12

12

Pre-condition

Sum Carry

Other Problems that we solved
with variants of this architecture

 Problem 1. Given is function and bound on cost. Find
the FPRM polarity for which the cost of spectrum is below
the bound.

 Problem 2. Given is polarity and bound on cost. Find
the function such that FPRM in this polarity has the cost of
spectrum that is below the bound.

 Problem 3. Given is polarity and function. Find the
bound such that this function in this FPRM polarity has the
cost of spectrum that is below the bound.

Essence of logic

synthesis

approach to

Machine Learning

What oracle knows?

Oracle

Is Angelina

beautiful?

yes

Oracle
Is Alice

beautiful?

no

Angelina

Alice

observer

Description of Oracle criteria to

separate beautiful from not beautiful

We have to learn oracle from examples

Example of Logical Synthesis for
oracle creation

John
DaveMark Jim

Alan
Nick

Mate Robert

A - size of hair

C - size of beard D - color of eyes

B - size of nose

Dave Jim
John Mark

Good guys

Alan

Nick
Mate Robert

Bad guys

Good guys
John Mark Dave Jim

C - size of beard

D - color of eyes

A - size of hair

B - size of nose

A’ BCD A’ BCD’ A’ B’CD A’ B’CD

00 01 11 10

00 - 1 -
01 – 1 1
11 - – - -
10 - - - -

AB

CD

-

-

C - size of beard

D - color of eyes

A - size of hair

B - size of nose

A’ BC’D’ AB’C’D ABCD A’ B’C’D

00 01 11 10

00 - 1 -
01 0 1 1
11 - – 0 -
10 - 0 - -

AB

CD

-

0

Alan

Nick
Mate Robert

Bad guys

A’C

C - size of beard

D - color of eyes

A - size of hair

B - size of nose
00 01 11 10

00 - 1 -
01 0 1 1
11 - – 0 -
10 - 0 - -

AB

CD

-

0

A’C

Generalization 1:

Bald guys with beards are good

Generalization 2:

All other guys are no good

Problem 4. Given
is an incompletely
specified function. Find
the FPRM polarity for
which the cost of
spectrum is the
minimum.

Other Problems that we solved
with variants of this architecture

This is the machine learning

problem just shown

f(x)

o
ra

cle

|0>

|0>

When

in loop

|0>

|1>

|0>

When

fixed

values

Other Applications

 Logic Design

– (also logic minimization for reversible and
quantum circuits themselves)

 Image Processing

 DSP

Applications

 Quantum Game Theory.

– For instance, the problem discussed above
is more general than the game of finding
the conjunctive formula of literals for a
given set of data.

Applications

 All circuits presented here can be generalized to
ternary quantum gates, allowing for ternary
butterflies and more efficient arithmetic for larger
counters and comparators.

Conclusion

Hi guys, you just learnt a
method that allows everybody
who knows how to design a
reversible oracle to create a

Grover-based quantum
algorithm for a new NP-hard

problem

