A Mandelbrot Set Generator
Implemented on an Altera DE1 Board
ECE 573, Winter 2008

Jesse Armagost and Eddie Yang*

March 21, 2008

*This report covers the work done by Jesse. Eddie will turn in his own project report.

1 The Mandelbrot Set and Fractals

Figure 1: The Mandelbrot Set

The Mandelbrot Set is a product of IBM research scientist Benoit Mandelbrot’s work in the 1970’s and
1980’s. Mandelbrot was studying the work done previously by both Gaston Julia and Pierre Fatou, who
were rival scientists in the 1920’s. The advent of modern computer graphics and processing power around
the time of Mandelbrot’s work allowed him to visualize the Mandelbrot Set in more detail than ever before.
In fact the Mandelbrot set had been described previously in connection with the related Julia Sets, but it
was not possible to appreciate its full beauty and shape before computer technology had matured enough.

The term “fractal” was coined by Mandelbrot in his publications describing the Mandelbrot set. The
word is a contraction of the term “fractional dimension”, which is used to describe how fully a geometric
figure fills space.

To generate the Mandelbrot Set, an iterative formula is applied to points in the complex plane. The

formula is surprisingly simple:

n=z4c (1)

where zq is the z; of the previous calculation and c is a fixed point in the complex plane.

During repeated applications of the formula on a point in the complex plane, the magnitude of z; will
either remain finite or diverge to infinity. If the point diverges, the point is not in the Mandelbrot set—
otherwise it is.

This discussion describes a rather boring binary image—either points are in the set or they’re not. To
add more artistic value to the image, false colors can be applied. The colors are applied according to how fast
a point diverges to infinity. This is given by how many iterations are computed before the point diverges.

In practice, it is not reasonable to detect whether a point diverges to infinity, so a shortcut method can

be used. The shortcut takes advantage of the fact that if the magnitude of z; reaches 2, then the point is

guaranteed to diverge.

2 Description of the DE1 Board

This project was implemented in an Altera Cyclone II FPGA (EP2C20), which is included on the DE1
development board from Terasic Technologies. The board includes a full complement of peripherals including
FLASH memory, SDRAM, SRAM, RS-232 transceiver, VGA port, LEDs and switches.

The board is controlled by a PC which is connected via the RS-232 connection, which can autobaud to
several popular baud rates. The FPGA computes the Mandelbrot Set and stores the graphical data in the
SRAM, which is used as a frame buffer. The Mandelbrot Set image is displayed on a VGA monitor which
is connected to the VGA port. In order to provide the highest quality image, the VGA resolution is 1024 x
768 pixels.

3 Fixed Point Math

The Mandelbrot Set is typically computed using floating point math, which in today’s computers means
IEEE-754 floating point math. Implementing the IEEE-754 standard in a small FPGA, however, would use
far too many resources and would severely reduce the operating frequency of the device. For this project
it was decided to use fixed point math instead. Fixed point math is used in many microprocessors and
embedded systems in which there is no floating point hardware.

In fixed point math the decimal point is implied to exist at a certain bit position, and bits to the left
of the decimal take on standard binary values while bits to the right of the decimal take on values that are
the reciprocal of the standard binary values. Fixed point math is represented using the “Q” notation. For
example, using Q2.2 fixed point math means that we have 2 bits to the left of the decimal point and 2 bits
to the right. We can then represent the following numbers exactly with this math:

0000=0+0+0+0=0
0001 =0+ 0+ 0+ ;=0.25
0010 =0+ 0 + 3 +0 = 0.50

1110 =2+ 1+ 5 +0 = 3.50
111 =2+1+§ +5=375

Standard two’s complement can be formed by using the leftmost bit to represent sign. The final version

of this project uses signed Q2.29 fixed point math, but the design is parameterized to use any desired values.

4 Description of Verilog Modules

Figure 2 shows a block diagram of the Mandelbrot set generator. The figure illustrates which modules
operate in which of the three clock domains that were used in the design. The following sections describe

the modules in more detail.

wait wait

Autobaud 1 | 1
RS-232 —-| complex pipe |—-| back end fifo |—— -
| UART [mand front end fifo engine : : Ram
—-| complex pipe I—-| back end fifo I—— R
iterate up to
1024 times
50 MHz sysclk = 50 MHz
oscillator
‘li vgaclk = 65 MHz
24 MHz PIPE .
eclk = 139.2 MH.
oscillator PLL PP z ROL08

VGA
1024 x 768 x 60 Hz

Figure 2: Block Diagram of the Mandelbrot Set Generator

4.1 mand _defs

The mand_defs module defines various values that are used in the rest of the design.

4.2 top

The Top module is the top level of the design. It contains all of the FPGA pins and instantiates all of the

lower level modules.

4.3 pipe_pll and vga pll

The design uses three separate clock domains, with two of them being generated by PLLs. The pipe_pll
module contains the pipe PLL, which generates the 139.2 MHz complex pipe clock from the 24 MHz oscillator
input. The vga_pll module contains the vga PLL, which generates the 65 MHz VGA pixel clock from the 50
MHz oscillator input.

4.4 reset_filter

The reset_filter module provides a way to produce a proper reset signal in each clock domain. An asyn-
chronous reset signal can be asserted at any time relative to the clock, but must be deasserted synchonously
with the clock. The reset filter module provides this functionality. There is one reset filter per clock domain,

for a total of three.

4.5 mand

The mand module is responsible for responding to commands from the uart and uart_decode modules, and
generating a series of complex values for the complex pipes to operate on. When panning or zooming, the
mand module adjusts the current point in the complex plane appropriately, and also adjusts the various pan
and zoom factors in the module. When commanded to start, the mand module calculates the value of the
upper left corner of the image in the complex plane, and then iterates through all 1024 x 768 values. For

each of these values, it loads the complex plane coordinate into the front end pipe, where it will be removed

by the complex pipe engine and operated on. The mand module will continue to load complex coordinates
into the front end FIFO until all 1024 x 768 pixels are processed. If the front end FIFO temporarily fills,

the mand module will wait until free space appears in the FIFO.

4.6 engine

The engine module instantiates the front end FIFO, the complex pipes and the back end FIFOs. When the
engine module detects that complex coordinates are waiting in the front end FIFO, it removes them and
loads them into an empty slot in a complex pipe. If there are no free slots in any complex pipe, the engine
module will wait until a slot becomes available. It continues this process until it completely empties the
front end FIFO.

The front end FIFO data takes the following form:

zz:yy| = sgn_current_coord_im

xx:20] = sgn_current_coord._re

19:10] = v_pixel_count

9:0] = h_pixel_count

where sgn_current_coord_im is the complex coordinate imaginary part,
sgn_current_coord_re is the complex coordinate real part,
v_pixel_count is the vertical screen pixel for this complex coordinate,

h_pixel_count is the horizontal screen pixel for this complex coordinate

(xx, yy and zz are variables because the size of the signed complex coordinates can vary depending on the
fixed point math that is used.)

When a complex coordinate finishes in a complex pipe, the result is placed in the complex pipe’s back
end FIFO. If there is no room in the back end FIFO, the complex pipe is prohibited from being loaded.
The load prohibit signal is generated when there are still enough slots left in the FIFO to accommodate any
coordinates that still may be in the complex pipe (up to 9 coordinates in flight at once), because there is no
way to stop them from being loaded into the back end FIFO once they start in the complex pipe.

The data in each back end FIFO takes the following form:

[36] = in_set

[35:20] = iterations

[19:10] = v_pixel

[9:0] = h_pixel

where in_set indicates whether the complex point is in the set,
iterations is the number of iterations before exiting the complex pipe,
v_pixel is the vertical screen pixel for this complex coordinate,

h_pixel is the horizontal screen pixel for this complex coordinate

4.7 complex_pipe

The complex pipe is the heart of the design. It is a pipelined module that is responsible for computing

iterations of the Mandelbrot formula. The complex pipe was optimized as much as possible to achieve high

speed. This was fairly difficult to do, however, because the free version of the Altera software (Quartus II)
has the manual floorplanning features disabled. With floorplanning enabled, each complex pipe could be
constrained to a specific area of the FPGA, close to the dedicated multipliers that are used inside it. Without
this ability, the best that could be done was to pipeline the complex pipe to 9 stages and let the place-and-
route software do the best it could. The result was that the complex pipe could run at approximately 144
MHz. The closest value that could be generated with the PLL and 24 MHz input clock was 139.2 MHz.

The major blocks in the complex pipe were generated with the Quartus Megawizard tool, which performs
parameterized generation of IP blocks. The blocks that are generated in this way are presumably tuned to
achieve the highest performance possible for a given FPGA. There is no known way to look inside these
blocks and see what optimizations are being made, however, so there must be an element of trust that the
synthesis tool (and the tool developers) are making smart decisions.

Complex coordinates enter the front of the pipe with the load_en signal when there is a free slot, and then
begin iterating. The pipe can hold nine complex coordinates at a time. Each time a complex coordinate
passes through the pipe, its magnitude is computed and compared to 2. The number of iterations is also
kept track of. If the number of iterations reaches 1024, or the magnitude of the result reaches 2, the complex
coordinate is finished in the pipe. In the first case the coordinate is in the set, and in the second case it
is not. Actually, instead of finding the magnitude of the result, the magnitude squared is compared to two

squared (or four). This, of course, saves some logic resources while accomplishing the same effect.

(z_re +jz_im)(z_re + jz_im) + (c_re + jc_im)
z1=20"2+c =z ref2+jx2xz_rexz_im-z im*2+c_re+jc_im

=[z_re?2-z_im"2 +c_re] +j[2xz_rexz_im+ c_im]

valid_9q

overflow

>

iter_count_8q

]

done

in set

count +1

EDC(TDWLLLI

load_en

old v_pixel

— . — — h_pixel
! SR
. N S S e c_im

load_en

E
L1
M1
M

Figure 3: The Complex Pipe

4.7.1 multiplier block

2

re’

The multiplier block is used three times in the complex pipe: one instantiation generates z-., one instantiation

2

2 ., and the third instantiation generates 2 * z.. * z;p,. Although the design is fully parameterized,

generates z
the final version of the project used 32 x 32 bit signed multipliers. To increase Fmax, each of the multipliers

was specified to be internally registered four times.

4.7.2 adder block

The adder block is used three times in the complex pipe: twice to implement parts of the iterative formula,
and once to check the magnitude of the result for the escape test. After the first multipliers, the internal
precision is 2 x 32 bits = 64 bits, so the adders were specified to use signed 64 bit addition. The adders were

specified to be internally registered twice in an effort to increase Fmax.

4.7.3 subtractor block

The subtractor block is used once in the complex pipe to implement the 22, - 22, term. As with the adders,

it is specified to implement signed 64 bit math, and it is registered twice to increase Fmax.

4.8 SRAM IO

Once a complex coordinate has finished in the complex pipe, it is written to the pipe’s back end FIFO, where
it is transferred into the slower system clock domain and written into the SRAM video buffer. Normally
this would be a simple operation, but it is complicated by the fact that the SRAM is only 256K x 16. 256K
addresses are not enough to allocate one pixel per address. The solution is to store four pixels at each SRAM
address and perform a read/modify /write operation when we want to add new data. In order to properly
store a 4 bit pixel value at a particular SRAM address, we must read what was already at the SRAM address
and include it in the write so that it does not get lost.

The SRAM IO module controls access to the SRAM by the video RAM read/modify/write module and
the VGA controller module. Since the SRAM is only a single-ported device, the VGA controller must have
exclusive access to it during a VGA frame. If this were not the case, we would see corrupted data on the
screen when the RAM writing module was performing a write. As described below, the writes to the SRAM

are only allowed during vertical and horizontal retrace periods.

4.9 VGA Controller

The VGA controller is responsible for generating the VGA signaling. Figure 4 shows the timing involved in
creating VGA video. As shown in the figure, the lines of a frame are denoted with a horizontal sync signal
and the frames are denoted with a vertical sync signal. During these sync (or retrace) periods, and just
before and after, the monitor requires no visual information. This is because the raster is off the edge (or top
or bottom) of the screen during these periods. Since the vga controller does not need to access the SRAM
for visual data, we can allow the new pixel data to be written it during these periods. In this way, we can
give two separate modules access to the same single-ported SRAM device and still maintain a pristine VGA
image.

It is interesting to note that in areas of the Mandelbrot set that do not require a lot of iterations in the

complex pipe, that the system bottleneck is actually the write of the pixel data to the SRAM. In areas of the

VGA Timing at 1024 x 768 x 60 Hz

Pixel Clock = 65 MHz o
One Line of Video Every 20.68 us VSYNC width =124 us
One Frame of Video Every 16.67 ms

HSYNC width = 2.1 us

VGA
frame

VSYNC
detail

HSYNC
detail

Figure 4: VGA Timing for 1024 x 768 x 60 Hz

set that require a large number of complex pipe iterations, the system bottleneck is the speed of computation

in the complex pipes.

5 Navigating in the Set

While the image of the set shown in figure 1 is fascinating, it is much more fun to pan and zoom within the
set. By using the appropriate keys on the computer connected to the FPGA board, we can explore the set
more fully. Cursor mode allows us to place a cursor on the screen which represents the center of drawing
and zooming. The cursor is shown in figure 5. The cursor can be moved around the screen, and then we
can zoom into the area under the cursor. Figure 6 shows a possible path that can be taken by panning and
zooming.

The control keys will undoubtedly be described in Eddie’s paper (because he worked on this part of the

design), but I will show them in table 1 for reference.

Figure 5: The Navigation Cursor

6 Summary and Estimate of Development Time

This project was a joy to work on. It was my most involved FPGA project to date and I appreciated working
on something that was very challenging, a lot of fun, and that also earned class credit. Table 2 lists all the
modules in the project, and their authors. The total estimated time working on this project is between 80
and 100 hours.

Function

Pan Up

Pan Down
Pan Left

Pan Right
Zoom In
Zoom Out
Cursor On/Off
Start Drawing
Animate
Restart

=
@
<

= o n O O T Fhg ot

Table 1: Navigation Keys

Figure 6: One Possible Path Through the Set

10

Module Name

Function

Author

add.v

be_fifo.v
complex_pipe.v
Cursor.v
engine.v
fe_fifo.v
mand.v
mand_defs.v
mult.v
pipe_pll.v
reset_filter.v
sram_io.v

ssd.v
ssd_bank.v
sub.v

top.v

uart.v
uart_decode.v
vga_controller.v
vga_defs_1024_768.v
vga_palette.v
vga_pll.v

64 Bit Signed Adder

Complex Pipe Back End FIFO
Complex Math Pipeline

Provides Cursor Navigation Support
Feeds Complex Coordinates to Pipes
Complex Pipe Front End FIFO
Navigation and Coordinate Generation
Project-wide Definitions

32 Bit Signed Multiplier

Complex Pipe Clock PLL

Reset Synchronization and Filtering
Provides Off-FPGA SRAM Access
Seven Segment Display Logic

Seven Segment Display Logic

64 Bit Signed Subtractor

Top Level of the Design
Autobauding UART

Keystroke Decoding

Provides VGA Timing

VGA Definitions for 1024 x 768
Provides Different Color Palettes
VGA Pixel Clock PLL

Altera MegaWizard Generator
Altera MegaWizard Generator
Jesse Armagost

Jesse Armagost

Jesse Armagost

Altera MegaWizard Generator
Jesse Armagost

Jesse Armagost

Altera MegaWizard Generator
Altera MegaWizard Generator
Jesse Armagost

Jesse Armagost

Jesse Armagost

Jesse Armagost

Altera MegaWizard Generator
Jesse Armagost

Jesse Armagost and Eddie Yang
Eddie Yang

Jesse Armagost

Jesse Armagost

Jesse Armagost

Altera MegaWizard Generator

Table 2: Description of Verilog Modules

11

