
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006 1011

Linear Cofactor Relationships in Boolean Functions
Jin S. Zhang, Member, IEEE, Malgorzata Chrzanowska-Jeske, Senior Member, IEEE,

Alan Mishchenko, Member, IEEE, and Jerry R. Burch, Member, IEEE

Abstract—This paper describes linear cofactor relationships
(LCRs), which are defined as the exclusive sums of cofactors
with respect to a pair of variables in Boolean functions. These
relationships subsume classical symmetries and single-variable
symmetries. The paper proposes an efficient algorithm to de-
tect LCRs and discusses their potential applications in Boolean
matching, minimization of decision diagrams, synthesis of regular
layout-friendly logic circuits, and detection of support-reducing
bound sets.

Index Terms—Boolean functions, linear cofactor relationship
(LCR), logic synthesis, symmetry.

I. INTRODUCTION

MANY PROPERTIES of a Boolean function can be
expressed using cofactors. The cofactors are derived

from the function by substituting constant values for the input
variables. For example, the Boolean difference can be expressed
as f0 ⊕ f1, where f0 = f [x← 0] and f1 = f [x← 1] are the
negative and positive cofactors of function f with respect to
variable x, respectively. The Boolean difference equals 0 if f
does not depend on variable x.

A Boolean function has symmetry if the function stays un-
changed when several of its input variables are permuted. When
the permutation involves two variables, it is called classical
symmetry [1]. We use f00, f01, f10, and f11 to represent the
cofactors of f with respect to two variables, say xi and xj .
Equation f(. . . xi, . . . , xj . . .) = f(. . . xj , . . . , xi, . . .) can be
expressed as f01 = f10, or equivalently, as the linear cofactor
relationship (LCR) f01 ⊕ f10 = 0.

Many applications in electronic design automation exploit
symmetries of functions to achieve better results and im-
prove performance. Classical symmetries have a long history
and many applications, such as functional decomposition in
technology-independent logic synthesis [1]–[4], technology
mapping [5]–[7], and binary decision diagram (BDD) mini-
mization [8].

Single-variable symmetries [1] are derived based on similar
cofactor relationships involving the other cofactor pairs: f00 ⊕
f01 = 0/1, f00 ⊕ f10 = 0/1, f01 ⊕ f11 = 0/1, and f10 ⊕

Manuscript received June 25, 2004; revised February 21, 2005. This work
was supported in part by the National Science Foundation (NSF), Grant
CCR-9988402. This paper was recommended by Associate Editor S. Nowick.

J. S. Zhang and M. Chrzanowska-Jeske are with the Department of Electrical
and Computer Engineering, Portland State University, Portland, OR 97207
USA (e-mail: jinsong@ece.pdx.edu; jeske@ece.pdx.edu).

A. Mishchenko is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720 USA (e-mail:
alanmi@eecs.berkeley.edu).

J. R. Burch is with the Synopsys, Inc., Hillsboro, OR 97124 USA (e-mail:
jrb@synopsys.com).

Digital Object Identifier 10.1109/TCAD.2005.855951

f11 = 0/1. These symmetries imply that function f remains
unchanged or complemented under the constant assignment of
one variable while the other variable is complemented, e.g.,
f(. . . , 0, . . . , xj , . . .) = f(. . . , 0, . . . , x′j , . . .).

Both classical and single-variable symmetries are called first-
order symmetries. The notion of symmetries can be further
extended [9] to include symmetries defined as invariants of the
functions under the permutation/complementation of arbitrary
groups of variables (rather than variable pairs). These symme-
tries are called higher order symmetries.

One of the benefits of classical and single-variable symme-
tries is that they result in functionally equivalent cofactors,
which lead to merging of nodes in BDDs [10], thereby re-
ducing the BDD size. It is well known that some functions
can be more efficiently represented by functional DDs (FDDs)
[11], [12] and Kronecker FDDs (KFDDs) [13]. We observed
other relationships in Boolean functions, in addition to classical
and single-variable symmetries, which result in merging of
nodes in FDDs and KFDDs. As a result of these relationships,
we can reduce FDDs and KFDDs even more. This was our
initial motivation for extending the notion of symmetries to
these relationships.

In this paper, we study linear (EXOR-based) relationships
among any nonempty subset of the four two-variable cofactors
of a Boolean function. These LCRs are sufficient conditions for
the minimization of all of the abovementioned DDs. They also
play an important role in representing a function’s character-
istics, which can be used in many optimization and synthesis
steps during digital circuit design. We discuss four of the po-
tential applications: Boolean matching, minimization of DDs,
synthesis of regular layout-friendly logic circuits, and detection
of support-reducing bound sets.

We show that LCRs can be computed as efficiently as classi-
cal symmetries. However, they are more diverse and, therefore,
give a more detailed characterization of Boolean functions.
This is demonstrated, for example, in Section V-A, by the
comparison of classical symmetries and LCRs when applied to
Boolean matching. Higher order symmetries are an orthogonal
generalization of classical symmetries in relation to LCRs
because neither of them subsumes the other. However, the
computation of higher order symmetries is substantially harder
because it requires manipulation of the matrices of cofactors of
the Boolean function, which is more complex than the BDD
traversal procedures proposed in this paper for the computation
of LCRs.

The remainder of this paper is organized as follows. Back-
ground information on Boolean functions, DDs, and classical
and single-variable symmetries are introduced in Section II.
Section III presents the motivation and definitions of LCRs. An

0278-0070/$20.00 © 2006 IEEE

1012 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 1. (a) ROBDD, (b) FDD with nD expansions.

efficient algorithm to detect LCRs is described in Section IV.
Experimental results on Microelectronics Center of North
Carolina (MCNC) benchmarks demonstrate a performance im-
provement of this algorithm over the naïve method. Section V
discusses potential applications of LCRs in Boolean matching,
pseudo-KFDD (PKFDD) minimization, regular layout synthe-
sis [14], and detecting support-reducing bound sets [15]. Con-
clusions are drawn in Section VI.

II. BACKGROUND

A. Boolean Functions and DDs

We use f(x1, . . . , xn) to denote a Boolean function with
input variables x1, . . . , xn. In this paper, we only consider
completely specified Boolean functions and Boolean variables.

The variables that a function f depends on are called the
support of f , denoted by supp(f).

We write f [x← 0] to denote the function formed from f by
replacing x with 0. This is also known as the negative cofactor
of f with respect to variable x, denoted by fx′ . While x is not
in the support of the resulting function, it is often convenient to
treat x as an input. The positive cofactor fx is f [x← 1].

We denote multiple substitutions similarly. For example,
f [xi ← 0, xj ← 0] is a cofactor of a function f(x1, . . . , xn)
with respect to variables xi and xj . If xi and xj are clear from
context, then this cofactor can be denoted by f00.

The Shannon expansion of a Boolean function f is f =
x • fx + x′ • fx′ , where “•” denotes conjunction and “+” de-
notes disjunction. If no confusion results, we may leave the
conjunction operator implicit.

The positive Davio expansion [16] (denoted Davio I or pD)
for a Boolean function f is f = fx′ ⊕ (x • (fx ⊕ fx′)), where
“⊕” denotes the EXOR operation. (fx ⊕ fx′) is the Boolean
difference of f with respect to variable x. We refer to fx′

as the constant moment and (fx ⊕ fx′) as the linear moment.
The negative Davio expansion (denoted Davio II or nD) is
f = fx ⊕ (x′ • (fx ⊕ fx′)). Here, fx is the constant moment
and (fx ⊕ fx′) is the linear moment.

A BDD for a Boolean function f is generated by succes-
sively applying Shannon expansions to all variables. A reduced-
ordered BDD (ROBDD) is a BDD with the constraint that input
variables appear in the same order in every path from root to
leaves, and each node represents a distinct function. Fig. 1(a)

Fig. 2. KFDD for f .

Fig. 3. PKFDD for f .

shows the ROBDD for function f = abc + abd + acd + bcd.
The dashed lines indicate the negative cofactor of each node.

A functional DD [11], [12] is generated by successively
applying either positive or negative Davio expansions to all the
variables, with one type of expansion per variable. Fig. 1(b) is
the FDD for f with all negative Davio expansions. The dashed
lines represent the constant moments for each node.

A KFDD [13] allows both Shannon and Davio expansions
in generating the DD, although only one type of expansion is
allowed per variable. Fig. 2 shows KFDD for the same function
f and the associated functions at each node.

A PKFDD [17] removes the constraint that only one type
of expansion is allowed per variable for KFDD, thus providing
more flexibility in representing a Boolean function. Fig. 3 is
the PKFDD for function f with the expansion type and the
associated function at each node.

B. Classical and Single-Variable Symmetry

The most basic notion of symmetry states that two variables
xi and xj of function f(. . . , xi, . . . , xj , . . .) are symmetric if
the function remains invariant when the variables are swapped,
i.e., f(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .).

For a pair of variables xi and xj , there are four cofactors:
f00, f01, f10, and f11. The above notion of symmetry can be
expressed as f01 = f10, or equivalently, f01 ⊕ f10 = 0. This
symmetry is also called the nonskew nonequivalent symmetry,
denoted by xiNExj . “Nonskew” refers to the right side of the
equation being 0 rather than 1. “Nonequivalent” in this context
means that, in each cofactor, the values of the two variables
are not equivalent. Nonskew equivalent symmetry, denoted
by xiExj , exists when f00 ⊕ f11 = 0. This is a generalization
where if the two variables are swapped, they must also be
negated for the function to be preserved. Skew symmetry

ZHANG et al.: LINEAR COFACTOR RELATIONSHIPS IN BOOLEAN FUNCTIONS 1013

TABLE I
CLASSICAL AND SINGLE-VARIABLE SYMMETRIES

Fig. 4. Effect of symmetries on ROBDD. (a) Nonskew nonequivalent sym-
metry; (b) skew equivalent symmetry.

exists when two cofactors are complemented rather than
equivalent to each other. For example, a Boolean function with
skew equivalent symmetry is such that f00 ⊕ f11 = 1. Skew
symmetries are analogous to nonskew symmetries, except that
the function is complemented, rather than preserved, when
the variables are swapped. Taken together, all of the above
symmetries are called classical symmetries [1].

For any two variables in a Boolean function, there are six
possible cofactor pairs. Single-variable symmetries [1] are de-
fined when the function has equivalent (nonskew symmetry)
or complement (skew symmetry) relationships of the other
four cofactor pairs not included in classical symmetries, e.g.,
f00 = f01. This nonskew relationship means that the negative
cofactor of f with respect to variable xi does not depend on xj .
Table I summarizes classical and single-variable symmetries,
their functional invariance, and cofactor relationships.

III. LCRS IN BOOLEAN FUNCTIONS

A. Motivations

The existence of both classical symmetries and single-
variable symmetries in a Boolean function results in shared or
constant nodes in the corresponding ROBDD, as illustrated in
Fig. 4. The complemented edges (represented by dotted lines)
are used in the DD in the case of skew symmetries. This
observation allows us to reduce the size of the ROBDD.

Boolean functions can be represented by FDDs using positive
or negative Davio expansions. Fig. 5 shows a fragment of an
FDD with positive Davio expansions for both variables xi and
xj . The functions at each node f1, f2, f3, and f4 are given in
terms of the cofactors for variables xi and xj .

If variables xi and xj are symmetric with nonskew non-
equivalent symmetry, then f01 = f10. This relationship implies

Fig. 5. Partial FDD with positive Davio expansions.

TABLE II
COFACTOR RELATIONSHIPS FOR ONE OR THREE COFACTORS

Fig. 6. Partial KFDD with Shannon and positive Davio expansions.

that f2 = f3, so nodes f2 and f3 can be shared in Fig. 5.
Both classical nonskew nonequivalent and nonskew equivalent
symmetries create shared nodes in the FDD.

Other node-sharing possibilities lead to an additional set of
cofactor relationships. For example, f1 = f4 if and only if
(iff) f00 = f00 ⊕ f01 ⊕ f10 ⊕ f11, or equivalently, f01 ⊕ f10 ⊕
f11 = 0. This cofactor relationship involves three cofactors.
Similarly, f1 = f2 iff f00 = f00 ⊕ f01, or f01 = 0. This is a
constant cofactor relationship, which also reduces FDDs.

Since an FDD can be constructed with either positive or
negative Davio expansions, there are four combinations of
expansion types for two variables: pDpD, nDnD, pDnD, and
nDpD. Performing the same analysis above, we get the follow-
ing eight cofactor relationships involving one or three cofactors
[18], [19]. Table II shows these relationships, the expansion
combinations, and equivalent cofactors that lead to these rela-
tionships (there could be multiple expansions that lead to the
same relationship, only one is given in Table II).

KFDDs allow Shannon, positive Davio, and negative Davio
expansions to be used. Fig. 6 shows the partial KFDD for vari-
ables xi and xj using Shannon and positive Davio expansions.
The functions at each node f1, f2, f3, and f4 are given in
terms of the cofactors for xi and xj .

It is easy to see that the cofactor relationships listed in
Table II also reduce KFDDs. One condition that is missing

1014 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 7. (a) Partial BDD, (b) partial FDD of function f .

Fig. 8. (a) Partial BDD, (b) partial KFDD of function f .

is when f2 = f4, or equivalently, f00 ⊕ f01 ⊕ f10 ⊕ f11 = 0.
This is a cofactor relationship that involves all four cofactors
[18], [19]. The other combinations of Shannon, as well as
the positive and negative Davio expansions, lead to the same
relationships.

Figs. 7 and 8 show how FDDs and KFDDs can be reduced as
a result of these cofactor relationships. In Fig. 7, variables a and
b in f = a′c + a′b′d + ab′cd + abcd′ do not have symmetries,
therefore there is no node sharing in the BDD for variables a
and b. However, there is node sharing in the FDD because f01 ⊕
f10 ⊕ f11 = 0. Using this relationship in f between variables
a and b, the FDD for f can be constructed with a specific
variable order and expansion types to take advantage of this
node reduction. Similarly, Fig. 8 shows that variables a and b
are not symmetric in function f = a′c + a′bd′ + acd + abc′d′,
therefore there is no node sharing in the BDD. However,
f00 ⊕ f01 ⊕ f10 ⊕ f11 = 0. This results in a shared node in the
KFDD if variables a and b are adjacent in the variable order,
and Shannon and positive Davio expansions are used.

B. LCRs

Definition 1: Let f(x1, . . . , xn) be a Boolean function.
Let i and j be integers, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Let g =
〈g4, g3, g2, g1, g0〉 be a Binary vector of length 5, such that
at least one of g3, g2, g1, g0 is 1. Variables xi and xj have
LCR g in function f iff: ∀x1, . . . , xn[g4 = g3f11 ⊕ g2f10 ⊕
g1f01 ⊕ g0f00], where f11, f10, f01, and f00 are cofactors of
f with respect to variables xi and xj . We use the symbol
LCRg(f, (xi, xj)) to denote LCRs. If f and (xi, xj) are clear
from context, we write LCRg .

For example, if variables xi and xj have nonskew non-
equivalent classical symmetry in function f , then 0 = 0 •
f11 ⊕ 1 • f10 ⊕ 1 • f01 ⊕ 0 • f00. Therefore, LCR〈0,0,1,1,0〉, or,
in hexadecimal form, LCR06 holds. All classical and single-
variable symmetries are subsumed by LCRs.

We use a don’t care “−” in g to represent multiple LCRs.
For example, LCR〈0,0,0,1,−〉 represents both LCR〈0,0,0,1,0〉 and
LCR〈0,0,0,1,1〉.

TABLE III
SUMMARY OF LCRS

TABLE IV
STATISTICS OF LCRS IN MCNC BENCHMARK FUNCTIONS

Definition 2: A linear cofactor class (LCC) contains all the
LCRs that have the same sum of g0, g1, g2, g3. We use LCCn to
denote the linear cofactor class, where n = g0 + g1 + g2 + g3.

For example, both LCR〈0,0,1,1,0〉 and LCR〈1,1,0,0,1〉 be-
long to LCC2, even though they have different skew type.
LCR〈0,1,0,0,0〉 and LCR〈0,1,1,1,0〉 belong to LCC1 and LCC3,
respectively.

Table III summarizes all the cofactor relationships discussed
so far. We adopt the skew terminology when the EXOR of the
cofactors is 1.

C. Statistics for LCRs in MCNC Benchmarks

Classical and single-variable symmetries are common in
Boolean functions. It is interesting to see how common the
other LCRs are to decide if it is worthwhile to detect these
relationships in Boolean functions.

Table IV gives the total number and ratio of nonskew and
skew LCRs in each of the linear cofactor classes, for all MCNC
multilevel combinational benchmark functions. The complete
table can be found in [45], which shows that LCRs exist in all
MCNC benchmarks. More than 90% of the LCRs are nonskew
and among all LCRs, 32.6% are classical and single-variable
symmetries.

Existing electronic-design-automation algorithms often
make use of classical symmetries. It is possible that other

ZHANG et al.: LINEAR COFACTOR RELATIONSHIPS IN BOOLEAN FUNCTIONS 1015

LCRs can be used to improve these algorithms. We will touch
upon some potential applications in Section V.

IV. FAST COMPUTATION OF LCRS

While many algorithms have been proposed to detect classi-
cal symmetries efficiently [20]–[23], the only method to detect
LCRs had been the naïve method, which computes the four
cofactors for each variable pair in the Boolean function and
checks if the cofactors satisfy the relationships defined in
Table III. This method is straightforward, yet very inefficient for
large circuits. In [21], an efficient method to compute classical
symmetries was proposed, based on a theorem in [23]. Theorem
1 extends the scope of [23] to all LCRs. This allowed us to
develop, based on the method proposed in [21], a fast algorithm
for the computation of all LCRs.
Theorem 1: Let f(x1, . . . , xn) be a Boolean function and let

the variables xi, xj , and xk be distinct variables in the support
of f . xi and xj have LCRg in f iff they have LCRg in both
cofactors of f with respect to xk.

Proof: xi and xj have LCRg in function f iff:
∀x1, . . . , xn[g4 = g3f11 ⊕ g2f10 ⊕ g1f01 ⊕ g0f00]. This equa-
tion holds true for all values of xk, where 1 ≤ k ≤ n, k
= i and
k
= j. That is

∀x1, . . . , xk−1xk+1, . . . , xn[g4 = g3f11 ⊕ g2f10

⊕ g1f01 ⊕ g0f00][xk ← 0]

and

∀x1, . . . , xk−1xk+1, . . . , xn[g4 = g3f11 ⊕ g2f10

⊕ g1f01 ⊕ g0f00][xk ← 1].

Taking [xk ← 0] and [xk ← 1] into the equations, we have

∀x1, . . . , xn[g4 = g3f11[xk ← 0]⊕ g2f10[xk ← 0]

⊕ g1f01[xk ← 0]⊕ g0f00[xk ← 0]]

and

∀x1, . . . , xn[g4 = g3f11[xk ← 1]⊕ g2f10[xk ← 1]

⊕ g1f01[xk ← 1]⊕ g0f00[xk ← 1]].

Therefore, xi and xj have the same LCRg in both cofactors
of f with respect to xk. The reverse implication holds because
xk must be 0 or 1. �

A. Computational Core

Theorem 1 states that we can compute the LCRs of a function
if we know the LCRs of the function’s cofactors with respect to
a variable. Therefore, we can recursively solve the subproblems
and derive the final solution from the partial solutions. There
are two recursive procedures in the proposed algorithm: Com-
puteLCR and LCRVars. ComputeLCR detects variable pairs
with LCRs in fx and fx′ , where x is the top variable in the
BDD. LCRVars detect LCRs between variable x and the other
variables in the support of f .

Fig. 9. Flowchart of the top-level recursion: ComputeLCR.

We use an LCR graph to represent the computed LCRs.
The vertices of the LCR graph correspond to variables in the
support of the function. The edges connect variable pairs with
an LCR. The graph operations union (∪) and intersection (∩)
are defined as the set union and intersection on the sets of
edges. The Cartesian product (×) of variable x by a set of
variables Y results in a graph composed of edges connecting
the vertex of variable x with the vertices of variables in Y .
In the software implementation, the LCR graph is represented
by zero-suppressed binary DDs (ZDD) [24], which give a
canonical representation of the LCR information.
1) Top Level Recursion—ComputeLCR: Fig. 9 shows the

flowchart of ComputeLCR. It takes as inputs: function F , a set
of variables V , and integer g. F is the function whose LCRs are
being computed. V is initialized to be the support of F at the
top level, but could become a super set of F ’s support in the
subsequent recursive calls. g is an integer indicating the LCR
to be computed, as given in Table III. The program returns the
LCR graph representing variable pairs with the particular LCR.
It is worth noting that only variables that function F depends
on participate in this computation. In the case of multioutput
functions, the LCRs for each output are computed separately
using the true support of the output function.

The recursive steps are the same for all type of LCRs.
However, the handling of Step 1 and the S3 computation in
Step 4 is different (indicated by shaded boxes in the flow-
chart) due to the difference in the cofactor relationships. The
following paragraphs explain each step in the flowchart. A
brief discussion of classical symmetries is included here for
completeness; the details can be found in [21].

Step 1) If F is a constant, then F = F11 = F10 = F01 =
F00. Checking if any variable pairs in V have LCRs
is equivalent to checking if g satisfies the following
equation: g4 = (g3 ⊕ g2 ⊕ g1 ⊕ g0) • F .

1016 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

Fig. 10. Illustrations of the skipped variables.

If F is constant 0, then each pair of variables in V
has all 15 types of nonskew LCRs.
If F is constant 1, then each pair of variables in V
has nonskew LCC2, nonskew LCC4, skew LCC1,
and skew LCC3 LCRs.
When F is a constant, the program either returns a
complete LCR graph, or an empty set, depending
on the value of the function and the LCR to be
computed.

Step 2) Compute the support of F and the cofactors of F
with respect to the top variable x of the BDD. This
results in two different Boolean functions F0 and F1.

Step 3) The recursive calls are performed in this step. First,
ComputeLCR is called with F0 and supp(F)− x.
Next, the same procedure is repeated for the positive
cofactor. If there is no LCR in the negative cofactor
F0, there is no need for the second recursive call, ac-
cording to Theorem 1. As a result, the computation
is very efficient in this case.

Step 4) The first part of the solution comes from the in-
tersection of partial solutions S0 and S1, because,
according to Theorem 1, only the LCRs of both
cofactors are LCRs of the function.
The set Y contains those variables y such that
variables x (chosen in Step 2) and y have LCRg .
This set is computed using another recursive
procedure LCRVars, which will be discussed in
Section IV-B-2.
The set S3 contains LCRs involving variables that
are in V but not in the support of F . This is relevant
when a cofactor of the function does not depend on
all the variables in the initial support of F less x.
Fig. 10 is a fragment of the BDD illustrating this
scenario. The negative cofactor of F with respect
to variable a only depends on variables d and e.
Therefore, in the recursive procedure, variables b
and c are skipped over. As a result, we need to
add the LCRs involving the “skipped” variables. It
is easy to see that between the skipped variables
b and c, we have Fa′b′c′ = Fa′b′c = Fa′bc′ = Fa′bc,
and between the skipped variable b and the variable
d in the support of Fa′ , we have Fa′b′d′ = Fa′bd′ and
Fa′b′d = Fa′bd.
a) LCRs among the skipped variables. In this

case: F11 = F10 = F01 = F00. Checking if any

TABLE V
LCRS BETWEEN SKIPPED VARIABLES AND THE VARIABLES IN THE

SUPPORT OF F IN COMPUTELCR

skipped variable pairs have LCRs is equiva-
lent to checking if g satisfies the following
equation: g4 = (g3 ⊕ g2 ⊕ g1 ⊕ g0) • F00. All
nonskew LCC2 and nonskew LCC4 LCRs satisfy
this equation.

b) LCRs between the skipped variables and the
variables in the support of F . In this case: F10 =
F00 and F11 = F01, where the cofactors are with
respect to one skipped variable and one vari-
able in the support of F . Checking if they have
LCRs is equivalent to checking if g satisfies
the following equation: g4 = (g3 ⊕ g1) • F01 ⊕
(g2 ⊕ g0) • F00. Different LCRs exist depend-
ing on the values and the relationships of F00

and F01. For example, if F01 is complement
to F00, then g4 = (g3 ⊕ g1)⊕ (g3 ⊕ g2 ⊕ g1 ⊕
g0) • F00. 〈1, 1, 1, 0, 0〉 and 〈0, 1, 0, 1, 0〉 are two
of the LCRs that satisfy this equation. Table V
gives the complete set of LCRs between the
skipped variables and the variables in the support
of F .

Step 5) The final result returned by ComputeLCR is S =
(S0 ∩ S1) ∪ S2 ∪ S3.

2) Inner Recursion—LCRVars: Procedure LCRVars takes
as inputs: F0 and F1, the two cofactors of F with respect
to variable x, the set of candidate variables Y , and integer
g. It returns the subset of Y such that x has LCRs with
the variables in this subset. Fig. 11 is the flowchart for this
procedure (hereafter, functions G and H are used to represent
the cofactors F0 and F1).

For each LCR, the program differs in Step 1, and R2

computation in Steps 4 and 5, as indicated in the shaded boxes
in the flowchart.

Step 1) Three scenarios are handled in this case: 1) G and
H are both constant functions. 2) H is a constant
function, but G is not. 3) G is a constant function,
but H is not.
a) G and H are both constant functions. In this

case, G = F01 = F00 and H = F11 = F10.
Checking if variable x has any LCRs
with the variables in Y is equivalent to
checking if g satisfies the following equation:

ZHANG et al.: LINEAR COFACTOR RELATIONSHIPS IN BOOLEAN FUNCTIONS 1017

Fig. 11. Flowchart of the inner recursion: LCRVars.

TABLE VI
LCRS WHEN H AND G ARE CONSTANT

g4 = (g3 ⊕ g2) •H ⊕ (g1 ⊕ g0) •G. The exis-
tence of LCRs depends on the values of
G and H . For example, if H = 1 and G = 0,
we have g4 = (g3 ⊕ g2). The following g satisfy
this equation: 〈0, 0, 0,−,−〉, 〈0, 1, 1,−,−〉,
〈1, 0, 1,−,−〉, and 〈1, 1, 0,−,−〉. Therefore,
there are 16 different LCRs under this value com-
bination. Table VI gives all four combinations of
H and G with the corresponding LCRs.

b) H is a constant function, but G is not. If H is
constant 0, we have g4 = (g3 ⊕ g2) • 0⊕ (g1 •
F01 ⊕ g0 • F00). There are three values of g that
satisfy this equation for arbitrary F01 and F00 :
〈0, 0, 1, 0, 0〉, 〈0, 1, 0, 0, 0〉, and 〈0, 1, 1, 0, 0〉. If
F01 is constant 0, then there are three ad-
ditional LCRs: 〈0, 0, 1, 1, 0〉, 〈0, 1, 0, 1, 0〉, and
〈0, 1, 1, 1, 0〉. If F01 is constant 1, then the addi-
tional LCRs are 〈1, 0, 1, 1, 0〉, 〈1, 1, 0, 1, 0〉, and
〈1, 1, 1, 1, 0〉. The cases where F00 is constant or
H is constant 1 can be derived similarly.

c) G is a constant function, but H is not. The LCRs
in this case are analogous to the above cases.

Fig. 12. Illustration of skipped variables in LCRVars.

TABLE VII
LCRS BETWEEN SKIPPED VARIABLES AND THE VARIABLES IN THE

SUPPORT OF F IN LCRVARS

The variable subset Y is returned when both G
and H are constants. In the last two scenarios, the
program continues.

Step 2) A variable z in Y is selected and the functions are
cofactored with respect to this variable.

Step 3) Based on Theorem 1, a variable belongs to the solu-
tion iff it belongs to the solutions of both cofactors.
If one of the subproblems returns an empty set, there
is no need to solve the other one.

Step 4) Fig. 12 is a fragment of a BDD illustrating
the skipped variable situation. We want to check
whether variable b has LCR with any variables in the
support of Fa′ . Since variable c is skipped over, we
need to detect LCRs between variables b and c. It is
easy to see that Fa′b′c′ = Fa′b′c and Fa′bc′ = Fa′bc.
For skipped variables, G = F01 = F00 and H =
F11 = F10, to check if variable x has any LCRs
to the skipped variables is equivalent to checking
if there are any values of g that satisfy the follow-
ing equation: g4 = (g3 ⊕ g2) •H ⊕ (g1 ⊕ g0) •G.
This again depends on the values and relationships
of G and H , as shown in Table VII. The intermediate
result R is (R0 ∩R1) ∪R2.

Step 5) This step checks to see if variable x has an LCR to
variable z, according to Table III. If x has LCR to z,
then z is added to the resulting set R.

The worst case complexity of the algorithm is cubic in the
number of the BDD nodes, because the complexity of the
procedure ComputeLCR is linear, while each call to LCRVars
inside ComputeLCR has the worst case quadratic complexity.

1018 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

TABLE VIII
BENCHMARK RESULTS FOR cm151a

However, for the benchmark functions, the observed runtime is
close to linear in the number of the BDD nodes.

B. Implementation of the Algorithm

The proposed algorithm was implemented in C with the CU
Decision Diagram package [25] and the EXTRA library of DD
procedures [26].

BDDs are used to represent Boolean functions, while ZDDs
are used to represent variable sets and LCR graphs. First,
the shared BDD of a multioutput benchmark function is con-
structed. This BDD is not modified during the computation that
follows. No additional BDD nodes are built, which makes the
implementation very fast. Similar to other algorithms imple-
mented using BDDs, partial results of computation are cached
to prevent multiple calls with the same arguments. The calls
to the caching procedures are omitted in the above discussion
for simplicity. The cache lookups are performed before Step 2
and the cache insertions before returning the result in both
ComputeLCR and LCRVars.

ZDDs provide a canonical representation of the LCR graph.
The ZDDs are usually small, compared to the BDDs of the
benchmark functions, because the LCR graphs are usually
sparse. Even when a function has an LCR between each pair
of variables, the ZDD representation is still compact. In this
case, the LCR graph is a clique, whose ZDD representation is
quadratic in the number of variables.

Although the program does not generate new BDD nodes,
a small number of ZDD nodes are created to manipulate the
LCR graph and the variables sets in the recursive procedures.
However, experiments show that the increase in the number of
ZDD nodes is still negligible, compared to the size of the shared
BDDs of the original functions.

C. Experimental Results

The program was run on a 750-MHz Pentium III PC under
Red Hat Linux 7.3. We only compare our results with the naïve
method because it is the only other method known to compute
all LCRs.

TABLE IX
SYMMETRY AND PERFORMANCE DATA ON MCNC BENCHMARK

In Table VIII, the MCNC benchmark function cm151a (12
inputs, 1 output) is used to demonstrate the efficiency of the
program when there is no LCR in the circuit. All 15 nonskew
LCRs are computed and reported individually using the naïve
method and the algorithm proposed in the paper. The runtimes
reported are accumulated over 100 runs to capture reliable data.
They include only LCR computation time and do not include
the time to read the benchmark file and construct the BDDs. No
variable pairs in cm151a have LCR01. Our algorithm is 10×
faster than the naïve method in this case. For LCR02, which
contains 11 variable pairs, the speedup is 3×. Similar results
can also be observed for other linear cofactor classes.

The larger the circuit, the greater is the speedup of calculating
LCRs. Table IX gives the total LCRs and runtime information
over a number of large MCNC benchmarks. The first three
columns show the benchmark name, number of inputs and
outputs, and the number of the BDD nodes after reading and
reordering by the sifting algorithm [25]. The next column
gives the total number of nonskew LCRs. Average runtime
for both the fast and naïve methods are given in the two
columns under “Performance.” Each runtime is an average of
15 runs computing 15 different nonskew LCRs. Column “Gain”
records the performance speedup between the fast and naïve
algorithms. Table IX demonstrates a significant speedup of the
fast algorithm over the naïve method for all benchmarks.

V. APPLICATIONS OF LCRS

Symmetry is an important characteristic of Boolean func-
tions. Many applications in electronic design automation
exploit classical symmetries to achieve better results and/or
improve performance. It is worth noting that theoretical foun-
dations for classical symmetries were formulated long before
practical applications were identified and developed. LCRs,
excluding classical symmetries and single-variable symme-
tries, are relatively new. In this section, we touch upon some
natural applications of LCRs. We hope that the theoreti-
cal foundations of LCRs will encourage additional potential
applications.

ZHANG et al.: LINEAR COFACTOR RELATIONSHIPS IN BOOLEAN FUNCTIONS 1019

TABLE X
EFFECTIVENESS OF USING LCRS AS SIGNATURES

A. Boolean Matching

Boolean matching is a technique used to determine if a
subfunction can be implemented with a specific cell from a
given technology library. Two n-input Boolean functions match
if one of them can be transformed into another by one or
more of the following transformations: input permutation (P1),
input negation (P2), and output negation (P3). Functions are P-
equivalent under P1, NP-equivalent under P1 and P2, and NPN-
equivalent under all three transformations.

Classical symmetries have been used as signatures for
Boolean matching [5], [6], [27], [28]. We will show that using
LCRs as signatures increase the distinguishing power signifi-
cantly, compared to that of classical symmetries. The follow-
ing theorems justify using LCRs as signatures for Boolean
matching.
Theorem 2: P1 and P2 transformations do not alter the total

number of LCRs in each linear cofactor class.
Theorem 3: P3 transformation changes the skew type for the

LCRs in LCC1 and LCC3, and preserves the skew type for
LCRs in LCC2 and LCC4.

Theorems 2 and 3 state that the number of LCRs in each
linear cofactor class are preserved under NPN transformations,
and therefore, can be used as signatures in Boolean match-
ing. Table X compares the effectiveness of using all LCRs
versus classical symmetries as signatures. The signature us-
ing LCRs includes eight integers, representing the total num-
ber of nonskew and skew LCRs in LCC1, nonskew classical
symmetries in LCC2, skew classical symmetries in LCC2,
nonskew single-variable symmetries in LCC2, skew single-
variable symmetries in LCC2, nonskew and skew LCRs in
LCC3, nonskew LCRs in LCC4, and skew LCRs in LCC4. Be-
cause both classical and single-variable symmetries are closed
under NPN transformations, we can separate them into different
components of the signatures. Since output negation changes
the skew type for LCC1 and LCC3, we use the sum of skew
and nonskew LCRs in those cases. The signature using classical
symmetries includes two integers, representing the total number
of nonskew classical symmetries and the total number of skew
classical symmetries. The column “Total” contains the total
number of NPN equivalence classes for two, three, and four
variables. The column “LCR” lists the number of distinct
LCR signatures in these NPN equivalence classes, whereas
the column “Classical” lists the number of distinct classical
signatures.

The signatures fail to distinguish two two-variable NPN
equivalence classes f = a′ and f = 1 because the proposed
computation algorithm only detects LCRs for variables in the

Fig. 13. Illustration of PKFDD expansion notation.

support of the function. For these two functions, there is no
variable pair in the support.

The above analysis shows that the distinguishing power
of LCRs increases dramatically compared to that of classical
symmetries, as the number of variables in the NPN equivalence
class increases. With the efficient computation algorithm pro-
posed in this paper, LCRs can easily be incorporated as filters to
quickly prune unnecessary tautology checks. Other techniques
[5], [6], [27], [28] can also be used in combination with LCRs
to facilitate the task of Boolean matching.

B. PKFDD Minimization

The size of DDs is crucial in many computer-aided design
(CAD) applications. For BDDs, the variable ordering is the
only parameter available to reduce its size. Many algorithms
have been proposed for BDD minimization [29], [30]. Several
algorithms exploit classical symmetries to create smaller BDDs
[8], [22], [31].

PKFDD is the most general bit-level DD for switching
functions, since each node can be decomposed using Shannon,
positive Davio, or negative Davio expansions. Canonicity is
sacrificed in PKFDDs to achieve smaller DDs.

Exact PKFDD minimization was discussed in [32]. Because
both the variable order and the decomposition type affect
the size of the DD, it is hard to find a variable order and
decomposition type at each node that result in the smallest
PKFDD. Heuristic methods have been proposed in PKFDD
minimization [33]–[35].

LCRs can be used to assist PKFDD minimization. While
only classical and single-variable symmetries help in reducing
the size of BDDs, all LCRs can reduce the size of PKFDDs.
Detecting these relationships can help decide both the ordering
of the variables and the decomposition type to be applied in
order to reduce the size of the DD.

We use the following notation to represent the decomposition
combination. The combination is denoted using three letters,
with S representing Shannon expansion, P representing
positive Davio expansion, and N representing negative Davio
expansion. The order indicates the expansion type of the parent
node, the left child, and the right child. For example, Fig. 13
illustrates the expansion for function f with notation “SSP” as
decomposition types.

In Table XI, we list all the nonskew and skew LCRs and
the corresponding expansion combinations that have shared
nodes due to these LCRs (skew LCRs result in complemented
edges in the DDs). In total, there are 27 different expansion
combinations. Symbol “X” in the cell states that the LCR in the

1020 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

TABLE XI
LCR TYPES WITH CORRESPONDING EXPANSIONS

column results in a shared node for the expansion combination
in the corresponding row. Table XI shows that, for each pair of
variables with an LCR, there are many expansion combinations
that could be assigned to create shared nodes. If the diagrams
are mapped directly to circuit implementation, it is beneficial
to choose the combination that uses more Shannon expansions
to reduce the cost. Also, for each expansion combination, there
are six different LCRs that reduce the size of PKFDD. Table IV
shows that LCRs are abundant in benchmark functions. It
is, therefore, promising to attempt PKFDD reduction taking
advantage of these functional properties.

C. Regular Layout

Layout regularity is desirable because it offers predictability
in circuit area and delay. It also significantly simplifies routing,
reduces gate output load and improves testability. Regularity
of layout is especially important when circuits are mapped into
programmable or field programmable logic devices and gate
arrays, since the majority of these devices have a large portion
of their routing resources available as local and neighbor-to
neighbor connections.

One approach to achieve layout regularity is to transform
a Boolean function into a specialized type of DD that can
be mapped directly into regular circuits composed of Shan-
non and Davio gates. Boolean functions are transformed into
pseudosymmetric BDD (PSBDD) through joint-vertex oper-
ations in [36]–[39]. This operation reintroduces the same
variables at multiple levels, thereby increasing the number

of levels comparing to that of an ROBDD. The benefit is
a regular symmetric array structure, which is usually tri-
angular in shape. This technique was generalized to create
PSKFDD [40]–[42], which offers greater flexibility and in-
creases the solution space. However, the process of generating
PSKFDD also creates repetition of some variables, resulting
in circuits that are larger in the number of gates, though
regular.

Detecting and utilizing LCRs in Boolean functions can re-
duce the number of levels added to PSKFDDs as a result of
repeating variables. First, we detect LCRs between all pairs of
variables in the circuit. Then, we find the longest sequence of
variables such that each pair of adjacent variables has an LCR.
Next, the expansions are assigned to each variable on the path
in such a way that the corresponding reduction type (as shown
in Table XI) allows for merging of sufficient nodes so that the
planar layout is created on these levels [14]. This guarantees
that, for the variables included in the longest path, they will not
be repeated in the DDs. For functions with no LCRs at all, or
if the longest path does not include all variables, the rest of the
diagram is constructed using a heuristic algorithm, which could
potentially introduce repetition of variables.

We compared results generated using LCRs with earlier
works on PSBDDs and PSKFDDs to achieve a regular layout.
Fig. 14 shows that the LCR approach results in fewer logic
levels in PSKFDDs comparing with that in [42]. It is worth
pointing out that while the resulting PSKFDDs contain fewer
levels than that of the corresponding PSBDDs, the logical
complexity of each node is larger. Fig. 15 shows the level

ZHANG et al.: LINEAR COFACTOR RELATIONSHIPS IN BOOLEAN FUNCTIONS 1021

Fig. 14. Comparison with [42] on the number of levels in the DD.

Fig. 15. Level and node ratio: LCR results normalized against [36].

and node ratios of the LCR approach to that of [36]. The
LCR approach consistently produces fewer levels on all 19
benchmarks, even though the number of nodes may be more
in a few cases. These comparisons show the potential of using
LCRs in achieving aregular layout with less area.

D. Detecting Support-Reducing Bound Sets

Detecting support-reducing bound sets is an important step
in Boolean decomposition. It affects both the runtime and the
quality of results of several applications in technology mapping
and resynthesis. Mishchenko et al. [7] proposed an efficient
method to compute all support-reducing bound sets—that is, all
groups of variables that can lead to the decomposition resulting
in the reduction of a function’s support [46]. This method is
quite efficient because it does not explicitly enumerate through
all bound sets. Instead, it creates all bound sets implicitly and
uses a cache to avoid repeated computations. Detailed profiling
of the decomposition system has shown that the exhaustive
bound-set detection is the most time-consuming task in the
flow. In this section, we will show that LCRs can be used
as heuristics to detect most of the support-reducing bound
sets of three, four, and five variables, while achieving great
performance improvement over the exhaustive method [15].

A bound set X1 leads to an n-to-k support-reducing de-
composition if k satisfies �log2 µ� ≤ k < n, where n = |X1|
and µ is the number of distinct cofactors for variables in X1

[43], [44]. The presence of nonskew LCC2 LCRs in a Boolean
function results in shared nodes in the BDD for the function,

TABLE XII
AVERAGE G/T AND G/F RATIOS AND PERFORMANCE GAIN

thereby reducing the number of cofactors. Therefore, we can
use nonskew LCC2 LCRs as heuristics to identify potential
support-reducing bound-set candidates.

Heuristic 1) We compute the set of variable pairs with two
nonskew LCC2 LCRs. These sets are 2-to-1 support-reducing
bound sets. We then iteratively add another variable from the
support of the function to form three-, four-, and five-variable
support-reducing bound sets.

Heuristic 2) We compute the sets of three variables that
contain one nonskew LCC2 LCR in at least two of the variable
pairs. These are potentially 3-to-2 support-reducing sets. The
four- and five-variable bound sets are formed by iteratively
adding another variable from the support of the function to the
existing set.

The experiments were conducted on a set of MCNC and
International Test Conference (ITC)’99 benchmarks. The fol-
lowing notation is used in Table XII. Column “G/T” shows the
ratio of true support-reducing bound sets found by the heuristics
to the total number of support-reducing bound sets of a given
size. Column “G/F” is the ratio of true support-reducing bound
sets to the total number of candidates found by the heuristics.
These two ratios characterize the efficiency of the heuristics
from two different points of view. Column “Gain” represents
the runtime improvement of the proposed method compared to
the exhaustive method.

As shown in Table XII, the heuristics can detect about 90%
of all support-reducing bound sets. The percentage of support-
reducing bound sets detected is inversely proportional to the
performance gain. Benchmark dalu has the worst “G/F” and
“G/T” ratios among these benchmarks, but it has the highest
performance gain of a factor of 147. On the other hand, the
heuristics can detect all the support-reducing bound sets for
k2, but the performance gain is only a factor of 18. Therefore,
there is a tradeoff between the number of support-reducing
bound sets detected versus the performance improvement over

1022 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, JUNE 2006

the exhaustive method. Even though other heuristics can be
employed to further improve the “G/F” and “G/T” ratios, we
believe that achieving around 90% on G/F and G/T ratios and
40× performance gain is a good middle ground.

Experimental results show that the heuristic method is much
faster than the exhaustive method [7], yet it finds most of the
support-reducing bound sets of three, four, and five variables.
The detected support-reducing bound sets typically result in
simpler decomposition functions, compared to those that are
not detected by the proposed method. As a result, the con-
structive decomposition, which constitutes an important step in
technology mapping and resynthesis, can be performed more
efficiently.

VI. CONCLUSION

This paper presents LCRs for pairs of variables in a Boolean
function. This notion subsumes classical and single-variable
symmetries. Experiments on MCNC benchmarks show that
these relationships are common in Boolean functions.

An efficient algorithm is proposed to detect LCRs. The
algorithm is characterized as follows.

1) It works on the shared BDD of multioutput functions and
computes the LCR information for each output.

2) It exploits the compactness and canonicity of the ZDD
representation to store the LCR information computed for
a node in the shared BDD.

3) It computes all 30 types of LCRs.
4) It is particularly fast when applied to Boolean functions

with no LCRs.

The experimental results show that the overall performance
of the algorithm is significantly better than the naïve method.

The proposed efficient LCR detection enables the use of
LCRs in CAD applications. Several such applications of LCRs
are discussed in this paper: Boolean matching, DD minimiza-
tion, synthesis of regular layout-friendly circuits, and detection
of support-reducing bound sets in Boolean functions. We expect
other applications of LCRs to emerge in very large scale
integration (VLSI) IC design flow.

ACKNOWLEDGMENT

The authors would like to thank Prof. R. Brayton for propos-
ing the term “linear cofactor relationship” (LCR). The authors
also acknowledge anonymous reviewers for their comments,
which played an important role in shaping and clarifying the
paper.

REFERENCES

[1] C. R. Edward and S. L. Hurst, “A digital synthesis procedure under
function symmetries and mapping methods,” IEEE Trans. Comput.,
vol. C-27, no. 11, pp. 985–997, Nov. 1978.

[2] B.-G. Kim and D. L. Dietmeyer, “Multilevel logic synthesis of symmetric
switching functions,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 10, no. 4, pp. 436–446, Apr. 1991.

[3] M. Chrzanowska-Jeske, W. Wang, J. Xia, and M. Jeske, “Disjunctive
decomposition of switching functions using symmetry information,” in
Proc. IEEE Int. Symp. Integrated Circuits and System Design (SBCCI),
Manaus, Brazil, Sep. 2000, p. 67.

[4] V. N. Kravets, “Constructive multi-level synthesis by way of functional
properties,” Ph.D. dissertation, Comput. Sci. Eng., Univ. Michigan, Ann
Arbor, 2001.

[5] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,”
in Proc. Int. Conf. Computer-Aided Design, Santa Clara, CA, Oct. 1992,
pp. 452–458.

[6] F. Mailhot and G. De Micheli, “Technology mapping using Boolean
matching and don’t care sets,” in Proc. Eur. Design Automation Conf.,
Glasgow, U.K., 1990, pp. 212–216.

[7] A. Mishchenko, X. Wang, and T. Kam, “A new enhanced constructive
decomposition and mapping algorithm,” in Proc. Design Automation
Conf., Anaheim, CA, Jun. 2003, pp. 143–147.

[8] C. Scholl, D. Möller, P. Molitor, and R. Drechsler, “BDD minimization
using symmetries,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 18, no. 2, pp. 81–100, Feb. 1999.

[9] V. N. Kravets and K. A. Sakallah, “Generalized symmetries in Boolean
functions,” in Proc. Int. Conf. Computer-Aided Design, San Jose, CA,
Nov. 2000, pp. 526–532.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–692, Aug. 1986.

[11] U. Kebschull, E. Schubert, and W. Rosenstiel, “Multilevel logic synthesis
based on functional decision diagrams,” in Proc. Eur. Design Automation
Conf. (EDAC), Brussels, Belgium, 1992, pp. 43–47.

[12] U. Kebschull and W. Rosenstiel, “Efficient graph-based computation
and manipulation of functional decision diagrams,” in Proc. Eur. Design
Automation Conf. (EDAC), Paris, France, 1993, pp. 278–282.

[13] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski,
“Efficient representation and manipulation of switching functions based
on ordered Kronecker functional decision diagrams,” in Proc. Design
Automation Conf., San Diego, CA, Jun. 1994, pp. 415–419.

[14] M. Chrzanowska-Jeske, A. Mischenko, J. S. Zhang, and M. Perkowski,
“Logic synthesis for layout regularity using decision diagrams,” in
Proc. Int. Workshop Logic Synthesis, Temecula, CA, Jun. 2004,
pp. 149–154.

[15] J. S. Zhang, M. Chrzanowska-Jeske, A. Mischenko, and J. R. Burch,
“Detecting support-reducing bound sets using 2-cofactor symmetries,”
in Proc. Asia South Pacific Design Automation Conf., Shanghai, China,
Jan. 2005, pp. 266–271.

[16] M. Davio, J.-P. Deschamps, and A. Thayse, Discrete and Switching Func-
tions. New York: McGraw-Hill, 1978.

[17] M. A. Perkowski, “The generalized orthonormal expansion of functions
with multiple-valued inputs and some of its applications,” in Proc. Int.
Symp. Multi-Valued Logic, Sendai, Japan, 1992, pp. 442–450.

[18] M. Chrzanowska-Jeske, “Generalized symmetric and generalized pseudo-
symmetric functions,” in Proc. Int. Conf. Electronics, Circuits and
Systems, Pafos, Cyprus, Sep. 1999, pp. 343–346.

[19] ——, “Generalized symmetric variables,” in Proc. Int. Conf. Electronics,
Circuits, and Systems, St. Julians, Malta, Sep. 2001, pp. 1147–1151.

[20] D. Möller, J. Mohnke, and M. Weber, “Detection of symmetry of Boolean
functions represented by ROBDDs,” in Proc. Int. Conf. Computer-Aided
Design, Santa Clara, CA, Nov. 1993, pp. 680–684.

[21] A. Mishchenko, “Fast computation of symmetries in Boolean functions,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 11,
pp. 1588–1593, Nov. 2003.

[22] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry detection and
dynamic variable ordering of decision diagrams,” in Proc. Int. Conf.
Computer-Aided Design, San Jose, CA, Nov. 1994, pp. 628–631.

[23] C.-C. Tsai and M. Marek-Sadowaska, “Generalized Reed–Muller forms
as a tool to detect symmetries,” IEEE Trans. Comput., vol. 45, no. 1,
pp. 33–40, Jan. 1996.

[24] S. Minato, “Zero-suppressed BDDs for set manipulation in combi-
national problems,” in Proc. Design Automation Conf., Dallas, TX, 1993,
pp. 272–277.

[25] F. Somenzi. CUDD Package, Release 2.3.1. [Online]. Available: http://
vlsi.Colorado.EDU/~fabio/CUDD/cuddIntro.html

[26] A. Mishchenko. EXTRA Library of DD Procedures. [Online]. Available:
http://www.ee.pdx.edu/~alanmi/research/extra.htm

[27] C.-C. Tsai and M. Marek-Sadowska, “Boolean matching using general-
ized Reed–Muller form,” in Proc. Design Automation Conf., San Diego,
CA, Jun. 1994, pp. 339–344.

[28] H. Savoj, M. J. Silva, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Boolean matching in logic synthesis,” in Proc. Eur. Design Automation
Conf., Hamburg, Germany, Feb. 1992, pp. 168–174.

[29] R. Drechsler, N. Drechsler, and W. Günther, “Fast exact minimization of
BDDs,” in Proc. Design Automation Conf., San Francisco, CA, Jun. 1998,
pp. 200–205.

ZHANG et al.: LINEAR COFACTOR RELATIONSHIPS IN BOOLEAN FUNCTIONS 1023

[30] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary decision
diagrams based on exchange of variables,” in Proc. Int. Conf. Computer-
Aided Design, Santa Clara, CA, 1991, pp. 472–475.

[31] D. Möller, P. Molitor, and R. Drechsler, “Symmetry based variable
ordering for ROBDDs,” in Proc. IFIP Workshop Logic and Architecture
Synthesis, Grenoble, France, 1994, pp. 47–53.

[32] T. Sasao, Logic Synthesis and Optimization. Norwell, MA: Kluwer,
1993.

[33] R. Drechsler and B. Becker, “Dynamic minimization of OKFDDs,” in
Proc. Int. Conf. Computer Design, Austin, TX, Oct. 1995, pp. 602–607.

[34] R. Drechsler, B. Becker, and N. Göckel, “Minimization of OKFDDs by
genetic algorithms,” in Proc. Int. Symp. Soft Computing, Reading, MA,
1996, pp. B:263–B:528.

[35] P. Lindgren, R. Drechsler, and B. Becker, “Improved minimization meth-
ods of pseudo Kronecker expressions,” in Proc. Int. Symp. Circuit and
Systems, Monterey, CA, 1998, pp. VI:187–VI:190.

[36] M. Chrzanowska-Jeske, Y. Xu, and M. Perkowski, “Logic synthesis for
a regular layout,” VLSI Des.—An International Journal of Custom-Chip
Design, Simulation and Testing, vol. 10, no. 1, pp. 35–55, 1999.

[37] W. Wang and M. Chrzanowska-Jeske, “Generating linear arrays using
symmetry chain,” in Proc. Int. Workshop Logic Synthesis, Lake Tahoe,
CA, Jun. 1999, pp. 115–119.

[38] M. Chrzanowska-Jeske and Z. Wang, “Mapping of symmetric and par-
tially symmetric functions to CA-type FPGAs,” in Proc. IEEE Midwest
Symp. Circuits and Systems, Rio de Janeiro, Brazil, 1995, pp. 290–293.

[39] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, and S. I. Long, “Wave
steering in YADDs: A novel non-iterative synthesis and layout technique,”
in Proc. Design Automation Conf., New Orleans, LA, 1999, pp. 446–471.

[40] M. Perkowski, M. Chrzanowska-Jeske, and Y. Xu, “Lattice diagrams
using Reed–Muller logic,” in Proc. Int. Workshop Applications
Reed–Muller Expansions, Oxford, U.K., 1997, pp. 85–102.

[41] M. Chrzanowska-Jeske and J. Zhou, “AND/EXOR regular function
representation,” in Proc. IEEE Midwest Symp. Circuits and Systems,
Sacramento, CA, 1997, pp. 1034–1037.

[42] P. Lindgren, R. Drechsler, and B. Becker, “Synthesis of pseudo-Kronecker
lattice diagrams,” in Proc. Int. Workshop Applications Reed–Muller
Expansions, Victoria, Canada, 1999, pp. 197–204.

[43] R. L. Ashenhurst, “The decomposition of switching functions,” in
Computational Lab, vol. 29. Cambridge, MA: Harvard Univ., 1959,
pp. 74–116.

[44] A. Curtis, New Approach to the Design of Switching Circuits. Princeton,
NJ: Van Nostrand, 1962.

[45] [Online]. Available: http://www.ece.pdx.edu/~alanmi/research/lcr/
index.htm

[46] V. N. Kravets and K. A. Sakallah, “Constructive library-aware synthesis
using symmetries,” in Proc. Design, Automation and Test Europe (DATE),
Paris, France, 2000, pp. 208–216.

Jin S. Zhang (M’93) received the B.S. degree in
electrical engineering and the B.A. degree in English
for science and technology from Tianjin University,
Tianjin, China, in 1991, the M.S.E.E. degree from
Tianjin University in 1994, and the M.S. degree in
electrical and computer engineering from Portland
State University, Portland, OR, in 2001. She is cur-
rently working toward the Ph.D. degree at Portland
State University.

From 1995 to 2002, she has worked with Lat-
tice Semiconductor Corporation, Cadence Design

Systems, and Real Intent, Inc., on logic and layout verification.

Malgorzata Chrzanowska-Jeske (S’86–M’86–
SM’98) received the M.S. degree in electrical
engineering from Politechnika Warszawska (the
Technical University of Warsaw), Warsaw, Poland,
in 1972, and the Ph.D. degree in electrical engineer-
ing from Auburn University, Auburn, AL, in 1988.

She has served on the faculty of the Technical
University of Warsaw, and as a Design-Automation
Specialist at the Research and Production Center of
Semiconductor Devices, Warsaw. Since 1989, she
has been with the Department of Electrical and

Computer Engineering, Portland State University, Portland, OR, where she
is currently a Professor and the Department Chair. Her research interests
include vertically integrated computer-aided design (CAD) for very large scale
integration (VLSI) IC and Mixed Signal System On Chip (MS-SOC), three-
dimensional (3-D) chip architectures, field-programmable gate array (FPGA)
synthesis and architecture, design for manufacturability and testability in deep
submicrometer, and nano/bio electronics. She has published more than 100
technical papers and serves as a panelist for the National Science Foundation
(NSF) and as a reviewer for National Research Council Canada (NRC) and
many international journals and conferences.

Dr. Chrzanowska-Jeske has served on the Technical, Steering, and Organiz-
ing Committees of many international conferences, and was a Technical Chair
of the 2002 International Conference on Electronics, Circuits and Systems. In
2004, she was a Guest Editor of the International Journal on Analog Integrated
Circuits and Signal Processing. She was a recipient of the 1990 Best Paper
Award from the Alabama Section of IEEE for a paper on the simulation of a
bipolar transistor at low temperature published in the IEEE TRANSACTIONS ON

ELECTRON DEVICES. She is a member of the VLSI Systems and Applications
Technical Committee of the IEEE Circuits and Systems Society, a member of
the ACM, and of Eta Kappa Nu.

Alan Mishchenko (M’99) graduated from Moscow
Institute of Physics and Technology, Moscow,
Russia, in 1993, and received the Ph.D. degree in
computer science from Glushkov Institute of Cyber-
netics, Kiev, Ukraine, in 1997.

He has been a Research Scientist in the U.S. since
1998. His work has been funded by several grants
from Intel Corporation. Currently, he is affiliated
with the University of California at Berkeley. His
research interests are in developing computationally
efficient methods for logic synthesis and verification.

Jerry R. Burch (S’92–M’92) received the B.S. and
M.S. degrees in computer science from the Cali-
fornia Institute of Technology, Pasadena, in 1984
and 1985, respectively, and the Ph.D. degree in
computer science from Carnegie Mellon University,
Pittsburgh, PA, in 1992.

From 1992 to 1994, he was a Postdoctoral Scholar
in the Computer Science Department at Stanford
University. From 1994 to 2002, he was with Ca-
dence Berkeley Labs. He is currently with the
Advanced Technology Group of Synopsys, Inc.,
in Hillsboro, OR.

