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ABSTRACT 
This paper presents a technique for preprocessing combinational 
logic before technology mapping. The technique is based on the 
representation of combinational logic using And-Inverter Graphs 
(AIGs), a networks of two-input ANDs and inverters. The 
optimization works by alternating DAG-aware AIG rewriting, 
which reduces area by sharing common logic without increasing 
delay, and algebraic AIG balancing, which minimizes delay 
without increasing area. The new technology-independent flow is 
implemented in a public-domain tool ABC. Experiments on large 
industrial benchmarks show that the proposed methodology scales 
to very large designs and is several orders of magnitude faster 
than SIS and MVSIS while offering comparable or better quality 
when measured by the quality of the network after mapping.   

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Automatic synthesis. 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
Technology-independent logic synthesis, And-Inverter Graphs, 
NPN equivalence, technology mapping. 

1 INTRODUCTION 
Optimization of multi-level logic networks using logic synthesis 

[4][5] plays an important role in automated design flow. Logic 
synthesis is often applied to the network derived by compiling 
HDLs, such as VHDL or Verilog, before performing technology 
mapping for standard cells or programmable devices. Other uses 
of logic synthesis include hardware emulation, design complexity 
estimation, software synthesis, and fast preprocessing of circuits 
before equivalence checking [3]. Traditional combinational logic 
synthesis, exemplified by SIS [18] and MVSIS [16], applies a 
sequence of optimization steps, having the goal of removing 
redundant nodes (sweep), finding better logic boundaries 
(eliminate, resubstitute), discovering shared logic (fast_extract), 
and simplifying the node representations (simplify, full_simplify). 
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Traditional synthesis has several drawbacks:  
• It often relies on trial-and-error and hand-tuning of the 

optimization scripts. 
• Improvements are measured using the reduction in the 

number of literals in the factored forms of the node SOPs, 
while technology mappers [7][10] often use cost functions 
not correlated with the literal counts.  

• It is complicated and hard to implement. An implementation 
of a robust technology-independent synthesis flow in SIS and 
MVSIS takes several person-months, in addition to in-depth 
knowledge of logic synthesis. 

• Even in its robust implementations, with resource limits 
controlling runtime and memory, traditional synthesis is 
often slow because it involves time-consuming steps, such as 
computation of internal don’t-cares [11]. 

We propose a new technology-independent combinational logic 
synthesis flow using fast local transformations of And-Inverter 
Graphs (AIGs), composed of two-input ANDs and inverters. The 
flow improves on the traditional logic synthesis by addressing the 
above difficulties. Advantages are summarized as follows: 

• While still being heuristic and suboptimal, the new algorithm 
does not require as much hand-tuning and trial-and-error. 

• Improvements in the complexity of the logic are measured by 
AIG nodes and levels, in better correspondence with both 
standard-cell [6] and FPGA mappers [14], which use AIGs or 
similar data structures as subject graphs. 

• It is much simpler. A robust implementation reported in this 
paper took a few person-weeks to conceive and implement. 

• It is orders of magnitude faster than the traditional flow, even 
when compared with its most rugged and robust versions, 
while the quality is comparable or better when measured by 
the delay and area of the network after technology mapping. 

AIG rewriting is local; however, rewriting is very fast and can 
be applied to the network many times. For example, performing 
ten rewriting passes over a typical network is still at least an order 
of magnitude faster than running the resource-aware 
implementation of the traditional flow in MVSIS. By applying 
rewriting many times, the scope of changes is no longer local. The 
result is that the cumulative effect of several rewriting passes is 
often superior to traditional synthesis in terms of quality.   

2 BACKGROUND 
An And-Inverter Graph (AIG) is a directed acyclic graph 

(DAG), in which a node has either 0 or 2 incoming edges. A node 
with no incoming edges is a primary input (PI). A node with 2 
incoming edges is a two-input AND gate. An edge is either 
complemented or not. A complemented edge indicates the 
inversion of the signal. Certain nodes are marked as primary 
outputs (POs). Registers if present are considered as PI/PO pairs.  
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The combinational logic of an arbitrary Boolean network can be 
factored [4] and transformed into an AIG using DeMorgan’s rule. 
Structural hashing is applied during AIG construction to ensure 
that no two AND gates have identical pairs of incoming edges. 

A cut C of node n is a set of nodes of the network, called leaves, 
such that each path from PIs to n passes through at least one leaf. 
A cut is K-feasible if the number of leaves does not exceed K. The 
cut function is the function of node n in terms of the cut leaves. 

Two Boolean functions, F and G, belong to the same NPN-class 
(are NPN-equivalent) if F can be derived from G by negating (N) 
and permuting (P) inputs and negating (N) the output. 

Example. Functions F = ab + c and G = ac + b are NPN-
equivalent because swapping b and c make them identical. 
Functions F = ab + c and G= ab are not NPN-equivalent because 
no amount of permuting and complementing variables can make a 
3-variable function equivalent to a 2-variable function.   

3 AIG REWRITING 
Rewriting is a fast greedy algorithm for minimizing the AIG 

size by iteratively selecting AIG subgraphs rooted at a node and 
replacing them with smaller pre-computed subgraphs, while 
preserving the functionality of the root node. Our rewriting 
algorithm is developed by extending the prior work [3] as follows: 

• Using 4-feasible cuts instead of two-level subgraphs. 
• Restricting rewriting to preserve the number of logic levels. 
• Developing several variations of AIG rewriting to 

o selectively collapse and refactor [4] larger subgraphs, 
o balance AIGs using algebraic tree-height reduction [8]. 

• Experimental tune-up for logic synthesis applications. 
For the purposes of 4-input AIG rewriting, all 4-feasible cuts of 

the nodes are enumerated using the procedure in [17]. For each 
cut, the Boolean function is computed and its NPN-class is 
determined by hash-table lookup. Fast manipulation of 4-variable 
functions is achieved by representing them using truth tables 
stored as 16-bit bit-strings. Altogether there are 222 NPN 
equivalence classes of 4-variable functions [15], of which only 
about one hundred appear more than once as functions of 4-
feasible cuts in the numerous benchmarks tested, and only about 
40 of these have been found experimentally to lead to 
improvements in rewriting. The unifying characteristic of the 
useful NPN-classes of functions is that they are decomposable 
using simple disjoint-support decomposition [2]. 

All non-redundant AIG subgraphs of the representative 
functions of the useful equivalence classes are pre-computed in 
advance as a shared DAG containing approximately one thousand 
nodes and hashed by the truth table. This DAG is compiled into 
the program as an integer array, which noticeably reduces the 
setup time of the rewriting package. 

Figure 1 shows the AIG rewriting procedure. The nodes are 
visited in a topological order. For each 4-input cut of a node, all 
pre-computed subgraphs of its NPN class are considered. Logic 
sharing between the new subgraphs and nodes already in the 
network is determined. First, the old subgraph is dereferenced and 
the number of nodes, whose reference counts became 0, is 
returned. These nodes will be removed if the old subgraph is 
replaced. Next, a new subgraph is added while counting the 
number of new nodes and the nodes whose reference count went 
from 0 to a positive value. These nodes will be added. The 
difference of the counters is the gain in the number of nodes if the 
replacement is done. The new node is de-referenced and the old 
node is referenced to return the AIG to its original state. 

After trying all available subgraphs for the given node, the one 
that leads to the largest improvement at a node is used. If there is 

no improvement and “zero-cost replacement” is enabled, a new 
subgraph that does not increase the number of nodes is used. 
      RReewwrriittiinngg((  nneettwwoorrkk  AAIIGG,,  hhaasshh  ttaabbllee  PPrreeccoommppuutteeddSSttrruuccttuurreess,,  bbooooll  UUsseeZZeerrooCCoosstt  ))  
      {{  
                    ffoorr  eeaacchh  nnooddee  NN  iinn  tthhee  AAIIGG  iinn  tthhee  ttooppoollooggiiccaall  oorrddeerr  {{  
                              ffoorr  eeaacchh  44--iinnppuutt  ccuutt  CC  ooff  nnooddee  NN  ccoommppuutteedd  uussiinngg  ccuutt  eennuummeerraattiioonn  {{  
                                        FF  ==  BBoooolleeaann  ffuunnccttiioonn  ooff  NN  iinn  tteerrmmss  ooff  tthhee  lleeaavveess  ooff  CC  
                                        PPoossssiibblleeSSttrruuccttuurreess  ==  HHaasshhTTaabblleeLLooookkuupp((  PPrreeccoommppuutteeddSSttrruuccttuurreess,,  FF  ));;  
                                        ////  ffiinndd  tthhee  bbeesstt  llooggiicc  ssttrruuccttuurree  ffoorr  rreewwrriittiinngg  
                                        BBeessttSS  ==  NNUULLLL;;  BBeessttGGaaiinn  ==  --11;;  
                                        ffoorr  eeaacchh  ssttrruuccttuurree  SS  iinn  PPoossssiibblleeSSttrruuccttuurreess  {{  
                                                NNooddeessSSaavveedd  ==  DDeerreeffeerreenncceeNNooddee((  AAIIGG,,  NN  ));;  
                                                NNooddeessAAddddeedd  ==  RReeffeerreenncceeNNooddee((  AAIIGG,,  SS  ));;  
                                                GGaaiinn  ==  NNooddeessSSaavveedd  ––  NNooddeessAAddddeedd;;  
                                                DDeerreeffeerreennccee((  AAIIGG,,  SS  ));;    RReeffeerreennccee((  AAIIGG,,  NN  ));;  
                                                iiff  ((  GGaaiinn  >>  00  ||||  ((GGaaiinn  ==  00  &&&&  UUsseeZZeerrooCCoosstt))  ))  
                                                          iiff  ((    BBeessttSS  ==  NNUULLLL  ||||    BBeessttGGaaiinn  <<  GGaaiinn  ))    
                                                                      BBeessttSS  ==  SS;;  BBeessttGGaaiinn  ==  GGaaiinn;;  
                                      }}    
                                      iiff  ((  BBeessttSS  ====  NNUULLLL  ))  ccoonnttiinnuuee;;  
                                      ////  uussee  tthhee  bbeesstt  llooggiicc  ssttrruuccttuurree  ttoo  uuppddaattee  tthhee  nneettlliisstt  
                                      NNooddeessSSaavveedd  ==  DDeerreeffeerreenncceeNNooddee((  AAIIGG,,  NN  ));;  
                                      NNooddeessAAddddeedd  ==  RReeffeerreenncceeNNooddee((  AAIIGG,,  SS  ));;  
                                      aasssseerrtt((  BBeessttGGaaiinn  ==  NNooddeessSSaavveedd  ––  NNooddeessAAddddeedd  ));;  
                            }}  
                  }}    
      }}  

Figure 1. 4-input rewriting algorithm. 
Example. Figure 2 shows three AIGs for F = abc that are pre-

computed and stored. Figure 3 shows two instances of AIG 
rewriting. The upper part of the figure shows the situation when 
Subgraph 1 is detected and replaced by Subgraph 2. The lower 
part of the figure shows two nodes AND(a, b) and AND(a, c) that 
are already present in the network. In this case, Subgraph 2 can be 
replaced by Subgraph 1. In both cases, one node is reduced. 

 
Figure 2. Different AIG structures for function F = abc. 

 
Figure 3. Two cases of AIG rewriting of a node. 

A variation of AIG rewriting called refactoring uses a heuristic 
algorithm [12] to compute one large cut for each AIG node. 
Refactoring tries to replace the current AIG structure of the cut by 
a factored form of the cut function. The change is accepted if 
there is an improvement or no increase in the number of nodes. 

 

a 

Subgraph 1 Subgraph 3 Subgraph 2 

Subgraph 1 Subgraph 2 

Subgraph 1 Subgraph 2 

c b ca

b a 

ca b

a b a c b 

a 

c 

b 

a 

c a b a c a b a c 

⇒ 

⇒ 

533



4 EXPERIMENTAL RESULTS 
AIG rewriting is implemented in the sequential logic synthesis 

and verification system, ABC [1], as commands rewrite, refactor, 
and balance. A rewriting script, resyn2, was defined as an alias in 
the resource file abc.rc [1]. This script performs 10 passes over 
the network as follows: b; rw; rf; b; rw; rwz; b; rfz; rwz; b. In the 
abbreviated notation, b (balance) stands for AIG balancing, rw/rf 
(rewrite/refactor) stands for AIG rewriting/refactoring, and 
rwz/rfz is the same but with zero-cost replacements allowed.  

The resyn2 script optimizes area under delay constraints. It 
starts by balancing to reduce delay upfront as much as possible. 
Next, rewriting/refactoring and balancing are interleaved. During 
this, rewriting/refactoring tries to reduce area while not increasing 
delay. Balancing tries to reduce delay while not increasing area. 
Zero-cost replacements are enabled later in the script to facilitate 
creating new rewriting opportunities. This process in resyn2 is 
stopped after three iterations. Generally, this heuristic approach 
works well for a variety of benchmarks.  

One difficulty in comparing the quality of AIG rewriting with 
traditional logic synthesis is their use of different cost functions. 
Previously, improvements were measured by counting the sum 
total of literals in the factored forms while AIG rewriting looks at 
the total number of AIG nodes and the maximum number of AIG 
levels. Therefore, in Tables 2 and 3, we compare the impact of 
AIG rewriting to that of logic synthesis in SIS and MVSIS, after 
technology mapping. We used the technology mappers in ABC, 
for FPGAs [14] and standard cells [6] using the library 
mcnc.genlib from the SIS distribution. A load-independent timing 
model was assumed. Our experiments with a load-independent 
combinational mapper in an industrial setting confirm that gate 
sizing and buffering can be done in later stages of the flow. 

Experiments were performed on many public-domain 
benchmarks, including industrial circuits from IWLS 2005 [9]. 
Section 4.1 analyzes the performance of the rewriting script. 
Section 4.2 compares AIG rewriting with logic synthesis scripts in 
SIS and MVSIS. Section 4.3 gives detailed statistics for IWLS 
2005 benchmarks, showing the impact of AIG rewriting on tech-
mapping for FPGAs and standard cells.  

In all cases, the netlists produced by SIS, MVSIS and ABC 
were structurally hashed and algebraically balanced for minimum 
delay in ABC before mapping. The resulting netlists were verified 
using a SAT-based equivalence checker in ABC [13]. 

Due to page limitation only the largest 10 IWLS benchmarks 
are shown in Tables 2 and 3, although the average ratios listed in 
the last row of the tables refer to a set of 21 benchmarks used. 

4.1 Performance and runtime analysis 
The performance of rewriting is analyzed in Table 2. The first 

column lists the benchmarks. The next five columns show the 
number of primary inputs (PI), primary outputs (PO), latches 
(Latch), AIG nodes (AND2), and logic levels of two-input AND 
gates (Lev). The number of gates and logic levels is given for an 
AIG after structural hashing and algebraic balancing.  

The next eight columns show the AIG rewriting statistics after 
two successive applications of rwz to the original benchmarks. 
The columns show the number of 4-input cuts computed for all 
internal nodes (“Cuts”), the number of subgraphs tried during 
rewriting (“Subgrs”), the number of times a rewriting was 
accepted (“Upds”), and the improvement in the number of AIG 
nodes after each rewriting pass.  

The data shows that the second pass of rewriting leads to 
smaller but still non-negligible gains in the number of AIG nodes 
(18% of the first pass). This confirms that the zero-cost 

replacements are useful for restructuring logic, allowing new 
rewriting possibilities. Without zero-cost replacements, the second 
pass improves by only 11% (data is not shown in the table). With 
replacements the first pass reduces the number of nodes by 14%, 
while without zero-cost replacements, by 12%.  

The last three columns of the table show the runtime of logic 
synthesis in MVSIS (script mvsis.rugged), ABC (resyn2), and, as 
a sanity check, the runtime of standard-cell technology mapping 
in ABC (command map –s). All runtimes are on a 1.6GHz laptop.  

In summary, AIG rewriting as implemented in ABC (resyn2) 
performs 10 passes over the network to improve area and delay of 
the AIG. It is much faster than the resource-aware traditional logic 
synthesis script in MVSIS. 

4.2 Comparison using MCNC benchmarks 
In Table 1, we compare the average ratios of improvements 

achieved by technology mapping for standard cells and FPGAs 
after running several optimization scripts. The complete set of 
MCNC benchmarks [19] is used in this experiment. The results of 
mapping unoptimized circuits are used as the base for comparison 
(Line 1 of Table 1). The optimization in SIS (script.rugged) did 
not complete on several benchmarks, which were excluded.  

The last column shows the average ratios of runtime using AIG 
rewriting (resyn2) as the base. On these relatively small 
benchmarks, MVSIS is 7 times slower while SIS is slower by 
several orders of magnitude, depending on the script used.  In 
terms of quality, rewriting tends to produce better area and worse 
delay than the combination of script.rugged followed by speed_up 
in SIS. It is likely that a more powerful rewriting that uses larger 
cuts will outperform SIS in delay while taking only a small 
fraction of the SIS runtime. 

Table 1. Summary of comparison on MCNC benchmarks. 
Logic synthesis flow Stand. cells  FPGAs   
used for optimization Area Delay Area Delay Runtime 

No optimization 1.00 1.00 1.00 1.00 0.00
ABC (AIG rewriting) 0.87 0.96 0.93 0.98 1.00
MVSIS (mvsis.rugged) 0.91 1.10 0.93 1.03 7.12
SIS (script.delay) 0.94 0.99 0.98 0.97 ~100.00
SIS (script.rugged+speed_up) 0.94 0.90 0.98 0.94 ~1000.00

4.3 Comparison using IWLS 2005 benchmarks 
This section compares AIG rewriting in ABC with logic 

synthesis in MVSIS on the large benchmarks from IWLS 2005. A 
similar comparison proved impossible for ABC vs. SIS because 
several key commands in SIS timed out on circuits from this set.  

The following notation is used in Table 3. Columns “Original”, 
“MVSIS”, and “ABC” show the results of mapping of the original 
circuit, the circuit optimized by mvsis.rugged in MVSIS, and the 
same circuit optimized by resyn2 in ABC, respectively. Two sets 
of mapping results are reported, one for LUT-based FPGAs and 
another for standard cells using mcnc.genlib. 

In summary, the ratios of improvements demonstrate that on 
average, AIG rewriting performs better than traditional synthesis. 
In particular, the results of technology mapping for FPGAs 
confirm that literal-based optimization in MVSIS does not reduce 
area and delay while AIG rewriting reduces both.  

It should be noted that the original IWLS benchmarks were 
optimized by an industrial tool prior to distribution. They were 
structurally hashed and balanced in ABC before running SIS and 
MVSIS. When starting with unoptimized networks, the difference 
between rewriting and traditional synthesis should be greater. 
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5 CONCLUSIONS AND FUTURE WORK 
This paper presents AIG rewriting, an innovative technique for 

combinational logic synthesis. The technique was inspired by 
research in the field of formal verification where a similar 
algorithm was used for fast compression of redundant logic 
circuits [3]. Our experiments show that AIG rewriting often leads 
to quality comparable or better than those afforded by the logic 
synthesis scripts in MVSIS and SIS while being one or two orders 
of magnitude faster as well as applicable to larger examples.  

The proposed technique plays the crucial role in a new logic 
synthesis flow [12] which may replace the traditional logic 
synthesis in the CAD tools. The extreme speed and good quality 
of the proposed algorithm might make the new flow useful in a 
variety of applications such as hardware emulation, estimation of 
design complexity, and equivalence checking [13]. 

Future work will include extending the baseline AIG rewriting 
to use larger cut sizes. The challenge is to search a much larger 
space of possible replacements while keeping runtime low in 
order to allow multiple optimization passes. 
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Table 2. IWLS benchmark statistics, rewriting performance, and runtime comparison. 

IWLS Network statistics First iteration (rwz) Second iteration (rwz) Runtime, s 
benchmarks PI PO Latch AND2 Lev Cuts Subgrs Upds Gain Cuts Subgrs Upds Gain MVSIS ABC Map 

ac97_ctrl 84 48 2199 14261 11 30583 114770 4105 3242 21081 102688 2108 135 20.46 1.13 0.91
aes_core 259 129 530 21125 21 64314 350417 10849 697 60386 331836 10205 141 175.80 5.54 1.57
des_perf 234 64 8808 76716 17 394629 1701867 37530 4935 381979 1687585 30212 969 1010.70 33.23 8.87
ethernet 98 115 2235 19654 27 55413 326972 7401 4619 38365 238450 4080 381 50.39 3.81 0.99
mem_ctrl 115 152 1083 15191 28 45670 297941 8257 5416 28759 188528 3762 686 17.20 1.95 0.72
pci_bridge32 162 207 3359 22742 22 67838 331636 7865 3624 53148 279038 5191 155 51.57 3.14 1.46
systemcaes 260 129 670 12279 44 48620 164882 4539 1186 39962 145844 3993 273 28.17 1.87 0.87
usb_funct 128 121 1746 15670 23 40237 195654 4679 1383 35017 171805 3730 325 66.59 2.29 0.96
vga_lcd 89 109 17079 126687 19 463129 2887484 51088 34208 292358 2077801 32477 145 1998.27 32.55 8.51
wb_conmax 1130 1416 770 47535 18 159658 978491 15460 1891 149295 993207 16907 862 2323.01 12.38 3.31
Ratio 1.00 1.00 1.00 1.00 0.82 0.88 0.79 0.18 24.53 1.00 0.40

Table 3. Effect of AIG rewriting on technology mapping for LUT-based FPGAs (k = 5) and standard cells (mcnc.genlib). 

IWLS Results of mapping into LUTs (k = 5) Results of mapping into mcnc.genlib 
benchmarks Original  MVSIS ABC Original  MVSIS ABC 

 Area Delay Area Delay Area Delay Area Delay Area Delay Area Delay 
ac97_ctrl 3391 4 3864 5 3532 3 25961 9.20 23494 13.80 19491 8.30
aes_core 6772 7 7214 8 7180 6 39635 17.70 38855 20.30 38555 17.30
des_perf 19177 5 23406 5 19163 5 162228 14.10 155708 17.50 145133 14.80
ethernet 4665 9 5170 9 4297 8 33949 22.40 29180 24.40 23142 21.30
mem_ctrl 4854 9 4551 10 3191 9 25521 23.30 23537 26.50 15865 21.10
pci_bridge32 6150 8 5888 9 5908 7 40322 18.60 35254 20.60 34860 17.70
systemcaes 2547 9 2770 13 2329 10 21715 28.70 16483 34.60 16533 28.10
usb_funct 4530 7 4475 8 4030 7 27617 17.80 24386 28.30 23637 19.70
vga_lcd 28458 8 28866 8 29562 7 240071 15.70 169276 16.50 201141 15.50
wb_conmax 16073 7 17165 8 13370 7 82353 15.90 87082 17.60 66124 15.90
Ratio 1.00 1.00 1.01 1.17 0.94 0.97 1.00 1.00 0.88 1.22 0.83 0.97
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