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Abstract

Asynchronous finite state machines (AFSMS) have been limited

because multiple-input changes have been disallowed. In this pa-

per, we present an architecture and synthesis system to overcome

this limitation. The AFSM marks potentially hazardous state tran-

sitions, and prevents output during them. A synthesis tool to create

the AFS M incorporates novel algorithms to detect the hazardous

states.

1 Introduction

Operations in asynchronous, or self-timed [18], circuits are

not controlled with an external clock. Computations begin

when the inputs to the network arrive, instead of when a

clock pulse asserts. Without a clock, however, the gate and
line delays inherent in any design introduce hazards. To

overcome these hazards, restrictions have been placed on

asynchronous circuits. Developing an asynchronous finite

state machine (AFSM) without restrictions will allow its

full potential to be realized in a variety of designs. This

paper describes an architecture that is both hazard-free and

without input restrictions. A synthesis tool to automate the

design of the architecture is detailed.

The paper is divided into the following sections. Sec-

tion 2 highlights the new AFSM and its advantages over

other machines. The model of the new hazard-free architec-
ture is described in Section 3. An architectural description

of the machine is found in Section 4. Section 5 details the

synthesis tool, and the results of some FSM benchmmks are

presented in Section 6. Section 7 compares our technique

for providing a multiple-input change hazard-free AFSM to

methods used by others. Finally, Section 8 concludes the

paper.
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2 A Hazard-free AFSM

Because AFSMS have no controlling clock, they must have

some way to detect new inputs. The term “fundamental

mode” [20] denotes a method of AFSM operation such that

new inputs are accepted only when current inputs are as:;im-

ilated. This requirement exists regardless of the model used

for an AFSM. In addition, all FSMS must be hazard-free.

A hazard is a possible deviation from expected operation

caused by stray gate or line delays, A variety of hazard-

free implementations exist [5, 10, 14], but they remove

only one or two kinds of hazards. Our AFSM architecture,

FANTOM, is free from all possible types of hazards.

2.1 Input Change Hazards

Assimilation of a new input vector cart cause hazards. Dif-

ferent terminology is used to describe these hazards depend-

ing upon whether single-bit or multiple-bit input changes

are involved. A gate output glitch due to a single-bit input

change, is called a static, or combinational hazard. A dy-

namic hazard [20] causes a gate output to glitch if both Zi

and 37iare input. The well-known technique of including all

prime implicants in the logic equation (adding “consensus

gates”) resolves these hazards [20].

When the input transition involves a multiple-bit change,

the term M-hazard is used [5]. An M-hazard cart be either

logic or function. The logic M-hazard is identical to the

static hazard and is resolved the same way. A function M-

hazard occurs if a state variable that should remain invari-

ant changes during the input vector transition. This type of

hazard is inherent in the flow-table representation, and can-

not be eliminated using circuit additions. This seemingly

unavoidable hazard is the reason why many architectures

restrict the input vector to single-input changes. FANTOM
uses a new technique, described in Section 5, to eliminate

M-hazards, thereby removing input restrictions.

Other architectures allow multiple input-bit changes,

*Work done while on leave from Digital Equipment Corporation.

2t3th ACM/lEEE Design Automation Conference@

Paper 19.3

309a 1991 ACM 0-89791-395-7/91/0006/0309 $1.50



but only address a subset of the hazards discussed here.

The methods used by these architectures to detect multiple

versus single-bit changes involve complex input codings,

source boxes, or time calculations [2, 6, 21]. FANTOM

simply traps inputs with “self-synchronization”, which uses

internal signals to control events in a network [4]. These

internal signals detect when the previous state change is

stable before gathering new inputs.

2.2 Avoidance of Other Hazards

A steady-state hazard occtirs when a sequential circuit en-

ters the wrong intemat state because of a static (logic) haz-

ard or a criticat race. A critical race condition exists if

two or more state variables change due to an input transi-

tion, and the next stable state will depend upon the order in

which the state variables change. To eliminate this hazard,

state assignments that restrict the state vector to single bit

or non-haz~dous multi-bit changes are used [19].

Transient hazards, a speciat case of static hazards, affect

the outputs. FANTOM avoids these using self-synchronization

at the outputs. Thus, FANTOM allows multiple-output bit

changes, as long as the output vector obeys the single-
output-change (SOC) principle [20], i.e. bits can change

only once per input transition.

Essential hazards are inherent to sequential circuits; they

exist because of the possible race between a gate seeing an

input change and a state variable change [5]. Essential haz-

ards are avoided if two conditions are met. First, the inputs

must reach all gates before the state variables can change,

Second, the combinational logic must be hazard-free. The

first condition can be restated as: the maximum line de-

lay must be less than the minimum loop delay. This loop

delay assumption also avoids the delay hazard, a princi-

pal obstacle for speed-independent (S1) circuits [20]. The

conditions leading to an essential hazard can also cause a

function M-hazard.

In FANTOM, a technique based on [1, 7], removes

function hazards, and also eliminates essential, delay, and

combinational hazards. This technique involves a single

variable addition, aIlowing for a simple implementation.

This variable marks potentially hazardous states, and pre-

vents outputs during them. Combining both old and new

methods, our AFSM is free of hazards and removes restric-

tions placed on inputs and outputs.

3 Extended S1 Model for FANTOM

In S1 circuits, all state transitions end in the same terminal

class, the set of all stable states. It has been stated [16],

however, that it is impossible to build truly S1 circuits be-

cause they cannot react instantaneously to inputs, and thus

cannot guarantee the terminal-class requirement. A subset

of S1 circuits, known as semimodular, can guarantee the ter-

minal class requirement. These circuits have the following

properties [14]. First, inputs are required to be persistent,

which means that once changed, they remain invariant un-

til the circuit has assimilated them. Second, the flow-table

representation must be strongly connected, meaning that

every stable state can be reached from every other stable

state. Third, each state must have a unique bit-vector as-

signment. In addition, the atlowed state sequence must be

non-consecutive, to ensure detection of input assimilation.

Thus, most circuits do not allow “like-successive” inputs,

meaning that the same input vector can be used in succes-

sion, such as <0101> preceding <0101>.

A general property of asynchronous circuits, regardless

of the model, is that inputs and outputs are considered level.

Therefore, a Huffman flow table can be used to represent

circuit behavior. Persistence requires using some form of

completion detection to define when the outputs are stable

and the inputs can change. One method uses an external

G (Go) signal that asserts when new inputs are available,

and an internal R (Reply) signal that asserts when the out-

puts are ready [14]. Persistence is related to “fundamental
mode”, since the inputs do not change until the network is

stable.
FANTOM’s extended model removes the restriction on

allowed sequences to include “like-successive inputs”. The

machine operates correctly given these inputs because com-

pletion detection is independent of the input sequence. To

accomplish this, the G signal is generated internally when

the circuit is stable and the inputs are ready. The R signal

still asserts when the circuit, and hence output vector, is

stable.

The delay assumption of the S1 model considers gate

delays to be unbounded, but finite, and wire delays to be
negligible. Delay elements are not allowed in the feedback

path, since the nature of the S1 delay assumption makes

it unnecessary to include them. Therefore, FANTOM does

not include these elements, making a simpler state machine.

4 FANTOM Architecture

Figure 1 depicts the block diagram of a FANTOM state ma-

chine. It consists of two sets of p~sitive, edge-triggered flip-

flops, and combinational logic. X and Z denote the exter-
nal inputs (Xl, . . . . Xj ) and the externat outputs (ZI, . . . . Zk),

respectively. ”Internal signak include the input vector 2 =

(z,,..., Xj ), present state vector Y = (yl, . . . . yn), next

state vector Y = (Yl , . . . . Y~), and output vector 2 =

(Z,,..., zk).

4.1 Self-synchronization Signals

Self-synchronization in FANTOM involves the three signals

G, VOM (valid output marker), and VI (valid input), mad

the input and output flip-flops. VI is associated with X,
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Figure 1: The FANTOM State Machine.
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Figure 2: The VOM Block Diagram.

and is the VOA4 signal of the previous stage of a FANTOM

state machine. As shown in Figure 1, G and VOA4 control

FFZ and FFZ, respectively.

G allows new inputs into the network only if those

inputs are stable (V1 asserted) and the network has finished

assimilating the previous inputs (VOA4 asserted). Because
separate state machines are allowed to proceed at their own

pace, ~ of the previous stage may be ready before the

present stage needs them, or vice versa. Thus, G must

remember if either VI or VOA4 asserted.

VOA4 a.werts only after the circuit is in a stable state

and .i is ready. The circuit is stable when three signals, G,

SSD (stable state detector), and ~sv (fantom state variable)

satisfy: VOA4 = ~ * fsv * SSD. Note that these signals

are generated in the combinational logic part of the state

machine. Figure 2 shows the block diagram for generating

VOA4. The signals ~sv and SSD determine when the

circuit is stable. The $SU signal hides circuit changes until

i and j have settled, and SSD detects a new stable state.

Once a new stable state is detected, .2 is latched to become

the new 2. Section 5 examines the synthesis procedures

for generating jsv and SSD signals,

4.2 Implementation of Model Properties

Completion detection required for input persistence and

fundamental mode operation is tightly coupled to the self-

synchronization scheme described in the previous section.

The R (Reply) signal of completion detection is imple-

mented using VOM; the G signal implements “GO” [14].

The state sequence restriction described in Section 3 is

overcome by permitting consecutive input vectors. These

input vectors are allowed because VOM is reasserted when

new inputs arrive, and reasserts when the circuit is stable

and the outputs are ready.

4.3 Timing Considerations

As shown by the dashed and numbered paths in Figure 1,

there are four critical paths in the FANTOM architecture.

The signal dependencies in these paths must be considered

to ensure proper operation. This discussion begins with the

following definitions:

t~a~ : setup time for a flip-flop

t: :time needed to generate G

t: : time needed to generate 2

t~OM : time needed to generate VOM

tf : delay time through Gate A

a : rnaz(i, j), time to generate ?, j

t~sD :time needed to generate SSD

t~’” : time needed to generate .fWJ

Critical paths 1 and 2 involve the setup times of FFZ and

FFZ. Critical path 3 involves the generation of .2. To

operate correctly, the outputs must be stable t~.~z before

VOM asserts. VOM depends upon critical path 4 which

follows the path through the combinational logic needed to

generate fsv.

To meet the setup requirements of FFZ, t ~UF’ < t:. To

meet the setup requirements of FFZ, t; + t~UFz < t~’~,

where t]OM = tf + rnin(t~,min(a + t~sD,a + tjs”)).

This relationship for critical path 2 subsumes critical lpath

3.

Critical path 4 concerns the continued disabling of VOM

by fsv or SSD before G deasserts. This must happen to

ensure that false outputs are not captured by FF.. The

relationship is the following: (a + t~’v)and(a + t~sD ) <

t! + t:. The relationship between critical paths 3 and

4 is guaranteed because of the loop delay assumption ex-

plained in Section 2.2. The feedback loop involving ~sv,

and hence VOM, will take longer than that of generating

the outputs. The derivation of all timing relationships is

discussed in [9].

5 SEANCE Synthesis Program

The flow chart of Figure 3 shows the steps of the SEANCE

synthesis tool, each of which is described below.

5.1 Flow Table Preparation

Desired circuit behavior is specified using a normal-mode

flow table, which may be completely or incompletely speci-

fied. This table is directly generated from state diagrams, or
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Figure 3: The SEANCE Synthesis Procedure.

can be easily derived from signal transition graphs (STG).
“Norm~ mode” means that only one unstable transition is

entered in going from one stable state to another. Because

the program can handle incompletely specified flow tables,

SEANCE’s generality is enhanced. The program assumes

that the generated flow table is strongly connected.

Large flow tables benefit from Step 2, table reduction.

Redundant states within the flow table are removed using
state machine minimization methods [8], thereby reducing

the complexity of the state assignment process. The result-

ing flow table retains the normal mode characteristic.

Step 3 finds a valid unicode single-time transition (US’IT)

state assignment for the reduced flow table. A USTT as-

signment is a speciat case of the SIT assignment where

only one code is assigned per row of the flow table [20].

The procedure uses partition sets [19], and has two advan-
tages. First, it works with incompletely or completely spec-

ified flow tables. Second, critical races are avoided because

transitions move between states that differ in only one bit

(the other bits are invariant). The synthesis program uses a

general algorithm that will generate the smallest number of

state variables [19]. A flow table given a state assignment

is called a specified flow table.

5.2 Output Determination Stage

Step 4 of the synthesis program generates the 2 and the
SSD part of the VOM signal. Canonical equations for .2

are generated by collecting all the minterms for each vari-

able. The program then uses the Quine-McCluskey reduc-

tion technique to produce an essential SOP expression [12].

The use of self-synchronization at the outputs removes the

possibility of transient hazards, thus it is not necessary to

include all prime implicants in the expression.

The equation for SSD begins with a c..monical expres-

sion involving the minterms where y = Y. The same re-

duction techniques as for 2 are used to reduce this to an

essential SOP expression. By not using all of the prime
implicants, SSD may glitch if there is a multiple-input

change. This causes no problems, though, because the loop

delay assumption assures that SSD will settle before fsv

is stable.

5.3 Hazard Analysk

me specified flow table is subjected to a function hazard

anatysis in Steps 5 through 7 of SEANCE. The technique

of function hazard removal using the \sv is based on [7].

The analysis begins with identifying the possible func-

tion hazards within the specified flow table. A hazard list

for each state variable and fsv is composed from the haz-

ard states found upon traversing each “stable-state transi-

tion”. In a Huffman-type flow table, a stable-state transition

begins in a stable state, moves horizontally to the input

change, and then vertically to the new stable state. This
flow table movement defines an input and state-transition

space. The hazard list for Y, denoted HL, contains states

with function hazards that occur within the input transition

space. Each possible hanrd affects only one state variable

because of the properties of the USIT assignment. The
hazard list for ~sv, denoted FL, includes atl the states

found for Y. The algorithm for this process is shown in

Figure 4, using the following notation:

2 the specified flow table

S(2, j): the set of all states in the machine

S(?, j) 6 Slj = ~: the set of all stable states

s(~, j) G Slj # V: the set of all transition states

d : S(2”, ~“) ~ S(ib, ~b): a Huffmrm table transition
from input vector a to b

n: bit subscript for the j state variables

In the algorithm in Figure 4, subscripts represent bit posi-

tions, and superscripts represent input vectors.

Step 6 of SEANCE generates the canonical sum-of-

products (SOP) expressions for f sv and ~. Each entry

in the hazard list for fsv is a minterm in its SOP expres-

sion. The state variable expressions involve finding the

minterms for when fsv = O, and when fsv = 1. For the

first case, any minterm that matches the hazard list is com-

plemented. For the second case, all minterms are included
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foreachj, c T

foreachS(;”, y“) G S(2, j)

foreach~ ] Hamming_distance( 2a, 2*) >1

k=(a+l)to (b-1)

n = notinvariant(ja, F*, i~)

if (n # -1)

then 1. HLn = S(ik, j“)

2. FL = S(#, ja)

end-for; end~or; endjor

notinvariant ( ja, Y*, Vk )

i~v = G“ XOR P*

forn=ltoj

if (~~ A t;vn) V (~~ A j;)

return (n); end-for

return (-1 )

Figure 4: The Hazard Search Algorithm.

without change.

The equation for jsv is not a function of itself, and

therefore cannot hold the value of the signal at one. Hence,

we use the term “fantom” as a descriptive label for this vari-

able. The effect of finding hazards in the machine doubles

the state space, because the case when $SV = 1 must be

handled.

In Step 7 the equations for ~sv and Y are factored to

prevent hazards. To avoid logic hazards, f.sv is reduced to

all its prime implicants using a technique such as Quine-

McCIuskey. Next, fsv is expanded to allow only “first-

level gates” [1], which includes only true input variables

and state variables, A term with complemented inputs is

converted from an AND to an AND-NOR format. The

resulting expression guarantees the first condition needed

to avoid essential hazards, as explained in Section 2.2.

Y is factored according to the hazard factoring proce-

dure of Figure 5. This factoring concept avoids delay

and combinational hazards by substituting hazardous ex-

pressions with special subcube factorization [1, 7]. The

procedure first reduces each next-state equation to an es-

sential SOP expression, for example, YI = f sv (Y1 z 1) +

fsv(yl Xlzz) + fsv(yzZ1zz). Then, common terms con-

taining VI are extracted, producing an expression of the

form (Ll RI + f sv(y2Z1 22)), where -Ll contains the Y1

subcube and R1 = f sv + f sv(zz ). The program then

identifies the zero subcube within L1, the term needed to

make RI equal one. The expanded minterms of that zero

subcube are called the set yl. Next, minterms of -yI that

match the zero minterms of Y1 are eliminated. The proce-
dure substitutes the hazardous LI RI with Llfi in the SOP

expression, and then converts the equation into a first-level

gate expression.

given X = fi[~ (mini?erms E HL)]+

fsv[~ minterms = 1]

standard reduction of Y,
factor common terms containing ~; to find L;R;

; identify zero subcube Z, IR, = 1

Z; = $sv~, where /3, = remaining terms
~, = ~ midterms

remove redundant minterms G y,

substitute R, with ~ in Y,

factor K according to “first-level gate” definition

Figure 5: The Hazard Factoring Procedure.

Benchmark fsv Depth X Depth Total Depth

test example 3 5 9

traffic 3 5 9

lion 3 5 9

lion9 4 5 10
trainl 1 2 5 8

Table 1: Results Using MCNC Benchmarks.

6 Experimental Results

Table 1 presents the results of running SEANCE on the

MCNC benchmark suite [11], The depth of fsv and the

longest lj variable are used as a measure of the complexity

of the resultant state machine. “Depth” refers to the number

of levels in the logic equation. The last column “ToW
Depth” refers to the levels of logic that must be traversed

in a worst-case, hazard-detected situation for the network

to reach stability (assertion of VOM).

SEANCE takes about four seconds of CPU time on a

Digital Equipment VAXStation 3100 to run an example.

Hackbart and Dietmeyer have commented in [7] on the

possible slowed response of a network using a hazard de-

tection variable. The experimental results in this section

show that the levels of state variable logic cart be high.

7 Discussion

The preceding sections have explained how multiple-input

change, hazard-free AFSMS are created based on the FAN-

TOM model and using the procedures in SEANCE. This

section examines the difference between this method and

another which provides for multiple-input change AFSMS.

STGS have been used in other architectures to allow

multiple-input changes [3, 13, 17]. The STG, based on

Petri Nets [15], assigns input changes to directed arcs. Haz-

ardous input changes are avoided by adding arcs so that
inputs remain persistent as the graph is traversed one bit

(arc) at a time [13]. Hence, the input space has been ex-
panded to move in single-bit steps to avoid the hazards

associated with multiple-input changes. In this paper, the

Paper 19.3

313



hazards which restrict inputs to single-bit changes are re-

moved by expanding the state variable space. The variable

fsv implements this expansion. Essentially, a FANTOM

machine moves through at most two state changes regard-

less of the number of bit changes in the input. This simpli-

fies several steps of the synthesis process, such as finding

and neutralizing hazards.

8 Conclusions

This paper has described a new architecture and synthesis

tool for the implementation of a hazard-free, multiple-input

and multiple-output change AFSM. The machine works by

detecting hazardous states, and preventing output during

them. In addition, the machine ensures that the hazard

does not affect proper state transitions. The resultant state

machine has some overhead, but there is greatly increased

flexibility. In addition, the circuit implementations are ro-

bust since hazards are removed without relying on the in-

sertion of complex hardware, such as decoding boxes or

delay elements.

A synthesis tool, SEANCE, has been developed that au-

tomatically creates FANTOM state machines from a com-

pletely or incompletely specified normal-mode flow table.

SEANCE employs a number of unique techniques for find-
ing and eliminating hazards.
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