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ABSTRACT 
This paper presents the design of asynchronous circuits on 
synchronous FPGAs and CPLDs. Different design styles have 
been investigated through the implementation of dual-rail full 
adders and ripple carry adders, as well as self-timed ring based 
applications. The comparison analysis has been carried out by 
prototyping the circuits on standard programmable logic devices, 
and using the development tools provided by vendors. Although 
the feasibility of asynchronous circuits has been demonstrated in 
such devices, the experimental results clearly show the 
inefficiency of such a kind of digital system implementation. This 
is mainly due to the architecture characteristics of the 
programmable devices and the logic synthesis realized by the 
development environments. Remarks and suggestions are derived 
from this study for a new FPGA architecture devoted to 
asynchronous design. 

Categories and Subject Descriptors 
B.6.1 [Logic Design]: Design Styles – combinational logic, logic 
arrays, sequential circuits. 

General Terms 
Performance, Design, Reliability, Experimentation, Theory. 

Keywords 
Asynchronous circuits, FPGAs. 

1. INTRODUCTION 
The advent of FPGAs and CPLDs circuits provided effective 

platforms for fast prototyping of VLSI digital synchronous 
integrated circuits [1]. This technology has focused on 
synchronous designs, and more recently on globally asynchronous 
locally synchronous – GALS systems. Asynchronous design, on 
the other hand, lacks of a well established FPGA/CPLD like 
alternative [2]. 

 
The programmable logic solutions specific for asynchronous 

circuits are based on large granularity blocks that do not have the 
same flexibility and degree of configurability provided by LUT 
based FPGAs and AND-OR array based CPLDs. This way, it is 
hard to start the design flow from well established hardware 
description languages (HDLs), like VHDL and Verilog. Most 
proposed architectures for asynchronous FPGAs are closely 
associated to a given design style. For instance, MONTAGE [4] is 
based on arbiters and synchronizer cells. The approach in [5] is 
based on Null Convention Logic (NCL [6]). In [7], a dataflow 
based architecture for asynchronous circuit is proposed. The main 
drawbacks are: the designer should start from a dataflow 
specification and the granularity of the logic blocks is designed to 
make them compatible with dataflow constructs. The approach in 
[8] is based on micropipeline implementations, while the work in 
[9] presents test results for a highly pipelined asynchronous 
FPGA. A flexible FPGA that can be targeted to several different 
design styles is proposed in [10]. However, the logic block 
presented there is somewhat expensive as it requires a matrix of 
11x14 connection points internally to the logic block, as well as 
two LUT-7 structures.  

Some approaches prefer to implement asynchronous designs 
on top of synchronous FPGAs. For instance, the approach in [11] 
presents a comparison among implementations including an 
asynchronous circuit design from schematics on top of an Actel 
FPGA device [12]. An asynchronous co-processor partially 
implemented on a FPGA, partially on an ASIC is presented in 
[13], where the project adopts a dataflow architecture and it is 
described structurally. The design of a self timed ALU on a FPGA 
platform is discussed in [14], but again the circuit is described in 
schematic level, not using hardware description languages. The 
work in [15] proposes the design of asynchronous circuits using 
regular FPGAs, and its main contribution is an informal proof that 
the C-element is hazard-free if implemented in a single LUT. 
However, only 2- and 3-input C-elements are mentioned and 
hardware description languages are not applied. 

In this work, synchronous FPGAs/CPLDs available in the 
market are targeted to implement asynchronous or self-timed 
circuits from VHDL specifications. Different design styles, 
considering dual-rail encoding for computation completion 
detection, have been investigated. Note that differential and 
dynamic CMOS structures, very popular in asynchronous ASIC 
design, are not suitable in programmable components [2]. 
Moreover, bundle data implementations, like micropipelines, are 
also not compatible with such devices.  
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This paper is organized as follows. Section 2 discusses the 
functionality and VHDL description of basic cells for 
asynchronous design. Four dual-rail design styles are discussed in 
Section 3 through adder circuits. Section 4 presents the 
experimental results and analysis. Finally, the remarks for a 
dedicated asynchronous FPGA and conclusions are given in 
Section 5. 

2. CELLS FOR SELF-TIMED DESIGN 
Self-timed designs comprise specific circuits generally not used in 
synchronous design. The ones used in this work are the C-element 
or Muller cell, the M-out-of-N cell and the unique dual-rail latch. 
These three components are briefly described bellow [2]. 

2.1 C-Element 
The C-element is widely used in asynchronous designs for 
implementing the handshake control circuit and for computing 
completion detection. The truth table for a C-element is given by 
Table 1. Notice that the output signal follows the input ones when 
these are equal, or the cell acts as a memory of the previous value. 
A dedicated configurable block for this logic function is not 
available in synchronous FPGA and CPLD. The way used to 
implement C-elements is through their description as 
combinational circuits with the output reconnected to one of the 
inputs. A VHDL description of C-element implementation using 
this strategy is presented in Fig. 1. Another way to implement the 
C-element functionality is the behavioral description presented in 
Fig. 2. C-elements with more than 2-inputs can be described 
either considering both strategies mentioned above or by 
combining 2-input cells. 

ARCHITECTURE inst OF CC IS 
SIGNAL ctemp: std_logic; 
 COMPONENT modcc 
 PORT (a, b, cin : IN std_logic; 
   cout : OUT std_logic); 
 END component; 
BEGIN 
INSTCC: modcc PORT MAP (a, b, ctemp, ctemp); 
 c <= ctemp; 
END inst; 
 
ARCHITECTURE equation OF modcc IS 
BEGIN 
cout <= (a or b) and (a or cin) and (b or cin); 
END equation; 
 

Figure 1 : VHDL C-element as instance of an equation 

2.2 M-out-of-N cell 
The behavior of an M-out-of-N cell is described through an 
example. The behavior of a 2-out-of-3 cell is shown in the VHDL 
code presented in Fig. 3. The output goes to high logic level if 2 
of the 3 inputs present the logic value ‘1’. The output is reset 

when all inputs are set to logic ‘0’. Otherwise, the output is 
memorized. Notice that, when M is equal to N, a C-element is 
obtained, while making M equal to 1 result in a combinational OR 
cell. 

2.3 Dual Rail Latch 
The dual-rail latches used in self-timed rings and asynchronous 
pipelines, considering the 4-phase protocol [2], have the behavior 
described in Fig. 5. The output is reset when the enable signal 
‘En’ is equal to ‘0’. When the latch is enabled, it either acts as a 
memory when no valid data is available in the inputs (It = If = 0) 
or the output follows the input values when complemented data (It 
≠ If) are present in the input. The implementation of such a kind 
of latch applied in this work is shown in Fig. 4. 

 
ARCHITECTURE behavioral OF ncl_3_2 IS 
SIGNAL s_temp: std_logic; 
SIGNAL aux: std_logic_vector (2 downto 0); 
BEGIN 
aux <= i1 & i2 & i3; 
s_temp <= '0' when aux = "000" else 

'1' when aux = "110" else 
'1' when aux = "101" else 
'1' when aux = "011" else 
'1' when aux = "111" else 

s_temp; 
s <= s_temp; 
END behavioral; 

 
Figure 3 - VHDL behavioral description of 2-out-of-3 

cell.Figure 1. 

Ot

Of
If
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Figure 4 – Dual rail latch for self timed circuits 

 
ARCHITECTURE behavior OF latch_async IS 
 SIGNAL Ot_temp, Of_temp: std_logic; 
BEGIN 
PROCESS (It, If, En, Ot_temp, Of_temp) 
BEGIN 
 IF (En='0') THEN 
 Ot_temp <= '0'; Of_temp <= '0'; 
 ELSIF (It='0') and (If='0') THEN 
   Ot_temp <= Ot_temp; 
   Of_temp <= Of_temp; 
  ELSE 
   Ot_temp <= Ot; 
   Of_temp <= Of; 
  END IF; 
  Ot <= Ot_temp; Of <= Of_temp; 
END PROCESS; 
END behavior; 
 

Figure 5 – Behavioral description of dual rail latch 

Table 1: Truth table of 2-input C-element 

I1 I2 Out 
0 0 0 
0 1 keep previous value 
1 0 keep previous value 
1 1 1 
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3. DUAL RAIL DESIGN STYLES 
Four different design styles for the combinatorial blocks have 
been investigated, taking into account the completion detection 
through dual-rail signaling (Dt,Df), that means: (1,0) = ‘1’; (0,1) 
= ‘0’; (0,0) = no valid data or waiting state; (1,1) = not used .  

The logic styles described bellow were used to implement full 
adders, which have then cascaded to build ripple carry adders 
(RCA), ranging from 4 to 32 bits. The RCA circuits were then 
applied in the self-timed ring based applications such as least 
common multiple, greatest common divider, square root, counter, 
integer division and remainder. 

3.1 DIMS 
Delay Insensitive Minterm Synthesis - DIMS is strongly based on 
canonical (minterm based) sum-of-products, where each minterm 
is recognized through a C-element [2]. The FPGA and CPLD 
implementations have been done through the instantiation of the 
C-elements, described previously. Fig. 6 shows an exclusive-NOR 
cell based on DIMS technique. 
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Figure 6 – Exclusive-NOR based on DIMS 

3.2 NCL 
Null Convention Logic – NCL, in turn is a design style derived 
from threshold logic [5] [6]. The adopted implementation has 
been done through instantiation of the M-out-of-N elements 
described previously. The NCL based full-adder is depicted in 
Fig. 7.  It contains two 2-out-of-3 cells and two 3-out-of-5 cells. 
NCL logic can be synthesized with similar methods to threshold 
logic [6]. 

3.3 Derivation from Combinational Circuits 
In this implementation, the circuit is derived from a standard 
single-rail combinational circuit. All the equations are made 
positive unate by using the dual-rail encoding with the adequate 
polarity to avoid inverted literals. The intermediate signals that are 
needed in both polarities will result in duplicated logic gates. Fig. 
8 illustrates this principle. Notice that additional circuitry is 
needed to ensure that: a) the output is reset only when all the 
inputs are null; and b) a valid value is produced in the output only 
when all the inputs present a valid data. 

3.4 Behavioral Description with Strong 
Indication 
In this approach, the design of dual-rail combinational blocks is 
done through behavioral description including the desired 
characteristics. For instance, strong indication for valid data and 
for input reset was described in a behavioral way, but not in the 
cell level. The circuit is specified from a behavioral point-of-view 
and the strong indication conditions are added behaviorally. These 
conditions include: a) reset the output only when all the inputs are 
reset; and b) output receives a valid value only when all the inputs 
are defined, that means, when they present a valid data. 
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Figure 7 – Full-adder based on NCL 
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Figure 8 – Derivation from combinational logic 

4. EXPERIMENTAL RESULTS 
The experiments have been carried out always considering 

VHDL circuit descriptions. Six programmable devices available 
commercially were targeted, being FPGAs and CPLDs from the 
major vendors: 

• PLD#1 - Altera SRAM-based FPGA FLEX10KE 

• PLD#2 - Altera Flash-based CPLD MAX7000AE 

• PLD#3 - Xilinx SRAM-based FPGA SPARTAN2 

• PLD#4 - Xilinx Flash-based CPLD XC9500XV 

• PLD#5 - Actel antifuse-based FPGA AXELERATOR 

• PLD#6 - Actel SRAM-based FPGA 500K family 
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Each implementation was made through the particular 
development tool provided by the vendor. The statistics about the 
number of configurable cells (macrocells, logic cells or LUTs) 
that represent circuit complexity were also extracted from the 
vendor’s tool. 

Initially, the implementation of C-elements with different 
number of inputs was investigated. As mentioned before, this cell 
is applied in DIMS technique and generally applied to the 
handshake circuit building and completion detection. Moreover, it 
is also interesting due to the storage characteristic observed in the 
cell logic. It would be expected that the C-element 
implementation up to a certain number of inputs could be made 
with only one configurable cell. This expectation comes from the 
fact that a logic cell has features to implement combinational (for 
instance a LUT) and memory (for instance FFs) internally to the 
logic block. The experimental results are shown in Table 2. We 
noticed that the FFs were never used as there is no explicit clock 
signal in the description. Memorization characteristics are 
implemented through combinational elements with feedback. The 
support for C element in a single cell is achieved for C elements 
three inputs. This was expected as it corresponds to a LUT with 
three external inputs and an internal feedback. The PLD#4 was 
able to support a 6 input C element in a single logic element. 

Similar exercise was realized with the dual-rail latch to verify 
the mapping result provided by the tool. This is one of the main 
drawbacks in implementing asynchronous circuits on top of 
synchronous programmable devices, where the dual-rail latches 
are more expensive that standard flip-flops. The results are given 
in Table 3. Again, only the combinational part was used. 

In the next step, the dual-rail full adder approaches were 
prototyped. The configuration results are given in Table 4. It is 
clear the inefficiency of design strategy when compared to 
conventional single-rail full adder. 

The least common multiple, build in a thee-stage self-timed 
ring, is based on the RCAs generating from the full adders 
evaluated in Table 4. The experimental results of this application 
are shown in Table 5. The same experiments were done for other 
circuits (square root, remainder, greatest common divider, integer 
division and counter) but providing similar results, probably due 
to the similarities among them. 

In general, NCL logic gave the best results for FPGA. This is 
due to the possible optimizations derived from threshold logic that 
resulted in the optimized full-adder in Fig. 7. Also the use of low 
granularity M-out-of-N cell fits well with the FPGA structure. 
Actel developing platform was able to process well the behavioral 
description, obtaining the best implementation for this family. 
DIMS is a style that is not very competitive due to the use of too 
many C-elements. As shown in Fig. 6, for instance, a 2-input 
EXOR gate would require four C-elements one for each minterm. 
The design styles that are not based on the instantiation of fine 
grain cells (C-elements or M-out-of-N cells), like derivation from 
combinational logic (Section 3.3) and behavioral description 
(Section 3.4) present an improvement for CPLD based 
architectures. This happens because of the tuning between the size 
of the description and the size of the available logic cells in the 
architecture. 

When compared to normal synchronous versions the 
asynchronous circuits implemented were 4 to 5 times larger and 
around 2 to 4 times slower. This was expected as the developing 
tools (logic synthesis and mapping) and the device architectures 
have been conceived to implement synchronous systems. Even if 
this circuit presents memory characteristics, it is usually mapped 
into the combinational part of the device architecture. Different 
software tools from different FPGA/CPLD vendors implemented 
it as a logic element with a feedback from the output to an input 
of a LUT or another logic element. 

5. DIRECTIONS FOR ASYNCHRONOUS 
FPGAS 

The waste of area when using an FPGA can be illustrated by 
the following simple example. Consider the logic equation for a 
full adder. 

cbacbacbacbasum ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  (1) 

This equation can fit into a single LUT, as it has only three 
variables in its support. If it is to be implemented in dual rail, the 
following two equations are needed for signals sumT and SumF. 

cTbTaTcFbFaTcFbTaFcTbFaFsumT ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  (2) 

cFbFaFcTbTaFcTbFaTcFbTaTsumF ⋅⋅+⋅⋅+⋅⋅+⋅⋅=  (3) 

In addition to that, these new equations have six variables and do 
not fit in a single LUT. Indeed the implementation of these 
equations requires six LUTs. Besides that, the available flip-flops 
in every cell are not used in the circuits because we do not create 
VHDL processes using dependency on the raising edge of a clock 
signal (as the circuits are not synchronous). Another extra 
overhead is the routing of the extra dual-rail signals. 

5.1 Configurable Cells 
One of the most important area overhead for asynchronous is 

the duplication of logic for dual rail implementation. The goal 
here is to make equations 2 and 3 fit in a single dual-rail LUT. 
This could be achieved as dual rail implementation should focus 
only on the implementation of positive unate functions. This way, 
the following assumptions should be made for a LUT devoted to 
dual rail implementations: 

• it has four dual rail inputs; 

• it has two dual rail outputs, in a form of a shared 
programmable selection tree; 

• both outputs are reset if all the dual rail inputs are reset; 

• one of the outputs is set when all the dual rail inputs 
present valid data; 

• if valid data is not present in the inputs, the output does 
not need to produce a valid data; 

• self timing should be guaranteed through the use of 
extra C-elements, when needed. 
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Table 2 – C-element implementations using behavioral (B) and structural (S) VHDL descriptions 
 PLD#

1 
(B) 

PLD#
1 

(S) 

PLD#
2 

(B). 

PLD#
2 

(S) 

PLD#
3 

(B) 

PLD#
3 

(S) 

PLD#
4 

(B) 

PLD#
4 

(S) 

PLD#
5 

(B) 

PLD#
5 

(S) 

PLD#
6 

(B) 

PLD#
6 

(S) 
2 2 1 2 1 1 1 1 2 2 5 7/2 9/2 
3 2 1 2 1 2 1 1 2 6 8 10/4 12/4 

2X2 4 2 4 2 2 2 2 3 4 10 14/4 18/4 
4 2 3 2 1 2 2 1 2 9 12 11/4 14/5 

2x3 4 2 4 2 3 2 2 3 8 13 17/6 21/6 
2x2x2 6 3 6 3 3 3 3 4 6 14 19/6 25/6 

5 3 3 2 2 2 3 1 2 15 15 14/6 17/7 
2x4 4 4 4 2 3 3 2 3 11 17 18/6 23/7 

2x2x3 6 3 6 3 4 3 3 4 10 18 22/8 28/8 
2_3x2 6 3 6 3 4 3 3 4 10 18 22/8 28/8 

6 3 4 2 2 3 5 1 2 18 18 15/6 19/8 
2x5 5 4 4 3 3 4 2 3 17 20 21/8 16/9 

2x2x4 6 5 6 3 4 4 3 4 13 21 23/8 30/9 
3x2x3 8 4 8 4 5 4 4 5 12 23 27/10 35/10 
3_2x3 6 3 6 3 5 3 3 4 14 21 25/10 31/10 
4_2x2 6 5 6 3 4 4 3 4 13 21 23/8 30/9 

 
Table 3 – Dual-rail latch implementations using behavioral (B) and structural (S) VHDL descriptions.  

 PLD#
1 

(B) 

PLD#
1 

(S) 

PLD#
2 

(B). 

PLD#
2 

(S) 

PLD#
3 

(B) 

PLD#
3 

(S) 

PLD#
4 

(B) 

PLD#
4 

(S) 

PLD#
5 

(B) 

PLD#
5 

(S) 

PLD#6 
(B) 

PLD#6 
(S) 

1 bit 3 2 2 2 1 4 2 2 10 2 15/10 9/2 
4 bits 12 8 8 8 4 16 8 8 42 8 60/41 35/8 
8 bits 24 16 16 16 8 32 16 16 85 17 117/82 68/17 

16 bits 48 32 34 32 16 64 32 32 170 36 233/166 133/34 
32 bits 96 64 64 64 32 128 64 64 341 70 462/331 265/70 

 
Table 4 – Full-adder implementations 

 PLD#1 PLD#2 PLD#3 PLD#4 PLD#5 PLD#6 
DIMS 12 12 12 12 82 78/34 
NCL 10 8 8 8 64 50/34 
Derived 17 8 13 8 50 48/20 
Behavioral 17 10 13 4 42 39/27 

 
Table 5 – 32-bits least common multiple circuit implementations 

 PLD#
1 

PLD#
2 

PLD#
3 

PLD#
4 

PLD#
5 

PLD#6 

DIMS 2156 na 2831 na 3485 9165/4848 
NCL 1952 na 2587 na 3093 5967/4422 
Derived 2318 na 2915 na 3069 5608/3099 
Behavioral 2466 na 3214 na 2840 5059/3814 
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The approach in [10] presents a flexible FPGA that can be 
targeted to several different design styles. However, the logic 
block presented there is somewhat expensive as it requires a 
matrix of 11x14 connection points internally to the logic block, as 
well as two LUT-7 structures. This happens because they do not 
apply the unate simplifications arising from dual rail logic. By 
using unate simplifications, as suggested here, only two LUT-4 
are needed and the configurations flip flops can be shared. 
Besides, the mapping is straightforward (one-to-one) from a given 
mapping to regular 4-input LUTs. 

5.2 Storage Cells 
The flip-flops available in the logic cell were never used. A 
possibility could be to substitute them by C-elements or 
asynchronous latches. The best option would be a combination of 
the two (for instance, 50% of the logic elements would contain C-
elements and 50% would contain asynchronous latches instead of 
FFs). C-elements would be useful to implement distributed 
control as well as to ensure strong indication of reset and end-of-
calculus (see Fig. 8). Asynchronous latches would be the storage 
elements in pipelines. 

5.3 Dual Rail Routing 
If a dual-rail LUT is used, the routing of the FPGA should use the 
concept of dual rail signals. This way, only the wires would be 
duplicated. All the configuration control does not need to be 
duplicated as it is assumed that both dual-rail wires are delivered 
to the same places. 

6. CONCLUSION 
In this paper, the design of asynchronous circuits on top of 
synchronous FPGA/CPLD platforms has been evaluated. As 
expected, the results were not competitive as the device 
architectures and the developing tools have been conceived for 
the purpose of prototyping synchronous circuits. However, some 
good lessons can be taken from these experiments. First, it has 
been demonstrated that it is possible to fool synthesis tools 
designed for synchronous circuits to produce working 
asynchronous design from VHDL code. This can be a low price 
platform for asynchronous circuit prototyping. Second, guidelines 
for improving the FPGA architectures, in order to efficiently 
target asynchronous design, have been derived based on the 
analysis of the prototyping results. 
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