

Asynchronous Circuit Design on Reconfigurable Devices

R.U.R.Mocho1, G.H.Sartori1, R.P.Ribas1, A.I.Reis2

1 - PPGC, PGMICRO - UFRGS
Caixa Postal 15064
Porto Alegre, Brazil

rpribas@inf.ufrgs.br

2 - NANGATE

Smedeholm 10, 2 tv
DK-2730 Herlev

are@nangate.com

ABSTRACT
This paper presents the design of asynchronous circuits on
synchronous FPGAs and CPLDs. Different design styles have
been investigated through the implementation of dual-rail full
adders and ripple carry adders, as well as self-timed ring based
applications. The comparison analysis has been carried out by
prototyping the circuits on standard programmable logic devices,
and using the development tools provided by vendors. Although
the feasibility of asynchronous circuits has been demonstrated in
such devices, the experimental results clearly show the
inefficiency of such a kind of digital system implementation. This
is mainly due to the architecture characteristics of the
programmable devices and the logic synthesis realized by the
development environments. Remarks and suggestions are derived
from this study for a new FPGA architecture devoted to
asynchronous design.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles – combinational logic, logic
arrays, sequential circuits.

General Terms
Performance, Design, Reliability, Experimentation, Theory.

Keywords
Asynchronous circuits, FPGAs.

1. INTRODUCTION
The advent of FPGAs and CPLDs circuits provided effective

platforms for fast prototyping of VLSI digital synchronous
integrated circuits [1]. This technology has focused on
synchronous designs, and more recently on globally asynchronous
locally synchronous – GALS systems. Asynchronous design, on
the other hand, lacks of a well established FPGA/CPLD like
alternative [2].

The programmable logic solutions specific for asynchronous

circuits are based on large granularity blocks that do not have the
same flexibility and degree of configurability provided by LUT
based FPGAs and AND-OR array based CPLDs. This way, it is
hard to start the design flow from well established hardware
description languages (HDLs), like VHDL and Verilog. Most
proposed architectures for asynchronous FPGAs are closely
associated to a given design style. For instance, MONTAGE [4] is
based on arbiters and synchronizer cells. The approach in [5] is
based on Null Convention Logic (NCL [6]). In [7], a dataflow
based architecture for asynchronous circuit is proposed. The main
drawbacks are: the designer should start from a dataflow
specification and the granularity of the logic blocks is designed to
make them compatible with dataflow constructs. The approach in
[8] is based on micropipeline implementations, while the work in
[9] presents test results for a highly pipelined asynchronous
FPGA. A flexible FPGA that can be targeted to several different
design styles is proposed in [10]. However, the logic block
presented there is somewhat expensive as it requires a matrix of
11x14 connection points internally to the logic block, as well as
two LUT-7 structures.

Some approaches prefer to implement asynchronous designs
on top of synchronous FPGAs. For instance, the approach in [11]
presents a comparison among implementations including an
asynchronous circuit design from schematics on top of an Actel
FPGA device [12]. An asynchronous co-processor partially
implemented on a FPGA, partially on an ASIC is presented in
[13], where the project adopts a dataflow architecture and it is
described structurally. The design of a self timed ALU on a FPGA
platform is discussed in [14], but again the circuit is described in
schematic level, not using hardware description languages. The
work in [15] proposes the design of asynchronous circuits using
regular FPGAs, and its main contribution is an informal proof that
the C-element is hazard-free if implemented in a single LUT.
However, only 2- and 3-input C-elements are mentioned and
hardware description languages are not applied.

In this work, synchronous FPGAs/CPLDs available in the
market are targeted to implement asynchronous or self-timed
circuits from VHDL specifications. Different design styles,
considering dual-rail encoding for computation completion
detection, have been investigated. Note that differential and
dynamic CMOS structures, very popular in asynchronous ASIC
design, are not suitable in programmable components [2].
Moreover, bundle data implementations, like micropipelines, are
also not compatible with such devices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBCCI'06, August 28-September 1, 2006, Minas Gerais, Brazil.
Copyright 2006 ACM 1-59593-479-0/06/0008...$5.00.

20

This paper is organized as follows. Section 2 discusses the
functionality and VHDL description of basic cells for
asynchronous design. Four dual-rail design styles are discussed in
Section 3 through adder circuits. Section 4 presents the
experimental results and analysis. Finally, the remarks for a
dedicated asynchronous FPGA and conclusions are given in
Section 5.

2. CELLS FOR SELF-TIMED DESIGN
Self-timed designs comprise specific circuits generally not used in
synchronous design. The ones used in this work are the C-element
or Muller cell, the M-out-of-N cell and the unique dual-rail latch.
These three components are briefly described bellow [2].

2.1 C-Element
The C-element is widely used in asynchronous designs for
implementing the handshake control circuit and for computing
completion detection. The truth table for a C-element is given by
Table 1. Notice that the output signal follows the input ones when
these are equal, or the cell acts as a memory of the previous value.
A dedicated configurable block for this logic function is not
available in synchronous FPGA and CPLD. The way used to
implement C-elements is through their description as
combinational circuits with the output reconnected to one of the
inputs. A VHDL description of C-element implementation using
this strategy is presented in Fig. 1. Another way to implement the
C-element functionality is the behavioral description presented in
Fig. 2. C-elements with more than 2-inputs can be described
either considering both strategies mentioned above or by
combining 2-input cells.

ARCHITECTURE inst OF CC IS
SIGNAL ctemp: std_logic;
 COMPONENT modcc
 PORT (a, b, cin : IN std_logic;
 cout : OUT std_logic);
 END component;
BEGIN
INSTCC: modcc PORT MAP (a, b, ctemp, ctemp);
 c <= ctemp;
END inst;

ARCHITECTURE equation OF modcc IS
BEGIN
cout <= (a or b) and (a or cin) and (b or cin);
END equation;

Figure 1 : VHDL C-element as instance of an equation

2.2 M-out-of-N cell
The behavior of an M-out-of-N cell is described through an
example. The behavior of a 2-out-of-3 cell is shown in the VHDL
code presented in Fig. 3. The output goes to high logic level if 2
of the 3 inputs present the logic value ‘1’. The output is reset

when all inputs are set to logic ‘0’. Otherwise, the output is
memorized. Notice that, when M is equal to N, a C-element is
obtained, while making M equal to 1 result in a combinational OR
cell.

2.3 Dual Rail Latch
The dual-rail latches used in self-timed rings and asynchronous
pipelines, considering the 4-phase protocol [2], have the behavior
described in Fig. 5. The output is reset when the enable signal
‘En’ is equal to ‘0’. When the latch is enabled, it either acts as a
memory when no valid data is available in the inputs (It = If = 0)
or the output follows the input values when complemented data (It
≠ If) are present in the input. The implementation of such a kind
of latch applied in this work is shown in Fig. 4.

ARCHITECTURE behavioral OF ncl_3_2 IS
SIGNAL s_temp: std_logic;
SIGNAL aux: std_logic_vector (2 downto 0);
BEGIN
aux <= i1 & i2 & i3;
s_temp <= '0' when aux = "000" else

'1' when aux = "110" else
'1' when aux = "101" else
'1' when aux = "011" else
'1' when aux = "111" else

s_temp;
s <= s_temp;
END behavioral;

Figure 3 - VHDL behavioral description of 2-out-of-3

cell.Figure 1.

Ot

Of
If

It

En

Figure 4 – Dual rail latch for self timed circuits

ARCHITECTURE behavior OF latch_async IS
 SIGNAL Ot_temp, Of_temp: std_logic;
BEGIN
PROCESS (It, If, En, Ot_temp, Of_temp)
BEGIN
 IF (En='0') THEN
 Ot_temp <= '0'; Of_temp <= '0';
 ELSIF (It='0') and (If='0') THEN
 Ot_temp <= Ot_temp;
 Of_temp <= Of_temp;
 ELSE
 Ot_temp <= Ot;
 Of_temp <= Of;
 END IF;
 Ot <= Ot_temp; Of <= Of_temp;
END PROCESS;
END behavior;

Figure 5 – Behavioral description of dual rail latch

Table 1: Truth table of 2-input C-element

I1 I2 Out
0 0 0
0 1 keep previous value
1 0 keep previous value
1 1 1

21

3. DUAL RAIL DESIGN STYLES
Four different design styles for the combinatorial blocks have
been investigated, taking into account the completion detection
through dual-rail signaling (Dt,Df), that means: (1,0) = ‘1’; (0,1)
= ‘0’; (0,0) = no valid data or waiting state; (1,1) = not used .

The logic styles described bellow were used to implement full
adders, which have then cascaded to build ripple carry adders
(RCA), ranging from 4 to 32 bits. The RCA circuits were then
applied in the self-timed ring based applications such as least
common multiple, greatest common divider, square root, counter,
integer division and remainder.

3.1 DIMS
Delay Insensitive Minterm Synthesis - DIMS is strongly based on
canonical (minterm based) sum-of-products, where each minterm
is recognized through a C-element [2]. The FPGA and CPLD
implementations have been done through the instantiation of the
C-elements, described previously. Fig. 6 shows an exclusive-NOR
cell based on DIMS technique.

At Af Bt Bf

C

C St

C

C

Sf

m0

m1

m2

m3

Figure 6 – Exclusive-NOR based on DIMS

3.2 NCL
Null Convention Logic – NCL, in turn is a design style derived
from threshold logic [5] [6]. The adopted implementation has
been done through instantiation of the M-out-of-N elements
described previously. The NCL based full-adder is depicted in
Fig. 7. It contains two 2-out-of-3 cells and two 3-out-of-5 cells.
NCL logic can be synthesized with similar methods to threshold
logic [6].

3.3 Derivation from Combinational Circuits
In this implementation, the circuit is derived from a standard
single-rail combinational circuit. All the equations are made
positive unate by using the dual-rail encoding with the adequate
polarity to avoid inverted literals. The intermediate signals that are
needed in both polarities will result in duplicated logic gates. Fig.
8 illustrates this principle. Notice that additional circuitry is
needed to ensure that: a) the output is reset only when all the
inputs are null; and b) a valid value is produced in the output only
when all the inputs present a valid data.

3.4 Behavioral Description with Strong
Indication
In this approach, the design of dual-rail combinational blocks is
done through behavioral description including the desired
characteristics. For instance, strong indication for valid data and
for input reset was described in a behavioral way, but not in the
cell level. The circuit is specified from a behavioral point-of-view
and the strong indication conditions are added behaviorally. These
conditions include: a) reset the output only when all the inputs are
reset; and b) output receives a valid value only when all the inputs
are defined, that means, when they present a valid data.

3

2

2

3

Sf

St

Cout f
Cout t

Cin f
Cin t

Af

At

Bf

Bt

Figure 7 – Full-adder based on NCL

Combinacional Circuit

At

Af

Bt

Bf

At

Af

Bt

Bf

At

Af

Bt

Bf

C

C

St

Sf

Figure 8 – Derivation from combinational logic

4. EXPERIMENTAL RESULTS
The experiments have been carried out always considering

VHDL circuit descriptions. Six programmable devices available
commercially were targeted, being FPGAs and CPLDs from the
major vendors:

• PLD#1 - Altera SRAM-based FPGA FLEX10KE

• PLD#2 - Altera Flash-based CPLD MAX7000AE

• PLD#3 - Xilinx SRAM-based FPGA SPARTAN2

• PLD#4 - Xilinx Flash-based CPLD XC9500XV

• PLD#5 - Actel antifuse-based FPGA AXELERATOR

• PLD#6 - Actel SRAM-based FPGA 500K family

22

Each implementation was made through the particular
development tool provided by the vendor. The statistics about the
number of configurable cells (macrocells, logic cells or LUTs)
that represent circuit complexity were also extracted from the
vendor’s tool.

Initially, the implementation of C-elements with different
number of inputs was investigated. As mentioned before, this cell
is applied in DIMS technique and generally applied to the
handshake circuit building and completion detection. Moreover, it
is also interesting due to the storage characteristic observed in the
cell logic. It would be expected that the C-element
implementation up to a certain number of inputs could be made
with only one configurable cell. This expectation comes from the
fact that a logic cell has features to implement combinational (for
instance a LUT) and memory (for instance FFs) internally to the
logic block. The experimental results are shown in Table 2. We
noticed that the FFs were never used as there is no explicit clock
signal in the description. Memorization characteristics are
implemented through combinational elements with feedback. The
support for C element in a single cell is achieved for C elements
three inputs. This was expected as it corresponds to a LUT with
three external inputs and an internal feedback. The PLD#4 was
able to support a 6 input C element in a single logic element.

Similar exercise was realized with the dual-rail latch to verify
the mapping result provided by the tool. This is one of the main
drawbacks in implementing asynchronous circuits on top of
synchronous programmable devices, where the dual-rail latches
are more expensive that standard flip-flops. The results are given
in Table 3. Again, only the combinational part was used.

In the next step, the dual-rail full adder approaches were
prototyped. The configuration results are given in Table 4. It is
clear the inefficiency of design strategy when compared to
conventional single-rail full adder.

The least common multiple, build in a thee-stage self-timed
ring, is based on the RCAs generating from the full adders
evaluated in Table 4. The experimental results of this application
are shown in Table 5. The same experiments were done for other
circuits (square root, remainder, greatest common divider, integer
division and counter) but providing similar results, probably due
to the similarities among them.

In general, NCL logic gave the best results for FPGA. This is
due to the possible optimizations derived from threshold logic that
resulted in the optimized full-adder in Fig. 7. Also the use of low
granularity M-out-of-N cell fits well with the FPGA structure.
Actel developing platform was able to process well the behavioral
description, obtaining the best implementation for this family.
DIMS is a style that is not very competitive due to the use of too
many C-elements. As shown in Fig. 6, for instance, a 2-input
EXOR gate would require four C-elements one for each minterm.
The design styles that are not based on the instantiation of fine
grain cells (C-elements or M-out-of-N cells), like derivation from
combinational logic (Section 3.3) and behavioral description
(Section 3.4) present an improvement for CPLD based
architectures. This happens because of the tuning between the size
of the description and the size of the available logic cells in the
architecture.

When compared to normal synchronous versions the
asynchronous circuits implemented were 4 to 5 times larger and
around 2 to 4 times slower. This was expected as the developing
tools (logic synthesis and mapping) and the device architectures
have been conceived to implement synchronous systems. Even if
this circuit presents memory characteristics, it is usually mapped
into the combinational part of the device architecture. Different
software tools from different FPGA/CPLD vendors implemented
it as a logic element with a feedback from the output to an input
of a LUT or another logic element.

5. DIRECTIONS FOR ASYNCHRONOUS
FPGAS

The waste of area when using an FPGA can be illustrated by
the following simple example. Consider the logic equation for a
full adder.

cbacbacbacbasum ⋅⋅+⋅⋅+⋅⋅+⋅⋅= (1)

This equation can fit into a single LUT, as it has only three
variables in its support. If it is to be implemented in dual rail, the
following two equations are needed for signals sumT and SumF.

cTbTaTcFbFaTcFbTaFcTbFaFsumT ⋅⋅+⋅⋅+⋅⋅+⋅⋅= (2)

cFbFaFcTbTaFcTbFaTcFbTaTsumF ⋅⋅+⋅⋅+⋅⋅+⋅⋅= (3)

In addition to that, these new equations have six variables and do
not fit in a single LUT. Indeed the implementation of these
equations requires six LUTs. Besides that, the available flip-flops
in every cell are not used in the circuits because we do not create
VHDL processes using dependency on the raising edge of a clock
signal (as the circuits are not synchronous). Another extra
overhead is the routing of the extra dual-rail signals.

5.1 Configurable Cells
One of the most important area overhead for asynchronous is

the duplication of logic for dual rail implementation. The goal
here is to make equations 2 and 3 fit in a single dual-rail LUT.
This could be achieved as dual rail implementation should focus
only on the implementation of positive unate functions. This way,
the following assumptions should be made for a LUT devoted to
dual rail implementations:

• it has four dual rail inputs;

• it has two dual rail outputs, in a form of a shared
programmable selection tree;

• both outputs are reset if all the dual rail inputs are reset;

• one of the outputs is set when all the dual rail inputs
present valid data;

• if valid data is not present in the inputs, the output does
not need to produce a valid data;

• self timing should be guaranteed through the use of
extra C-elements, when needed.

23

Table 2 – C-element implementations using behavioral (B) and structural (S) VHDL descriptions
 PLD#

1
(B)

PLD#
1

(S)

PLD#
2

(B).

PLD#
2

(S)

PLD#
3

(B)

PLD#
3

(S)

PLD#
4

(B)

PLD#
4

(S)

PLD#
5

(B)

PLD#
5

(S)

PLD#
6

(B)

PLD#
6

(S)
2 2 1 2 1 1 1 1 2 2 5 7/2 9/2
3 2 1 2 1 2 1 1 2 6 8 10/4 12/4

2X2 4 2 4 2 2 2 2 3 4 10 14/4 18/4
4 2 3 2 1 2 2 1 2 9 12 11/4 14/5

2x3 4 2 4 2 3 2 2 3 8 13 17/6 21/6
2x2x2 6 3 6 3 3 3 3 4 6 14 19/6 25/6

5 3 3 2 2 2 3 1 2 15 15 14/6 17/7
2x4 4 4 4 2 3 3 2 3 11 17 18/6 23/7

2x2x3 6 3 6 3 4 3 3 4 10 18 22/8 28/8
2_3x2 6 3 6 3 4 3 3 4 10 18 22/8 28/8

6 3 4 2 2 3 5 1 2 18 18 15/6 19/8
2x5 5 4 4 3 3 4 2 3 17 20 21/8 16/9

2x2x4 6 5 6 3 4 4 3 4 13 21 23/8 30/9
3x2x3 8 4 8 4 5 4 4 5 12 23 27/10 35/10
3_2x3 6 3 6 3 5 3 3 4 14 21 25/10 31/10
4_2x2 6 5 6 3 4 4 3 4 13 21 23/8 30/9

Table 3 – Dual-rail latch implementations using behavioral (B) and structural (S) VHDL descriptions.

 PLD#
1

(B)

PLD#
1

(S)

PLD#
2

(B).

PLD#
2

(S)

PLD#
3

(B)

PLD#
3

(S)

PLD#
4

(B)

PLD#
4

(S)

PLD#
5

(B)

PLD#
5

(S)

PLD#6
(B)

PLD#6
(S)

1 bit 3 2 2 2 1 4 2 2 10 2 15/10 9/2
4 bits 12 8 8 8 4 16 8 8 42 8 60/41 35/8
8 bits 24 16 16 16 8 32 16 16 85 17 117/82 68/17

16 bits 48 32 34 32 16 64 32 32 170 36 233/166 133/34
32 bits 96 64 64 64 32 128 64 64 341 70 462/331 265/70

Table 4 – Full-adder implementations

 PLD#1 PLD#2 PLD#3 PLD#4 PLD#5 PLD#6
DIMS 12 12 12 12 82 78/34
NCL 10 8 8 8 64 50/34
Derived 17 8 13 8 50 48/20
Behavioral 17 10 13 4 42 39/27

Table 5 – 32-bits least common multiple circuit implementations

 PLD#
1

PLD#
2

PLD#
3

PLD#
4

PLD#
5

PLD#6

DIMS 2156 na 2831 na 3485 9165/4848
NCL 1952 na 2587 na 3093 5967/4422
Derived 2318 na 2915 na 3069 5608/3099
Behavioral 2466 na 3214 na 2840 5059/3814

24

The approach in [10] presents a flexible FPGA that can be
targeted to several different design styles. However, the logic
block presented there is somewhat expensive as it requires a
matrix of 11x14 connection points internally to the logic block, as
well as two LUT-7 structures. This happens because they do not
apply the unate simplifications arising from dual rail logic. By
using unate simplifications, as suggested here, only two LUT-4
are needed and the configurations flip flops can be shared.
Besides, the mapping is straightforward (one-to-one) from a given
mapping to regular 4-input LUTs.

5.2 Storage Cells
The flip-flops available in the logic cell were never used. A
possibility could be to substitute them by C-elements or
asynchronous latches. The best option would be a combination of
the two (for instance, 50% of the logic elements would contain C-
elements and 50% would contain asynchronous latches instead of
FFs). C-elements would be useful to implement distributed
control as well as to ensure strong indication of reset and end-of-
calculus (see Fig. 8). Asynchronous latches would be the storage
elements in pipelines.

5.3 Dual Rail Routing
If a dual-rail LUT is used, the routing of the FPGA should use the
concept of dual rail signals. This way, only the wires would be
duplicated. All the configuration control does not need to be
duplicated as it is assumed that both dual-rail wires are delivered
to the same places.

6. CONCLUSION
In this paper, the design of asynchronous circuits on top of
synchronous FPGA/CPLD platforms has been evaluated. As
expected, the results were not competitive as the device
architectures and the developing tools have been conceived for
the purpose of prototyping synchronous circuits. However, some
good lessons can be taken from these experiments. First, it has
been demonstrated that it is possible to fool synthesis tools
designed for synchronous circuits to produce working
asynchronous design from VHDL code. This can be a low price
platform for asynchronous circuit prototyping. Second, guidelines
for improving the FPGA architectures, in order to efficiently
target asynchronous design, have been derived based on the
analysis of the prototyping results.

7. REFERENCES
[1] T.J.Todman, G.A.Constantinides, S.J.E.Wilton, O.Mencer,

W.Luk and P.Y.K.Cheung, “Reconfigurable computing:
architectures and design methods”, IEE Proc.- Comput.
Digit. Tech., Vol. 152, No. 2, March 2005, pp. 193-207.

[2] J.Sparso, S.Furber. Principles of Asynchronous Circuit
Design - A system perspective. Kluwer, 2001.

[3] S.Hauck, S.Burns, G.Borriello and C.Ebeling, “An FPGA for
implementing asynchronous circuits”, IEEE Design and Test
of computers, Fall 1994, pp. 60-69.

[4] R.Payne, “Asynchronous FPGA architectures”, IEE Proc.-
Comput. Digit. Tech., Vol. 143, No 5, September 1996, pp.
282-286.

[5] K.Meekins, D.Ferguson and M.Basta, “Delay Insensitive
NCL Reconfigurable Logic”, Aerospace Conference
Proceedings 2002, pp.4-1961 to 4-1966.

[6] K.M. Fant and S. A. Brandt, “NULL Convention Logic: a
complete and consistent logic for asynchronous digital circuit
synthesis”, ASAP96, pp.261-273.

[7] J. Teifel and R.Manohar, “An Asynchronous Dataflow
FPGA Architecture,” IEEE Transactions on Computers, vol.
53, no. 11, pp. 1376–1392, Nov. 2004.

[8] Y.Zafar and M.Ahmed, “A Novel FPGA Compliant
Micropipeline”, IEEE Trans. on CAS II – Express Briefs,
Vol 52, No 9, September 2005, pp. 611-615.

[9] D.Fang, J.Teifel and R.Manohar, “A High-Performance
Asynchronous FPGA: test results”, FCCM05, pp. 271-272.

[10] N.Huot, H.Dubreuil, L.Fesquet and M.Renaudin, “FPGA
architecture for multiple-style asynchronous logic”, DATE
2005, pp. 32-33.

[11] E.Brunvand, N.Michell and K.Smith, “A Comparison of
Self-Timed Design using FPGA, CMOS and GaAs
Technologies”, ICCD1992, pp. 76-80.

[12] Actel web page. www.actel.com.

[13] J.H.Novak and E.Brunvand, “Using FPGAs to Prototype a
Self Timed Floating Point Co-Processor”, CICC 1994, pp.
85-88.

[14] S.Ortega-Cisneros, J.J.Raygoza-Panduro, M.J.Suardíaz and
E.Boemo, “Rapid prototyping of a self-timed ALU with
FPGAs”, ReConFig 2005, pp. 7-14.

[15] Q.T.Ho, J-B.Rigaud, L.Fesquet, M.Renaudin and R.Rolland,
“Implementing Asynchronous Circuits on LUT Based
FPGAs”, FPL2002, LNCS2438, pp. 36-46, 2002.

[16] M.L. Dertouzos, “Threshold Logic: a Synthesis Approach”,
The MIT Press, 256pp, 1965.

[17] Altera web page. www.altera.com.

[18] Xilinx web page. www.xilinx.com

25

	INTRODUCTION
	CELLS FOR SELF-TIMED DESIGN
	C-Element
	M-out-of-N cell
	Dual Rail Latch

	DUAL RAIL DESIGN STYLES
	DIMS
	NCL
	Derivation from Combinational Circuits
	Behavioral Description with Strong Indication

	EXPERIMENTAL RESULTS
	DIRECTIONS FOR ASYNCHRONOUS FPGAS
	Configurable Cells
	Storage Cells
	Dual Rail Routing

	CONCLUSION
	REFERENCES

